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ABSTRACT This paper investigates the design of a robust controller for a quadrotor unmanned aerial vehi-
cle (UAV) system subject to parameter uncertainties and external disturbances. A new double closed-loop
active disturbance rejection generalized predictive control (ADRC-GPC) is proposed for the trajectory
tracking problem of the UAV. Considering the measurement noise, the ADRC-GPC control strategy
can provide better dynamic performance and robustness against uncertainties and external disturbances
than active disturbance rejection control (ADRC). Furthermore, a controller parameter tuning method for
ADRC-GPC is proposed. In the framework of the classical two-degree-of-freedom equivalent model, the
bandwidth of ESO is determined according to the parameter selection criterion. The criterion is a trade-off
between the estimation accuracy and the immunity of measurement noise. In addition, the parameters of
the ADRC-GPC controller are tuned by quantitative feedback theory to achieve the expected performance
specifications. Finally, the proposed method is compared with several traditional control methods in the
simulation experiments. The simulation results show that the proposed method has better set-point tracking
performance, disturbance rejection performance, and robustness.

INDEX TERMS Quadrotor UAVs, uncertainties and disturbances, active disturbance rejection generalized
predictive control, quantitative feedback theory, parameter tuning.

I. INTRODUCTION
A quadrotor UAV is a type of unmanned helicopter with
four rotors. It is controlled by changing the lift forces of
four rotors. Due to its simple structure, low inertia, and low
cost, the quadrotor UAV is widely used in civil and military
fields such as surveillance, search, surveying, and reconnais-
sance [1]. Trajectory tracking control is an important guaran-
tee for the Quadrotor UAV to realize the above applications.
The quadrotor UAV has six degrees of freedom, including
three position variables and three attitude angle variables.
However, there are only four control inputs. So it is a typical
underactuated mechanical system. In addition, the quadro-
tor UAV has the characteristics of nonlinearity, multi-input
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multi-output (MIMO), strong coupling, and model uncer-
tainty [2], traditional control strategies developed for fully
actuated systems are not directly applicable to the quadro-
tor flight control systems. Research on the quadrotor flight
control is one of the most interesting topics in the robotics
and control community. In the past two decades, several con-
trol strategies for trajectory tracking were proposed [3]–[5],
including PID control, slidingmode control, adaptive control,
robust control, neural network control, etc.. In [6], a controller
design method based on feedback linearization and backstep-
ping was proposed for a quadrotor dynamic model. In [7],
a further input saturation problem was considered. A back-
stepping controller based on the Nussbaum function was
designed, and the latent singularities in the attitude extraction
process caused by saturation nonlinearities were avoided.
In [8]–[12], sliding mode control schemes were proposed to
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address the problems of underactuation, model uncertainty,
actuator failure, and external disturbance. The stability of
the closed-loop system was guaranteed with the Lyapunov
theory. In [13], [14], model uncertainty and external distur-
bance were estimated by neural networks and the controller
parameters were tuned online. Robust control is also an effec-
tive strategy to solve the control problem with parameter
uncertainty. In [15]–[17], sliding mode observers and interval
matrix approach were used to realize the trajectory tracking
control of UAVs. It can be seen from the above references that
underactuation, model uncertainty, and external disturbances
are the main problems that need to be considered. The control
strategy which does not rely on the exact model and has good
disturbance rejection ability is a focused area in the trajectory
tracking control of quadrotor UAVs.

Active disturbance rejection control (ADRC), which inher-
its many merits of PID controller, is emerging as a new robust
control technology [18], [19]. In the framework of ADRC, the
model uncertainties, nonlinearity, and external disturbance
are regarded as the total disturbance, which is estimated
and compensated by the extended state observer (ESO) in
real-time. The disturbance rejection capability of ADRC has
been verified in the field of UAV flight control. In [20],
ADRC and wind feedforward compensation were used to
realize the accurate flight path tracking control of a powered
parafoil. The experiment showed that the ADRC method
achieved good tracking performance and robustness against
the variable wind disturbance. In [21], ADRC was applied
to the attitude loop and the position loop at the same time.
The simulation experiment proved that the proposed ADRC
control scheme had good disturbance rejection performance
and robustness. On this basis, ADRC was combined with
sliding mode control to further improve the dynamic perfor-
mance of the trajectory tracking control [22], [23]. In [24],
an attitude controller was developed within the framework of
ADRC and embedded model control, and a multi-step test
strategy was proposed to assess the performance of ADRC
controller. According to the above references, ADRC is good
at dealing with the problem of parameter uncertainty and
external disturbance. On the other hand, it should be noted
that ADRC is an observer-based control method. When there
is measurement noise or high-frequency disturbance in the
output, the bandwidth of the ESO will be limited. At this
time, the estimation accuracy of the total disturbance will be
reduced, and the dynamic performance of the system will be
difficult to guarantee.

