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ABSTRACT As one of the most critical technology in array signal processing, direction of arrival (DoA)
estimation has received a great deal of attention in many areas. Traditional methods perform well when the
signal-to-noise ratio (SNR) is high and the receiving array is perfect, which are quite different from the
situation in some real applications (e.g., the marine communication scenario). To get satisfying performance
of DoA estimation when SNR is low and the array is inaccurate (mutual coupling exist), this paper introduces
a scheme consisting of denoising autoencoder (DAE) and deep neural networks (DNN), referred to as
DAE-DNN scheme. DAE is used to reconstruct a clean ‘‘repaired’’ input from its corrupted version to
increase the robustness, and then divide the input into multiple parts in different sub-areas. DNN is used
to learn the mapping between the received signals and the refined grids of angle in each sub-areas, then
the outputs of each sub-areas are concatenated to perform the final DoA estimation. By simulations in
different SNR regimes, we study the performance of DAE-DNN in terms of the different snapshots, batch
size, learning rate, and epoch. Our results demonstrate that the proposed DAE-DNN scheme outperforms
traditional methods in accuracy and robustness.

INDEX TERMS DoA, SNR, denoising autoencoder, deep neural networks, mutual coupling.

I. INTRODUCTION
Direction of arrival (DoA) estimation is long-standing yet
still one of the most important problems in array sig-
nal processing. DoA estimation has a variety of applica-
tions such as mobile communications [1], [2], vehicular
communications [3], airborne radar recognition [4], source
localization [5], unmanned aerial vehicle [6], and sonar nav-
igation [7], to name just a few. Recently, as the demand
for high-quality DoA estimation increases, the high accu-
racy DoA estimation technique has received much attention.
To meet the demand for both civil and military use in target
detection, various DoA estimation techniques have been pro-
posed [8]–[11]. Roughly speaking, these approaches fall into
three categories. The first category is the spectral estimation
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technique where the DoA is estimated by the numerical
search. Popular approaches in this class include Capon and
Bartlett methods [8]. However, it is challenging to achieve
high angular resolution using this approach since we need to
compute the spatial spectrum and estimate DoA by numerical
search of local maxima of the spectrum. The second category
is the subspace-based technique such as MUltiple SIgnal
Classification (MUSIC) [9] and Estimation Of Signal Param-
eter via Rotational Invariance Techniques (ESPRIT) [10],
where the DoA estimation problem is described by the
matrix model. Due to the dependence on array characteris-
tics and computational burden of the eigenvalue decomposi-
tion (EVD) and singular value decomposition, this approach
is not so effective in coping with the inaccuracies of receiv-
ing array. The third category is the probabilistic model-
based technique, such as theMaximum-Likelihood (ML) [11]
and maximum a posterior estimation [12]. This approach is

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 52551

https://orcid.org/0000-0002-4950-9153
https://orcid.org/0000-0002-5671-266X
https://orcid.org/0000-0002-6011-9885
https://orcid.org/0000-0001-5051-1763
https://orcid.org/0000-0001-8981-9829


D. Chen et al.: Robust DoA Estimation Using DAE and DNN

effective in handling the deterministic signal but it is in
general difficult to obtain a prior information on the signal
model, especially for low-elevation targets. The more prior
information on the target signal model or noise distribution
we have, the better performance one can achieve. Also, when
the number of sources is large and the range of angles is
wide (i.e., when the search grid is large), the computational
complexity of ML estimation grows exponentially with the
number of sources.

In recent years, various methods have been proposed to
solve these problems, however, the advantages are limited,
especially in low SNR regimes. Considering the mutual
coupling matrix of the uniform linear array (ULA) mod-
eled as a banded symmetric Toeplitz matrix, MUSIC-Like
and ESPRIT-Like algorithms are proposed to estimate DoA
[13], [14]. However, these methods lead to the array aperture
loss. In [15], a new DoA estimation algorithm based on the
orthogonality of a specific eigenvector has been proposed,
but it needs the array response to be quiescent. In [16],
a reweighted regularized sparse recovery algorithm has been
proposed for the DoA estimation with the unknown mutual
coupling of the ULA, assuming the signal number is known
in high SNR (around 10dB). In [17], an estimation method
based on the spatial spectrum with a fixed eigenvalue order
has been proposed to estimate DoA under the circumstance
of high SNR (above 0dB), without considering the mutual
coupling and the number of sources. For these reasons men-
tioned, when the number of signals is unknown, the receiv-
ing array is inaccurate and the SNR is low, conventional
approaches are not so effective and comprehensive, in par-
ticular for super-resolution DoA estimation.