To solve the problem of the ESO bandwidth limita-
tion, a practicable solution is to replace the PD controller
in ADRC with a more robust controller. In [25], [26],
an active disturbance rejection generalized predictive con-
troller (ADRC-GPC) was proposed. The system was
compensated into an approximate integrator chain, and a
generalized predictive controller was designed for the com-
pensated system. The simulation result showed that the
ADRC-GPC method had good dynamic performance. How-
ever, ADRC-GPC involves comparatively more parameters

than ADRC. The parameter tuning is challenging in
ADRC-GPCwith model uncertainties. Quantitative feedback
theory (QFT) [27], [28] is a robust control design methodol-
ogy for the system with uncertainties. The model uncertain-
ties and the performance specifications can be transformed
into the boundaries in the Nichols chart, and loop shaping
is realized by a graphic method. QFT has been successfully
applied to a wide variety of industrial fields [29]–[31]. It is a
feasible way to use QFT to guide the parameter tuning of the
ADRC-GPC controller.

Motivated by afore-mentioned discussions, this paper
proposes a trajectory tracking control structure based on
ADRC-GPC and a parameter tuning method based on QFT.
The main contributions of this paper are summarized as
follows.

(1) According to the dynamic model of a quadrotor UAV,
a closed-loop trajectory tracking control structure based on
ADRC-GPC is proposed. By introducing the virtual con-
trol input, the original underactuated multivariable system is
transformed into six single-input single-output (SISO) sys-
tems. Coupling effects and external disturbances between
loops are estimated and compensated by ESO in real time.

(2) By the equivalent transformation, the two-degree-
of-freedom equivalent model of ADRC-GPC is obtained.
An ESO bandwidth selection criterion is proposed according
to the equivalent model. The estimation accuracy and noise
influence are taken as constraints in the criterion, and a
reasonable bandwidth range can be obtained.

(3) A parameter tuning method of ADRC-GPC based on
QFT is proposed. The controller parameters are tuned to
meet the performance specifications in the Nichols chart.
The system has good dynamic performance and disturbance
rejection ability after parameter tuning.

II. DYNAMICS OF A QUADROTOR UAV
The structure of a quadrotor UAVused in this work is depicted
in Figure 1. The dynamic model is introduced in detail
in [32], and it contains six degrees of freedom: three position
variables (x, y, z) and three attitude variables (θ , φ, ψ), θ
represents the pitch angle, φ represents the roll angle, and ψ
represents the yaw angle.

The simplified dynamic model of the quadrotor UAV
is established according to Euler-Lagrange formulation as
follow:

ẍ = U1(sin θ cosφ cosψ + sinφ sinψ)−
kf
m
ẋ

ÿ = U1(sin θ cosφ sinψ − sinφ cosψ)−
kf
m
ẏ

z̈ = U1(cosφ cos θ )−g−
kf
m
ż

φ̈ =
(Jy − Jz)

Jx
θ̇ ψ̇ −

kf
Jx
φ̇ + U2 + d1

θ̈ =
(Jz − Jx)

Jy
θ̇ ψ̇ −

kf
Jy
θ̇ + U3 + d2

ψ̈ =
(Jx − Jy)

Jz
θ̇ ψ̇ −

kf
Jz
ψ̇ + U4 + d3

(1)
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FIGURE 1. Free-body diagram of a quadrotor UAV.

where the parameter values of the UAV are shown in Table 1.
d1, d2 and d3 are the external disturbances in the attitude
loop. U1, U2, U3 and U4 are the control inputs, and the
transformation between

[
U1 U2 U3 U4

]T and the voltages
of four rotors

[
V1 V2 V3 V4

]T is shown as follow:


U1
U2
U3
U4

 =



ka
m

ka
m

ka
m

ka
m

0 −
lka
Jx

0
lka
Jx

−
lka
Jy

0
lka
Jy

0

kc
Jz

−
kc
Jz

kc
Jz
−
kc
Jz




V1
V2
V3
V4

 (2)

where ka is the coefficient between the rotor voltage and the
lift generated by the rotor. The study objective in this work
is to control three attitude angles and three position variables
by the inputs

[
U1 U2 U3 U4

]T .
III. DESIGN OF TRAJECTORY TRACKING CONTROLLER
FOR THE QUADROTOR UAV
A. TRAJECTORY TRACKING CONTROL SCHEME OF THE
QUADROTOR UAV
According to the dynamic model of the quadrotor UAV, the
system includes six channels and two control loops. The
longitudinal motion channel (x), the lateral motion channel
(y), and the height motion channel (z) belong to the position
control loop. The pitch angle channel (θ), the roll angle
channel (φ), and the yaw angle channel (ψ) belong to the
attitude control loop. For the attitude loop, each channel has a
corresponding control input. However, for the position loop,
there is only one control input U1. So three virtual control
inputs are designed for the position control loop. The virtual

TABLE 1. Model parameters of the quadrotor UAV flight system.

FIGURE 2. Trajectory tracking control scheme of the quadrotor UAV.

control inputs Ux , Uy, Uz are expressed as Ux
Uy
Uz

 = U1 ×

 sin θ cosφ cosψ + sinφ sinψ
sin θ cosφ sinψ − sinφ cosψ

cos θ cosφ

 (3)

According to equations (1) and (3), the real control input
U1 can be calculated as follows:

U1 =
Uz

cosφ cos θ
(4)

θ = arctan(
Ux cosψ + Uy sinψ

Uz
) (5)

φ = arctan(
Ux sinψ − Uy cosψ

Uz
) (6)

where θ and φ in equations (5) and (6) are defined as the
desired trajectories of the pitch angle and the roll angle,
respectively. The designed trajectory tracking control scheme
of the quadrotor UAV is shown in Figure 2.

B. DESIGN OF ADRC-GPC CONTROLLER
For the control structure depicted in Figure 2, the coupling
effect between loops can be estimated and compensated by
ESO. With the compensation, the system can be divided into
six single input single output (SISO) systems. The estimation
accuracy of the disturbance depends on the value size of ESO
bandwidth. Larger bandwidth can obtain higher estimation
accuracy, but it makes the controller sensitive to measure-
ment noise. Thus, an ADRC-GPC is designed to enhance
the robustness of the system when the bandwidth of ESO
is limited. The specific control structure of ADRC-GPC is
shown in Figure 3. The total disturbance of the system is
estimated and compensated through ESO, and the generalized
predictive controller is designed for the integrator chain after
compensation.
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FIGURE 3. ADRC-GPC control structure diagram.

Coupling effects and external disturbances are defined as
the total disturbance f , and the gravity compensation is added
into the controller of the z-axis. The six channels of the
quadrotor UAV can be rewritten as second-order systems as
follow:

ÿ(t) = f (t)+ b0u(t) (7)

where the total disturbance f (t) = −a1ẏ(t)− a2y(t)+w(t)+
(b− b0)u(t), a1 and a2 are the model parameters, w(t) is the
sum of external disturbances and coupling effects, b and b0
are the actual value and estimated value of the control input
gains. Assume that the total disturbance f is differentiable and
the derivative of f is h, equation (7) can be rewritten as the
following state space form:{

ẋ = Ax + Bu+ Eh
y = Cx

(8)

where A =

 0 1 0
0 0 1
0 0 0

, B =
 0
1
0

, E =
 0
0
1

 and C =[
1 0 0

]
.

Based on the system (8), an ESO is designed as
ż1 = z2 − β1(z1 − y)
ż2 = z3 − β2(z1 − y)+ b0u
ż3 = −β3(z1 − y)

(9)

where z1, z2 and z3 are the estimations of x1, x2 and x3. β1,
β2 and β3 are the error feedback gains of ESO. According to
equation (9), the characteristic equation of ESO is

λ(s) = s3 + β1s2 + β2s+ β3 (10)

Set the characteristic equation as λ(s) = (s + ωo)3, there
are 

β1 = 3ωo
β2 = 3ωo2

β3 = ωo
3

(11)

where ωo is the ESO bandwidth. With the pole configuration,
the parameters of ESO are reduced to one. By tuning ωo, z1,
z2 and z3 can estimate the values of y, ẏ and f accurately. The
control law can be designed as

u =
u0 − z3
b0

(12)

Substituting equation (12) into equation (7), the relation-
ship between u0 and the output y is

ÿ ≈ u0 (13)

In ADRC-GPC, GPC controller is designed for the sys-
tem (13). The following CARMA model is used as the pre-
diction model:

A(z−1)y(k) = B(z−1)u0(k − 1)+ C(z−1)ξ (k) (14)

where u0(k) and y(k) are the input and output signals at time
k , ξ (k) is the disturbance signal, A(z−1), B(z−1) and C(z−1)
are described as

A(z−1) = 1+ a1z−1 + · · · + anaz−na

B(z−1) = b0 + b1z−1 + · · · + bnbz−nb

C(z−1) = c0 + c1z−1 + · · · + cncz−nc
(15)

For simplicity, assume that C(z−1) = 1. With a zero-order
hold, the discrete transfer function of equation (13) is

G0(z−1) = (1− z−1)Z
[
G0(s)
s

]
= z−1

T 2(1+ z−1)

2(1− z−1)2
(16)

where Z (·) is the z-transformation operator, T is the sampling
time. According to equations (14) and (16), the CARMA
model parameters of G0(z−1) can be expressed asA(z−1) = (1− z−1)2

B(z−1) =
T 2

2
(1+ z−1)

(17)

In order to obtain the predictive model at k + j time, the
following Diophantine equations are considered,{

1 = Ej(z−1)A(z−1)+ z−jFj(z−1)
Ej(z−1)B(z−1) = Gj(z−1)+ z−jHj(z−1)

(18)

where j = 1, 2, . . . ,N ,N is the prediction horizon. The forms
of Ej, Fj, Gj and Hj are described as follows:

Ej(z−1) = e1 + e2z−1 + · · · + ejz−(j−1)