In this paper, we propose an entirely new DoA estima-
tion technique based on deep learning to obtain the high-
resolution DoA estimation in the complex environment, such
as low SNR regime, an unknown number of sources, inac-
curate array (mutual coupling), or a combination of these
problems. For this purpose, two objectives have been iden-
tified. The first objective is to reduce the noise of noisy input
signals. Literature [18] has shown that denoising autoen-
coders (DAEs) can achieve higher detection accuracy than
the basic autoencoders. Specifically, DAE [19] can learn
more robust nonlinear representation from signal against
noise and fluctuation, has powerful generalization capabil-
ity, and produce the state-of-the-art performance on many
challenging feature learning tasks, such as wireless sen-
sor networks [20], autonomous fault detection and analysis
[21]–[23], unmanned aerial vehicle networks [24], biomedi-
cal science [25], etc. Motivated by these successful applica-
tions and the excellent properties of the DAE, we adopted
DAE to deal with target signals with noisy data. Our goal
is to provide a robust signal reconstruction in the case of
perturbations or disturbances presented in the sensor data
while capturing nonlinear correlations embedded in multiple
signals. The other objective is to capture DoA features of the
inaccurate array when the number of sources is unknown.
Although machine learning has shown a great potential in

DoA estimation, such as radial basis function (RBF) [26],
which can reduce the computation complexity and perform
well in high-resolution, yet its performance degrades rapidly
when the number of sources is unknown and the array is
inaccurate. Recently, as a key enabler for future wireless
communications [27]–[29], deep neural networks (DNN) has
been successfully applied to various wireless systems such
as multiple-input and multiple-output (MIMO) [30], wire-
less scheduling [31], and active user detection [32]. In these
works, DNN is used to learn a desired nonlinear function
(e.g., classification and decision) through the training pro-
cess. Benefited from the powerful representation of the map-
ping relationship between high-dimensional random vector
elements, DNN has shown new ways of obtaining useful
feature representation that provides better performance than
those traditional feature extractors. Here, DNN is used to
capture the abstractions of DoA features, obtain distributed
representations and further improve the generalization of the
whole system when the array is inaccurate and the number of
sources is unknown.

In a nutshell, we exploit DAE to increase the robustness at
lower SNR, and DNN to improve detection accuracy when
the number of sources is unknown and the receiving array
is inaccurate. To be specific, the proposed DoA estimation
scheme in our framework, henceforth referred to as the
DAE-DNN, DAE extracts useful features from the corrupted
received signal and learns the more robust mapping between
the received signal and each sub-areas. In each sub-areas,
DNN further learns the complicated mapping between the
received signals with different inter-signal angles and the
refined grids of angle.

Two key ingredients of the DAE-DNN technique accom-
plishing this mission are 1) DAE dividing the angle range into
several sub-areas and 2)DNN to get amore refined estimation
of DoA in each sub-areas. In the DAE stage, we extract
the main features of data from the corrupted input data by
encoder and decoder. After this, DNN is applied to refine
the DoA estimation result in each sub-areas. According to
the universal approximation theorem, DNN processed by the
deeply stacked hidden layers well approximate the desired
function [33]. In our context, this means that the properly
designed DAE-DNN system with multiple hidden layers can
handle the whole DoA estimation process, resulting in an
accurate DoA estimation.

The main contributions of this paper are as follows:
1) We propose a DoA estimation system composed

of DAE algorithm and DNN framework. Rather
than transferring the original covariance matrix of the
received data to the frequency domain to get the input
data, the DAE algorithm processes the DoA sensor
array output in the time domain directly.

2) We obtain the high-resolution of DoA estimation
in very noisy and reverberant environments with
array inaccuracies. After the denoising of the cor-
rupted data at the receiver, a high-resolution DoA esti-
mation is performed by training procedures based on
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FIGURE 1. Framework of DoAs estimation of ULA.

one-versus-all classification, which decides the exis-
tence of a signal near the refined grids of angle.

3) We provide a performance analysis of the pro-
posed system under different parameters and cases.
By simulations, we identify the optimal snapshot, batch
size, learning rate, and epoch of the DAE-DNN system.
We also examine the root mean square error (RMSE) of
the DoA in low SNR regime for assessing the accuracy
of DoA estimation. From extensive simulations empir-
ical evaluations test, we demonstrate the efficiency and
robustness of the proposed DAE-DNN.