Fj(z−1) = f j1 + f
j
2z
−1
+ · · · + f jna+1z

−na

Gj(z−1) = g1 + g2z−1 + · · · + gjz−(j−1)

Hj(z−1) = hj1 + h
j
2z
−1
+ · · · + hjnbz

−nb+1

(19)

Substituting equations (17) into Diophantine equations (18),
the solution of the Diophantine equations can be obtained as

ej = j

f j1 = j+ 1, f j2 = −j

gj =
T 2

2
(2j− 1)

hj1 = j
T 2

2

(20)

According to equations (14)-(20), the prediction model of
the system at k + j time is expressed as

y(k + j) = Gju(k + j− 1)+ Fjy(k)+ Hju0(k − 1) (21)
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The vector form of equation (21) can be derived as

Y = GU + Fy(k)+Hu0(k − 1) (22)

where Y = [y(k + 1), · · · , y(k + N )]T , U = [u0(k), · · · ,
u0(k+Nu−1)]T , F = [F1, · · · ,FN ]T ,H = [H1, · · · ,HN ]T ,

G =



g0 0 · · · 0
g1 g2 · · · 0
...

...
. . .

...

gNu−1 gNu−2 · · · g0
...

...
. . .

...

gN−1 gN−2 · · · gN−Nu


, and Nu is the control

horizon.
Consider the following performance index:

min J (k) =
N∑
j=1

(y(k + j)− v(k + j))2 +
Nu∑
j=1

λu02(k + j− 1)

(23)

where λ(λ > 0) is the control weighting factor. v(k + j) is
the softening value of the reference signal, so that the output
y(k) can reach the reference yr (k) smoothly, the softening
reference trajectory is designed as

V = [v(k + 1), · · · , v(k + N )]T

= Fαy(k)+ F̄αyr (k) (24)

where α (0 ≤ α < 1) is the softening factor, Fα =[
α, · · · , αN

]T , F̄α = [
1− α, · · · , 1− αN

]T . The perfor-
mance index of equation (23) can be rewritten as

min J = (Y − V )T (Y − V )+ λUTU (25)

According to equations (22) - (24), the solution of (25) can
be calculated explicitly,

U = (GTG+ λI)−1GT [V − Fy(k)−Hu0(k − 1)] (26)

Take the first element of the control sequenceU as the current
control input u0(k):

u0(k) =
[
10 · · · 0

]
(GTG+ λI)−1GT

[V − Fy(k)−Hu0(k − 1)] (27)

Let hT =
[
1 0 · · · 0

]
(GTG+ λI)−1GT , and equation (27)

is expressed as

u0(k) = hT
[
F̄αyr (k)− (F− Fα)y(k)−Hu0(k − 1)

]
(28)

IV. PARAMETER TUNING BASED ON QFT
In the ADRC-GPC algorithm, the parameters that need to
be tuned include: ESO bandwidth ωo, sampling time T , pre-
dictive horizon N , control horizon Nu, softening factor α,
and control weighting factor λ. Due to the large number of
parameters, it is difficult to achieve the desired performance
by manual tuning. The two-degree-of-freedom unit feedback
model is taken as a standard control structure in QFT, and the
loop shaping of the controller can be realized by a graphical
way in the Nichols chart. In this work, QFT is applied to the
parameter tuning of ADRC-GPC, the controller parameters
are tuned to meet the required performance specifications.

FIGURE 4. Internal model structure of ESO.

A. TWO-DEGREE-OF-FREEDOM EQUIVALENT
STRUCTURE OF ADRC-GPC
According to equations (9) and (11), the outputs of ESO can
be expressed as

z1(t) =
3ωos2 + 3ωo2s+ ωo3

(s+ ωo)3
y(t)+

b0s

(s+ ωo)3
u(t)

z2(t) =
(3ωo2s+ ωo3)s

(s+ ωo)3
y(t)+

b0(s+ 3ωo)s

(s+ ωo)3
u(t)

z3(t) =
ωo

3s2

(s+ ωo)3
y(t)−

b0ωo3

(s+ ωo)3
u(t)

(29)

By equations (29), the internal model structure of the ESO
is shown in Figure 4, where n(t) represents the effect of
noise on the ESO,G(s) represents the transfer function of one
channel in the UAV model.

Take the position loop as an example. After a gravity
compensation is introduced to the z-axis loop, and the effects
of interactions are regarded as disturbances, the plants of the
x, y, and z channels can be expressed as

G(s) =
1

s2 + as
(30)

where a = kf
m . Considering the uncertainties of model param-

eters, the set of the uncertainty models can be expressed as{
G(s)| kf ∈ [0.0096, 0.0144],m ∈ [1.6, 2.4]

}
.

Combined equations (12), (29), and (30), the equivalent
plant between the system output y and the virtual control input
u0 can be readily derived as
y
u0
= Geq(s)

=
s5+3ωos4+3ωo2s3+ωo3s2

s5+(3ωo+a)s4+(3ωo2+3aωo)s3+(ωo3+3aωo2)s2
(31)

According to equation (28), the control law of GPC can be
rewritten as

T (z−1)u0(k) = P(z−1)yr (k)− Q(z−1)y(k) (32)

where 
T (z−1) = 1+ z−1hTH(z−1)
P(z−1) = hT F̄α
Q(z−1) = hT (F− Fα)
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Assume that the discrete form of the equivalent plant Geq
with a zero-order hold is expressed as Gd (z−1), and there
is y(k) = Gd (z−1)u0(k). By equation (32), the closed loop
system is described as follow:

y(k) =
Gd (z−1)D(z−1)

1+ Gd (z−1)H (z−1)
yr (k) (33)

where 
D(z−1) =

P(z−1)
T (z−1)

H (z−1) =
Q(z−1)
T (z−1)

As shown in Figure 5, the closed-loop control structure of
GPC is obtained according to equation (33). Further com-
bining with Figure 4, the closed-loop control structure of
ADRC-GPC can be obtained as shown in Figure 6. By proper
transfer function transformation, the closed-loop structure
shown in Figure 6 can be transformed into the two-degree-
of-freedom equivalent model shown in Figure 7, where Geq
is the equivalent controlled plant Geq = Gp(s)G0(s).

Fp(z−1) = P(z−1)/Q(z−1)
C(z−1) = Q(z−1)/T (z−1)

Gp(s) =
s3+3ωos2+3ωo2s+ωo3

s3+(3ωo+a)s2+(3ωo2+3aωo)s+(ωo3+3aωo2)

G0(s)= 1
s2

(34)

Gp(s) is the transfer function of ωo. Fp(z−1) and C(z−1)
are the prefilter and the controller respectively. The following
parameter tuning will be carried out based on the above
equivalent transformations. The parameter tuning rule will be
divided into two steps: (1) the appropriate ESO bandwidth
parameter will be selected with the parameter perturbation of
the UAV plant; (2) QFT will be used for the parameter tuning
of the ADRC-GPC controller.

B. SELECTION CRITERIA OF THE ESO BANDWIDTH
The total disturbance is observed and compensated through
ESO, and the estimation accuracy of ESO depends on the
value of bandwidth ωo. Generally, the estimation accuracy
is higher with a large bandwidth. For the control structure
shown in Figure 7, the purpose of ESO bandwidth selection
is to ensure that

∣∣Gp(jω)∣∣ is as close to 0dB as possible.
Thus, the dynamic characteristics of the equivalent modelGeq
are close to the nominal model G0(s). However, the rise of
ESO bandwidth will increase the influence of measurement
noise on the system. Therefore, it is necessary to consider
the effects of estimation accuracy and measurement noise
at the same time. According to Figure 4, the influence of
measurement noise on the observer can be expressed as

Gn(s) = Y (s)/N (s)

=
ωo

2s
s3 + (2ωo + a)s2 + (ωo2 + 2aωo)s+ 2aωo2

(35)

where Y (s) and N (s) are the Laplace transforms of the output
signal y(t) and noise signal n(t).

FIGURE 5. Closed loop structure of the generalized predictive control
system.

FIGURE 6. Closed loop control structure of ADRC-GPC.

FIGURE 7. Two-degree-of-freedom equivalent structure of ADRC-GPC.

According to equations (34) and (35), the bandwidth selec-
tion criteria are designed as follows. First, the n parame-
ters with uncertainty are uniformly discretized into d values
within the range of values, and there are dn alternative plants
Gj, j = 1, 2, · · · , dn. Then, a value of ESO bandwidth is
selected and checked whether it satisfies any possible plant
within the selected frequency domain of the bandwidth:∣∣20 lg ∣∣Gp(jω)∣∣∣∣ ≤ mp ω ∈ �p,∀Gj ∈ {G(s)} (36)

20 lg |Gn(jω)| ≤ mn ω ∈ �n,∀Gj ∈ {G(s)} (37)

Equation (36) is a constraint on the accuracy of ESO esti-
mation, and equation (37) is a constraint on the influence
of measurement noise. The position loop is taken as an
example to show the process of the ESO bandwidth selec-
tion. In the position loop, mp = 0.01dB, mn = −20dB,
�p = [0.01, 20] is the working bandwidth domain of the
controller. �n = [200,∞) is the bandwidth domain that
needs noise reduction. In Figure 8, it can be seen that

∣∣Gp(jω)∣∣
is close to 0dB with the increase of ωo. When ωo is fixed,
the log magnitude-frequency characteristic plot of the system
presents a monotonous increasing characteristic in the low
frequency band. It tends to be horizontal in the high frequency
band. According to the above characteristics, the solution of
constraint (36) can be obtained by only selecting the mini-
mum frequency point ω = 0.01 to verify the constraint. For
anyGj, the value of ωo should satisfy the constraint (36). The
frequency characteristic of Gn(s) is shown in Figure 9. The
log magnitude-frequency characteristic plot ofGn(s) presents
a monotonous decreasing characteristic in the high frequency
band. Therefore, the solution of constraint (37) can be verified
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by selecting the minimum frequency point ω = 200 to verify
the constraint. Finally, the interval of ωo in the position loop
that satisfies the constraints (36) and (37) is [23.4, 66.5].
Considering the coupling effects as the input disturbances,
the interval of ωo in the attitude loop can also be obtained
according to the above method in the range of [37.5, 66.7].