The rest of this paper is organized as follows. In Section II,
we present a DoA model with multiple signal sources, DAE
model and DNN model. In Section III, we discuss the DAE-
DNN estimation system. We describe the architecture of
DAE-DNN system and its corresponding training strategies
in detail in Section IV. We provide the performance analy-
sis of DAE-DNN, including snapshot, batch size, learning
rate, epoch, and the comparison to traditional methods in
Section V. Finally, we conclude the paper in Section VI.
Notations: throughout the paper, matrices are noted by

bold capital letters, while vectors and scalers are denoted
by boldface small letters and small letters, respectively. (·)∗,
(·)T , (·)H , and ‖·‖2 represent conjugate, transpose, conjugate
transpose and l2 norm operator of amatrix, respectively. Also,
E [·], H [·] are given as the expectation and entropy operator,
re [·] and im [·] represent the real and imaginary parts of a
complex-valued entity, respectively.

II. PROBLEM FORMULATION
A. DoA MODEL WITH MULTIPLE SIGNAL SOURCES
We consider a ULA with M antenna elements where the
element spacing is d = λ/2 (λ is the wavelength).We assume
that the plane waves impinging on the receiving array are
parallel since the sources are located in the far-field areas.
We also assume that there is no correlation between sources.
Let θk be the kth angle of arrival in the K -independent
signal impinging on the M -element array from direction
{θ1, θ2, · · · , θK } (see Fig. 1). The medium through which the

wave propagates is assumed to be homogenous, isotropic, and
non-dispersive.

The steering vector a (θk) can be expressed as

a (θk) =
[
1, e−j2πd sin θk/λ, e−j2πd ·2 sin θk/λ,

· · · , e−j2πd ·(M−1) sin θk/λ
]T
, k = 1, 2, · · · ,K (1)

The array inaccuracies will cause deviations in the map-
ping from θk to a (θk). In this paper, a (θk) and its per-
turbed variant a (θk , e) are assumed to be unitary vectors
(i.e., ‖a (θk)‖2 = ‖a (θk , e)‖2 = 1).

When sampled with equally spaced interval at {t1, t2, · · · ,
tI } (I is the snapshot), the received signal X (t) =

[x (t1) , . . . , x (tI )] ∈ CM×I can be formulated as

X (t) = A (θ)S (t)+ N (t) (2)

where A (θ) ∈ CM×K is the steering matrix of the array,
S (t) ∈ CK×I is the incident signal waveforms and N (t) ∈
CM×I is the zero-mean Gaussian noise, which are given,
respectively, by

A (θ) = [a (θ1, e) , a (θ2, e) , · · · , a (θK , e)]

S (t) = [s1 (t) , s2 (t) , · · · , sK (t)]T

N (t) = [n1 (t) ,n2 (t) , · · · ,nM (t)]T (3)

Note that the elements of X (t) can be expressed as

x (ti) =
K∑
k=1

a (θk , e) sk (ti)+ n (ti), for i = 1, . . . , I (4)

The more information will be obtained with the increasing
of I . The covariance matrix Rx (t) of the received signals is

Rx (t) = E[X (t)X(t)H ] = ARSAH + σ 2
· I (5)

where RS is the covariance matrix of signals S (t), σ 2 is the
variance of noise, and I is an identity matrix.

B. DENOISING AUTOENCODER AND DEEP
NEURAL NETWORKS
1) DENOISING AUTOENCODER
In contrast to the conventional autoencoder used primarily in
a mid or high SNR regime [34], DAE is used to recover an
input signal from a corrupted version, and we can obtain a
more robust representation of the input. Two ideas explain
this approach. Firstly, as a higher representation of autoen-
coder, DAE is stable and robust when the input is corrupted;
Secondly, in the denoising phase, we expected that more
useful features could be extracted from the input distribution.
Formally, the initial input r is corrupted by Gaussian

Noise and corresponding corrupted version is denoted as r0,
which is generated according to a stochastic mapping r0 ∼
qD (r0|r). Then the corrupted input r0 is mapped to the hidden
representation d0 via encoder fϑ . To get the reconstructed
value d , we use the decoder gϑ ′ given by

d0 = fϑ (r0) = s (wr0 + b) (6)

d = gϑ ′ (d0) = s
(
w′d0 + b′

)
(7)
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FIGURE 2. The framework of DAE: (a) flow chart of DAE, (b) neural
network representation of DAE.

where w, w′ are weight matrices and b, b′ are offset vectors
in parameter sets ϑ = {w, b} and ϑ ′ =

{
w′, b′

}
, f (·)

and g (·) are a nonlinear activation function of the encoder
and the decoder. Reconstruction error is measured by the
loss function L (r, d). Well-known loss functions include the
squared error loss L2 (r, d) = ‖r− d‖2 and the cross-entropy
loss LH (r, d) = −

∑
j
[
rj log dj +

(
1− rj

)
log

(
1− dj

)]
. The

framework of denoising autoencoder is shown in Fig. 2.
In the training phase of Fig. 2, the parameter sets ϑ and

ϑ ′ are trained to minimize L (r, d) over a training set, that
is, to have d as close as possible to the uncorrupted input r.
Then the reconstructed value d is now obtained by applying
deterministic mapping fϑ to a corrupted input r0 instead of
initial input r. Parameters are initialized at random and then
optimized by stochastic gradient descent. Note that each time
a training example r is presented, a different corrupted version
r0 of it is generated according to r0 ∼ qD (r0|r). Therefore,
the mapping forces DAE to learn a far more robust mapping
instead of identity: a mapping that extracts useful features for
denoising [35].

2) DEEP NEURAL NETWORKS
We consider the basic model of DNN, a linear input-output
model given by

fdnn (x,w) =
n∑
î=1

xîwî (8)

where x and w represent the inputs and weights of the neural
networks, respectively, and n is the number of input. Note that
fdnn (x,ω) used in the classification depends on the sign of its
corresponding value.

In the deep learning field, DNN is considered as one of
the most promising generative models since it can deal with
many non-convex and non-linear mappings and also learn the
characteristics of data in a high-dimensional space. In the
data processing of DNN, there are multiple neurons in each
hidden layer and we can obtain an output with a weighted
sum of these neurons operated by a nonlinear function. The
activation function is used in the process of DNN to real-
ize recognition and representation operation. Generally, we
usually choose the Sigmoid function and the ReLU function

in the nonlinear operation, which are defined as

fsigmoid (x) =
1

1+ exp (−x)
(9)

fReLU (x) = max (0, x) (10)

III. DEEP NEURAL NETWORKS FRAMEWORK
FOR DoA ESTIMATION
In this section, we present the DAE-DNN architecture.
In contrast to the previous works focusing on the high SNR
scenario, the proposed DAE-DNN is designed to handle the
DoA estimation in the low SNR regime. Benefited from
multiple types of autoencoder, DAE is robust to the noise like
Gaussian Noise and Salt and Pepper Noise [35]. As shown in
Fig. 3, the proposed DAE-DNN consists of three parts. The
first part in the green rectangle above is the data preprocess-
ing phase of the arrival angle θ of impinging plane waves,
where the covariance matrix Rrr (t) of signals is computed
from the steering vector a (θk). The second part is the DAE
phase shown in the red rectangle middle. In this phase, DAE
denoises the input data and divide the whole range of θ into
J spatial sub-areas. The last part in the blue rectangle below
is multi-layer classifiers, and they determine which sub-area
the impinging signal is located.

A. DENOISING AUTOENCODER
Main purpose of DAE is to reconstruct a clean repaired input
from a corrupted version of train data. In the encoding phase,
useful features in a better higher-level representation are
extracted. In other words, an input data is compressed to a low
dimensional vector by extracting the principal component
feature of the uncorrupted version. In the decoding phases,
the low dimensional vector of original data can be recovered
via the decoder. This step helps to reduce interference of noise
and distribution divergences of the input data.