C. PARAMETER TUNING BASED ON QFT
Based on the determined bandwidth, QFT is adopted to
design C(z−1) and Fp(z−1) in Figure 7. The design procedure
is mainly divided into four steps: QFT templates definition,
performance specifications design, loop shaping and prefilter
design.

1) QFT TEMPLATES DEFINITION
The uncertainties of the generalized plant Geq can be
expressed as{
Geq(s)

∣∣ kf ∈ [0.0096, 0.0144],m ∈ [1.6, 2.4],

ωo ∈ [23.4, 66.5]
}

A discrete number of plants are defined by gridding the
above uncertain parameters between the minimum and the
maximum values. The distribution between the minimum and
the maximum is linear. The frequency points of interest are
selected according to the reference [28], and the selected
set is ω =

[
0.01 0.05 0.1 0.5 1 5 10 20

]
rad/s. The QFT

templates of the frequency points are shown in Figure 10.
Each circle in Figure 10 is an uncertain template. The distri-
bution of the circles represents the uncertainty of the plant at a
specific frequency point. The sign ‘‘+’’ in Figure 10 indicates
the nominal plant at the selected frequency. The nominal plant
is used to design the controller and prefilter. It can be seen
from Figure 10 that the open-loop phases of all templates
are distributed around −180 degrees. This shows that the
frequency characteristics of the generalized plant Geq(s) with
model uncertainties is still very close to the series integral
structure 1

s2
. The distribution of the templates is concentrated,

and this is beneficial to the following controller design.

2) PERFORMANCE SPECIFICATIONS DESIGN
In QFT, the desired performance specifications of stability
and disturbance rejection need to be converted into a series
of constraint boundaries for the frequency response L(jω) =
C(jω)Geq(jω) of the nominal model in the Nichols chart.
By designing the controller C(z−1) and the prefilter Fp(z−1),
the open-loop frequency response curve of the nominal plant
will be adjusted to meet the boundary conditions. For the
stability and disturbance rejection problem of the trajectory
tracking control, the performance specifications are consid-
ered as follows:

(1) Robust stability specification
The magnitude constraint of the closed-loop system is

defined as

S1(jωi) = lg

∣∣∣∣ Geq(jωi)C(jωi)
1+ Geq(jωi)C(jωi)

∣∣∣∣ ≤ δ1=Ws (38)

FIGURE 8. Bode plot of Gp(s).

FIGURE 9. Bode plot of Gn(s).

where Ws is the closed-loop resonance peak, the relation-
ship between Ws, magnitude margin (GM), and phase mar-
gin (PM) is shown as follows

GM = 20 lg(1+
1
Ws

)

PM = 2 arcsin
1

2Ws

(39)

The robust stability boundary of the position loop is selected
as Ws = 1.17, the magnitude margin of the corresponding
system is 5.4dB, and the phase margin is 50◦.

(2) Output disturbance rejection specification
The output disturbance rejection specification of the sys-

tem is designed as

S2(jωi) =

∣∣∣∣ 1
1+ Geq(jωi)C(jωi)

∣∣∣∣ ≤ δ2(jωi) (40)

where the output disturbance rejection specification of the
position loop is selected as δ2(jωi)=

∣∣∣ (jωi)
(jωi)+2

∣∣∣.
(3) Input disturbance rejection specification
The generalized input disturbances of the system

include: the estimation error of ESO, the interaction
between channels, and the system parameter perturbations.
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FIGURE 10. QFT templates with the selected frequencies.

The specification of the input disturbance rejection is
designed as

S3(jωi) =

∣∣∣∣ Geq(jωi)
1+ Geq(jωi)C(jωi)

∣∣∣∣ ≤ δ3(jωi) (41)

where the input disturbance rejection specification of the
position loop is selected as δ3(jωi)=

∣∣∣ (jωi)
(jωi)+0.1

∣∣∣.
In the constraints (38)–(41), ωi ∈ ω, Geq ∈

{
Geq

}
.

Geq can be expressed in its polar form asGeq(jωi) = pejβ , the
controller is expressed as C(jωi) = qejγ . When the selected
frequency point ωi is fixed, δ2(jωi) = δ2, δ3(jωi) = δ3. p, β,
δ2, and δ3 are the constants. Substituting the polar forms into
equations (38)–(41), the above performance specifications
can be transformed into the following quadratic inequality
equations:

p2
(
1−

1

δ21

)
q2 + 2p cos (β + γ ) q+ 1 ≥ 0

p2q2 + 2p cos (β + γ ) q+

(
1−

1

δ22

)
≥ 0

p2q2 + 2p cos (β + γ ) q+

(
1−

p2

δ23

)
≥ 0

(42)

The phase γ of the controller C(jωi) is discretized in
the bounded interval

[
−360◦, 0◦

]
, like γ ∈

[
−360◦:5◦:0◦

]
.

When γ is fixed, the unknown parameter of the inequal-
ities (42) is the controller magnitude q. According to the
reference [33], the quadratic inequalities of equations (38),
(40), and (41) are solved and translated into a set of curves
on the Nichols chart for each frequency of interest and type
of specification.

3) LOOP SHAPING
By constructing the gain, zero, and pole of the controller,
the open-loop frequency response L(jω) can meet the bound-
aries of the performance specifications. L(jω) needs to be

located above the boundary at each corresponding frequency,
and does not intersect the robust stability boundary at the
high frequency. The controller is designed by loop shaping
graphically. The order of the controller C(z−1) is determined
by the ADRC-GPC equivalent structural (34). According to
equation (34), the zero and the pole of C(z−1) are mainly
determined by the parameters N and Nu in ADRC-GPC. The
gain of C(z−1) is mainly determined by the parameters λ and
α. According to the above rules, the controller parameters
are tuned to meet the specification boundary. After parameter
tuning, the controller of the position loop is designed as

C(z−1) =
2369(1− 0.989z−1)

1+ 0.0293z−1
(43)

The corresponding ADRC-GPC parameters of the position
loop are T = 0.005, ωo = 23.4, N = 200, Nu = 20,
λ = 0.001, α = 0.9. The results of loop shaping are shown in
Figure 11. The black dashed and solid lines in the figure are
the frequency response curves before and after loop shaping.
The color curves are the boundaries calculated according
to the performance specifications at each frequency point.
The marking points of each color on the frequency response
curves should be distributed above the corresponding color
solid line or below the color dotted line. It can be seen from
Figure 11 that the curve of L(jω) after correction is above
the colored solid line at the corresponding frequency point
in the Nichols chat. Therefore, the designed controller can
meet the above performance specifications when there are
uncertainties in the plant.

4) PREFILTER DESIGN
The tracking performance of the system can be achieved by
designing the prefilter in Figure 7. The tracking boundaries
of the position loop are constrained by the upper and lower
bounds as follows:

δ4_lo(jω) ≤ |8(jω)| ≤ δ4_up(jω) (44)

where

8(jω) =
Geq(jω)C(jω)

1+ Geq(jω)C(jω)
Fp(jω) (45)

δ4_lo(jω) =

∣∣∣∣ 0.98

0.1(jω)2 + (jω)+ 1

∣∣∣∣ (46)

δ4_up(jω) =

∣∣∣∣ jω + 1.02

0.2(jω)2 + 0.85jω + 1

∣∣∣∣ (47)

According to the ADRC-GPC parameters determined in the
loop shaping, the prefilter is designed as

Fp(z−1) =
0.0112z−1

1− 0.989z−1
(48)

The tracking performance of the system is shown in
Figure 12. The output frequency response of the corrected
system is within the tracking boundaries. If the parameters
do not meet the performance specifications, it is necessary to
return to tune the controller parameters λ and α again. The
controller parameters of the attitude loop can also be tuned
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FIGURE 11. Loop shaping of the ADRC-GPC controller in the position loop.

according to the above procedure. The controller parameters
of the attitude loop are tuned as T = 0.005, ωo = 37.5,
N = 1000, Nu = 200, λ = 1× 10−9, α = 0.4.

V. SIMULATION
In this section, comparative experiments are designed to
highlight the performance and robustness of the ADRC-GPC
method based on QFT. In order to demonstrate its numerical
performance, ADRC and PID methods [21] are compared
and analyzed. In the trajectory tracking experiment, the initial
position of the UAV is [1, 1, 1] m, and the attitude is [0, 0, 0]
rad. The sampling time is 0.005s and the parameters of PID,
ADRC, and ADRC-GPC are denoted as follows.

Parameters of PID:
Position loop: Px = 6, Ix = 0, Dx = 4; Py = 6, Iy = 0,
Dy = 4; Pz = 4, Iz = 0.5, Dz = 4;
Attitude loop: Pψ = 150, Iψ = 200, Dψ = 20; Pθ = 150,
Iθ = 200, Dθ = 20; Pφ = 150, Iφ = 200, Dφ = 30.
Parameters of ADRC:

Position loop: ωo = 23.4, ωc = 2.8, b0 = 1;
Attitude loop: ωo = 37.5, ωc = 80, b0 = 1.
Parameters of ADRC-GPC:

Position loop: ωo = 23.4, N = 200, Nu = 20, λ = 0.001,
α = 0.9;
Attitude loop: ωo = 37.5, N = 1000, Nu = 200, λ = 1 ×
10−9, α = 0.4.