In the preprocessing stage, due to the influence of noise,
a part of the input components is erased while leaving others
uncorrupted, we can obtain the corrupted version r0 gen-
erated by stochastic mapping r0 ∼ qD (r0|r). Considering
this, we should focus on the corrupted components instead of
all components of the input data. To achieve this, we give a
different weight for the reconstructed values, β1 for the cor-
rupted components, and β2 for the uncorrupted components.
β1 and β2 are considered hyper-parameters. For the training
data r and reconstructed value d , the squared loss function is

L (r, d) = β1 ·
∑

j∈=(r0)

(
rj − d j

)2
+ β2 ·

∑
j/∈=(r0)

(
rj − d j

)2
(11)

where = (r0) is the indices of the components of r0 that are
corrupted. The cross-entropy loss is given by

Lβ1 (r, d) = −β1 ·
∑

j∈=(r0)

[
rj log d j +

(
1− rj

)
log

(
1− d j

)]
−β2 ·

∑
j/∈=(r0)

[
rj log d j +

(
1− rj

)
log

(
1− d j

)]
(12)
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FIGURE 3. Structure of proposed DAE-DNN scheme.

which is called emphasized DAE. A special case when
β1 = 1, β2 = 0 is called full emphasis, where we only
consider the prediction error of the corrupted elements. Here,
we set part of the elements of the original input as zeroes
randomly and leaves the remaining elements uncorrupted,
resulting in a ‘‘corrupted’’ version r0 of the original input r.
Comparing to r, the ‘‘blank’’ elements of r0 will reduce many
more information of r. Benefit fromDAE phase, we can try to
fill the missing information by learning the mapping between
r and d , and then the extracted features can reflect the features
of the original input r better.
Assuming that the number of layers in encoding and

decoding are all equivalent to L1. Setting the layer index
is l1 (0 < l1 ≤ L1), we generally have

∣∣rl1 ∣∣ < ∣∣rl1−1∣∣ and∣∣rL1−l1 ∣∣ = ∣∣rL1+l1 ∣∣, where ∣∣rl1 ∣∣ is the dimension of rl1 . In the
encoding phase, the hidden representation is given by

rl1 = fl1 (r0) = f
(
wl1,l1−1rl1−1 + bl1

)
(13)

where l1 and l1 − 1 are the layer indices, wl1,l1−1 ∈

R
∣∣rl1 ∣∣×∣∣rl1−1∣∣ is the weight matrix from the (l1 − 1)th layer to

the l1th layer, and bl1 ∈ R
∣∣rl1 ∣∣×1 is the additive bias vector

in the l1th layer, fl1 represents the element-wise activation
function in the l1th layer.
In the decoding process, the number of decoders j is

1 ≤ j ≤ J . The phase of decoding has the same hidden
representation to (13) in each sub-areas. If we define the
potential scope of the incident signals as

[
θ [0], θ [J ]

)
, $ [j]

denote the angle scope
[
θ [j−1], θ [j]

)
of j, then we have

θ [0] < θ [1] < · · · < θ [J ] (14a)

θ [1] − θ [0] = θ [2] − θ [1] = · · · = θ [J ] − θ [J−1] (14b)

Figure 4 shows the relationship between the angle scope
and sub-areas of DAE-DNN. If there are some signals located
in the jth sub-areas, the output of the jth decoder, denoted as
d j = r[j]

2L1
, is equivalent to the input r while the output of the

other decoders is zero. Furthermore, we take the total outputs
of DAE as the input of the multi-classifier in the next phase
and further obtain the final estimation. For this reason, some
additional requirements are needed in the DAE structure for
DoA estimation, which can be described as

U [j] (r1 + r2) = U [j] (r1)+ U [j] (r2) (15a){
U [j] (r1) = r, θ ∈

[
θ [0], θ [J ]

)
U [j] (r1) = 0, otherwise

(15b)

where U [j] (·) is the function of j-th DAE task.
From (15), in case of multiple signals located in different

sub-areas impinge onto the array simultaneously, we should
assure the additive property of DAE to classify the input
data in different angle range to the corresponding different
decoder outputs. Thus, we use the linear activation functions
fl1 (·) given by

rl1 = wl1,l1−1 · rl1−1 + bl1 (16)

B. MULTILAYER CLASSIFIERS
In the phase of multilayer classifiers, a list of one-versus-
all classifiers is applied in the DAE-DNN system. The final
estimation of DoA with parameter θ is composed of J DAE,
where there is a fixed number of angle values in each sub-
areas output. Then each angle value is used as a refined grid
of angle. According to the principle of the one-versus-all
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FIGURE 4. The relationship between angle scope and sub-areas of
DAE-DNN.

method, the final output of angle values represents the prob-
ability of a signal located in its neighborhood. Furthermore,
the DoA of signals from off-grid directions can be estimated
by interpolation between two adjacent refined grids.