In order to evaluate the performance, integral of absolute
error (IAE) index is used in the simulation experiments,

IAE =
∫ T

0
|r(t)− y(t)| dt (49)

A. SET-POINT TRACKING
The experiment is designed to test the closed-loop dynamic
performance under ideal conditions. The position reference
trajectory is from (1,1,1)m to (0,0,0)m, and the set-point of
the yaw angle is ψd = 1. Simulation results of the positions
and angles loops are shown in Figures 13 - 14. The IAE
index is presented in Table 2. It can be seen that ADRC-GPC

FIGURE 12. Prefilter design verification in the position loop.

TABLE 2. IAE index of the different control schemes in the set-point
tracking.

scheme achieves the best tracking performance in the position
and attitude loops. The IAE index of the ADRC-GPC scheme
is better than the ADRC and the PID schemes in the x, y,
and ψ loops. The IAE index of the PID scheme is small
in the z loop, but the PID scheme has a large overshoot.
The ADRC-GPC scheme has a short settling time and no
overshoot in the z loop. So the dynamic performance of the
ADRC-GPC scheme is better than the PID scheme in the z
loop.

B. DISTURBANCE REJECTION
In this section, the model uncertainties, measurement noise,
and external disturbances are considered in the simulation
experiment. The model parameters in Table 1 are perturbed
by 10%. White Noise is added in both position and attitude
loops. The noise power of the position loop is 5× 10−8, and
the noise power of the attitude loop is 1× 10−7. Meanwhile,
the following external disturbances are considered in the
attitude loop:

d1(t) = sign (sin(0.9t))
d2(t) = sign (sin(0.9t))+ cos(0.3t)
d3(t) = 0.5 sign(sin(0.5t))+ 2 cos(0.9t)+ cos(0.3t)

(50)

The reference trajectory of the position is from (1,1,1)m to
(0,0,0)m, and the set-point of the yaw angle is ψd = 1. The
simulation results are shown in Figures 15- 16. The IAE index
is presented in Table 3. The IAE index of the ADRC-GPC
scheme is better than the ADRC and the PID schemes in
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FIGURE 13. Set-point tracking of the position loops.

FIGURE 14. Set-point tracking of the attitude loops.

TABLE 3. IAE index of the different control schemes in the disturbance
rejection.

the x, y, z and ψ loops. It can be seen that the PID control
scheme is greatly affected by the disturbances and noise. The
tracking trajectory of the PID control scheme has oscillation
and the convergence speed is slow. By contrast, the dynamic
performance of the ADRC and ADRC-GPC control schemes
are much better than PID. The tracking error of ADRC-GPC
is significantly smaller than the other two schemes. It is
shown that the ADRC-GPC scheme has the best stability and
disturbance rejection ability.

C. CIRCULAR TRAJECTORY TRACKING
In order to further verify the performance of the proposed
method, a circular trajectory tracking experiment is carried

FIGURE 15. Set-point tracking of the position loops with disturbances.

FIGURE 16. Set-point tracking of the attitude loops with disturbances.

FIGURE 17. Circular trajectory tracking of the position loops.

out with the disturbances. The model uncertainties, measure-
ment noise, and external disturbances are consistent with
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FIGURE 18. Circular trajectory tracking of the attitude loops.

FIGURE 19. 3D trajectory comparison for different control schemes.

TABLE 4. IAE index of the different control schemes in the circular
trajectory tracking.

the previous section. The starting point is (1,1,1)m, and the
desired tracking trajectory is a unit circle centered on the ori-
gin. The set-point of the yaw angle isψd = 1. The simulation
results are shown in Figures 17–19. The IAE index is pre-
sented in Table 4. The IAE index of the ADRC-GPC scheme
is better than the ADRC and the PID schemes in the z and
ψ loops. The IAE index of the PID scheme is small in the
x and y loop. But in Figures 17 and 18, it can be seen that
the PID and the ADRC control schemes have large position
tracking error in the initial time. The overshoot of the yaw
angle in ADRC-GPC scheme is smaller than the PID and
ADRC. According to Figures 19, the tracking trajectory of
ADRC-GPC can track the reference signal more accurately

and quickly. It is worth noting that the amplitudes of the x
and y loops in the ADRC-GPC scheme are larger than the
PID and ADRC schemes. This is caused by the measurement
noise in the attitude and position loop. A filter design should
be considered when the noise power is large.

VI. CONCLUSION
This paper proposed a new robust control scheme and a
corresponding tuning rule for the trajectory tracking problem
of a quadrotor UAV. The ADRC-GPC control scheme was
designed based on active disturbance rejection control and
generalized predictive control. The proposed control scheme
improved the robustness and dynamic performance of the
system when the ESO bandwidth was limited. The tuning
rule of ADRC-GPC was proposed based on a two-degree-of-
freedom equivalent model and quantitative feedback theory.
The tuned parameters of ADRC-GPC achieved the expected
stability and performance specifications with model uncer-
tainties and external disturbances. Moreover, the discrete
form of ADRC-GPC was derived, and it was convenient
for practical applications. Finally, the simulation experiments
demonstrated the efficacy of the proposed control scheme and
the tuning rule. Some practical applications and an ESObased
on the Kalman filter will be carried out in future research.
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