From the blue rectangle below in Fig. 3, there are J parallel
classifiers with the same number of sub-areas, which use the
outputs of DAEs as inputs. We can obtain the DoA estimation
based on the refined grids of the angle of all sub-areas,
only the grid being close to the actual signal directions will
generate a positive valued output while all others are zero.

The feed-forward computations of the classifiers are
given by

y[j]l2 = g
(
W [j]

l2,l2−1
h[j]l2−1 + p

[j]
l2

)
,

with j = 1, . . . , J ; l2 = 1, . . . ,L2 (17)

where l2 and l2 − 1 are the layer indices in the multi-
classifiers, y[j]l2 is the output vector in the l2th layer of jth clas-

sifier, with h[j]0 = d j and h
[j]
L2
= yj,W

[j]
l2,l2−1

∈ R
∣∣∣h[j]l2 ∣∣∣×∣∣∣h[j]l2−1∣∣∣ is

the weight matrix with fully connected feed-forward property

from the (l2 − 1)th layer to the l2th layer, p[j]l2 ∈ R
∣∣∣h[j]l2 ∣∣∣×1 is

the additive bias vector in the l2th layer, and gl2 represents
the element-wise activation function for the input of the l2th
layer nodes.

All the outputs of the J parallel classifiers based on the J
decoder outputs are obtained as

y =
[
yT1 , · · · , y

T
J

]T
(18)

where yTj is the estimation of spatial spectrum associated with
DNN input r. Note that yTj is concatenated in order from the
classifiers number 1 to J . And only the values of refined grids
close to the actual signal directions are positive in yj while all
the others are zero.

IV. DoA ESTIMATION BASED ON DAE-DNN
Based on the framework discussed in Section III, we present
the basic structure of training and testing of the proposed
DAE-DNN. In Fig. 5, DAE is used to mitigate the noise
and divide the whole estimated angle range into the designed
number sub-areas. At the same time, the parallel multilayer
classifiers make a further estimation of the refined grid
located by the impinging signal. Generally, DNN approach

FIGURE 5. Basic structure of training and testing in DAE-DNN.

can achieve non-linear mappings and learn the data’s char-
acteristics in a high-dimensional space. In this paper, a new
characteristic space is exploited to achieve DoA estimation.
In order to avoid a situation where the neural networks get
trapped in local minima, we use two completely separated
training procedures.

A. DAE TRAINING
As results in Section II indicate that the covariance matrixRrr
of receiving array has all information of direction of arrival
{θ1, θ2, · · · , θK }, which is given by

Rrr =


R1,1 · · · R1,M−1 R1,M
R2,1 · · · R2,M−1 R2,M
...

. . .
...

...

RM−1,1 · · · RM−1,M−1 RM−1,M
RM ,1 · · · RM ,M−1 RM ,M

 (19)

whereRx1,x2 is the (x1, x2)th element of the covariance matrix
R̂ = 1

I

∑I
i=1 x (ti) x

T (ti). Instead of taking the covariance
matrix Rrr as the input of DAE directly, in this paper, we just
use the upper-right matrix elements (the color area in (19)).
The lower left elements are unnecessary because it is the
conjugate replicas of the upper right ones, and the diagonal
covariance elements are not included since this elements are
associated with unknown noise variance.

Furthermore, we reformulate the complex data (19) to
real data by preserving the original information as much as
possible by (20) and (21), which can be used as the input of
the parallel multilayer classifiers.

r̂ =
[
R1,2,R1,3, · · · ,R1,M ,R2,3, · · · ,R2,M , · · · ,RM−1,M

]T
(20)

r =
[
re
{
r̂T
}
, im

{
r̂T
}]T

/
∥∥r̂∥∥2 (21)

Constructing the training dataset rwith the signal direction
varying in the range of

[
θ [0], θ [J ]

)
, $ [j] (1 ≤ j ≤ J) denotes

the range of spectrum grid points covered by the jth decoder.
Setting the whole grids as δ1, δ2, · · · , δV (V is the total num-
ber of spaced spectrum grids). So, in each spaced spectrum
of DAE, there are V/J = V0 grids. The relationship between
spectrum grids and decoder scope is shown in Fig. 6, in which
θ [0] = δ1, θ [1] = δV0 , θ

[2] = δ2V0 , θ
[J−1] = δ(J−1)·V0+1 and

θ [J ] = δJ ·V0 .
If there is an impinging signal from the direction δv,

then the corresponding covariance vector r (δv) is generated,
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FIGURE 6. The relationship between spectrum grids and decoder scope.

which causes the output of decoder is d (δv) as we expect
while the outputs of other decoders are zero.

We denote the dataset for DAE training as

0 = [r (δ1) , r (δ2) , · · · , r (δV )] (22)

and the corresponding DAE label set is 1 ∈ RJ ·|r|×V , which
consist of d (δv) (see (23), as shown at the bottom of the page).
The data-label of (0,1) is used as the input and expected
output to train the DAE. No matter the signals lies in the
same sub-area or not, the data-label of (0,1) contains the
key information of signals. The loss function used between
the actual output and the expected one is expressed as

ε (δv) =
1
2

∥∥∥d (δv)− d̂ (δv)∥∥∥2
2

(24)

where d̂ (δv) is the actual output of the DAE, d (δv) is the
expected output when r (δv) is the input.

To obtain the updated weight matrices w′
l1,l1−1 and bias

vectors b′l1 , backpropagated gradient algorithm is used in the
loss function.

w′
l1,l1−1 = wl1,l1−1 + µ1

∂ε (δv)

∂wl1,l1−1
(25)

b′l1 = bl1 + µ1
∂ε (δv)

∂bl1
(26)

where w′
l1,l1−1 and b

′
l1 are the variables after current update,

wl1,l1−1 and bl1 are the variables before update and µ1 is
the learning rate. Algorithm1 presents the operational pro-
cedure of the proposed DAE algorithm for sub-areas spatial
estimation.

B. PARALLEL MULTILAYER CLASSIFIERS TRAINING
After the DAE training phase, its outputs generated from J
decoders are taken as the inputs of parallel multilayer clas-
sifiers, and the spatial spectrum is estimated simultaneously
in each sub-areas. Different from the input r of DAE, which
contain the features of all possible directions range, the input
of multilayer classifiers d [j] (j = 1, 2, · · · , J) only contain

the features of its own sub-areas direction range. In other
words, when compared to r, d [j] (j = 1, 2, · · · , J) have more
concentrated distributions. Based on this, we further set the
activation function as the hyperbolic tangent function and
then get a refined DoA estimation, which is shown as

tanh (κ) = [tanh (κ1) , tanh (κ2) , . . . , tanh (κ−1)]T (27)

tanh (κ) =
eκ − e−κ

eκ + e−κ
(28)

where κ−1 is the last element of κ .
In the whole DAE-DNN estimation system, there are two

training processes, DAE training and multilayer classifiers
training. When the DAE training is finished, values of the
weight matrices and bias vectors are fixed. Then we train
the whole end-to-end DAE-DNN framework whose input and
output are vector r and reconstructed spectrum y, respectively.
Theweightmatrices and bias vectors of the classification neu-
ral networks should be trained to estimate different directions
ofmultiple signals in different sub-areas. To achieve this goal,
we collect another training dataset with multiple signals at the
same time.

As mentioned in Section II, there are K -independent sig-
nals to be detected at the receiver, among these we denote the
inter signal angles as c = {cm}K−1m (m = 1, 2, · · · ,K − 1).
Then we can get the input vectors r (θ, c1, · · · , cm),
which represents the K signals from different directions θ ,
θ + c1, · · · , θ + cm with θ [0] ≤ θ < θ [J ] − cm. Mean-
while, as discussed in the previous section, the reconstructed
spectrum of multilayer classifiers only has positive values on
the grid adjacent to the actual signal direction. Thus, we can
obtain the estimation of each signal via linear interpolation
between two adjacent refined grids.

Mathematically, the classifier output y (θ, c1, · · · , cm) cor-
responding to input r (θ, c1, · · · , cm) is expressed as

y (θ, c1, · · · , cm) =



θ̄ − δi−1

δi − δi−1
, δi−1 ≤ θ̄ < δi

δi+1 − θ̄

δi+1 − δi
, δi ≤ θ̄ < δi+1

0, others.

(29)

where θ̄ ∈ {θ, θ + c1, · · · , θ + cm}.
The training dataset of the parallel multilayer classifiers

and the associated label set are

8 = [81,82, · · · ,8K−1] (30)

9 = [91, 92, · · · , 9K−1] (31)

1 =
[
d
(
$ [1]

)
, · · · , d

(
$ [J ]

)]
=


r(δ1), · · · , r(δV0 ) 0 0 0

0 r(δV0+1), · · · , r(δ2V0 ) 0 0

0 0
. . . 0

0 0 0 r(δ(J−1)·V0+1), · · · , r(δJ ·V0 )


︸ ︷︷ ︸

V0

︸ ︷︷ ︸
V0

︸ ︷︷ ︸
V0

(23)
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Algorithm 1 DAE Algorithm for Sub-Areas Spatial
Estimation
Input: Impinging signal angles {θ1, θ2, · · · , θK }.
Output: Estimated spatial sub-areas d [j]1 , d

[j]
2 , · · · , d

[j]
K .

1: Step1: Get the input r of DAE from impinging direc-
tion {θ1, θ2, · · · , θK }.

2: The steering vector a (θ) is generated by {θ1, θ2, · · · , θK }
in (1), then the array output X (t), covariance matrix
Rxx (t) are obtained in (2) and (5). Also, we can get the r̂
and r based on (20) and (21).

3: Step2: Train the DAE with data-label (0,1).
4: Generate a set of training sequences of DAE, which

includes the input r and output d [j]. Also, set the learning
rate and the loss rate, as well as the weight matrices
and bias vectors. Furthermore, set the error threshold as
τ = 10−6.

5: while error ≥ 10−6 : do
6: Train the DAE based on the given sequences according

to the proposed learning policy by backpropagated
gradients algorithm;

7: Update the weight matrices w′
l1,l1−1 and bias vectors

b′l1 of each layer of DAE by (25) and (26).
8: end while
9: Step3: Obtain the spatial gains of filters α[j].
10: for v = 1, 2, · · · ,V do
11: Calculate the conjugate transpose matrix r̂ (δv)H based

on the input r (δv).
12: end for
13: for j = 1, 2, 3, · · · , J do
14: Calculate the complex-valued d̂

[j]
consist of the first

half of d [j] as the real part while the second half as
imaginary part.

15: Obtain the spatial gains of filters α[j]v =
∣∣∣r̂ (δv)H · d̂ [j]∣∣∣.

16: end for
17: return DAE scheme and the sub-areas spatial estima-

tion d [j]1 , d
[j]
2 , · · · , d

[j]
K corresponding of impinging signal

angles {θ1, θ2, · · · , θK } according to α
[j]
v .

where

8m = [r (δ1, c1, · · · cm) , · · · , r (δV −max (c) , c1, · · · cm)]

(32)

9m = [y (δ1, c1, · · · cm) , · · · , y (δV −max (c) , c1, · · · cm)]

(33)

In the training process, we update the parameters of the
multilayer classifiers by the backpropagation of the recon-
struction error. The loss function ε (θ, c) is defined as the
squared l2-norm of the spectrum reconstruction error:

ε (θ, c) =
1
2

∥∥y (θ, c)− ŷ (θ, c)∥∥22 (34)

where ŷ (θ, c) is the actual output of themulti-layer classifiers
and y (θ, c) is the expected output.

The elements of the weight matrices W l2,l2−1 and bias
vectors pl2 are then updated as

W ′
l2,l2−1 = W l2,l2−1 + µ2

∂ε (θ, c)
∂W l2,l2−1

(35)

p′l2 = pl2 + µ2
∂ε (θ, c)
∂pl2

(36)

where W ′
l2,l2−1 and p′l2 are the values of variables after

current update, and W l2,l2−1 and pl2 are the variables before
the update, and µ2 is the learning rate. Algorithm 2 presents
the operational procedure of parallel multilayer classifiers
based on DNN.

Considering that the responding function of the array is
perturbed by the noise and array inaccuracies, the mapping
from signal direction to covariance vectors is θ

e
7→ re (θ),

where e is the error. When we use the perturbed vector re (θ)
as an input to the DAE, the associated label vector is still
located in the jth sub-area, even in the environment with
strong noise. After this, in the process of parallel multilayer
classifiers, we take the signal from direction δi as the input,
which is embedded in the output of jth decoder. If the asso-
ciated spectrum label contains a spectrum peak (one or two
grids closest to δi), we can obtain the DoA estimate of δi by
interpolation. Therefore, whole DAE-DNN system (the DAE
process together with the parallel multilayer classifiers) actu-
ally forms an inverse mapping from perturbed output re (θ)
to the input θ when the array inaccuracies and environmental
noise all exist. Furthermore, this derived inverse mapping
re (θ)

e
7→ θ under noise effect also adapts to the test data and

is expected to obtain accurate DoA estimation even in the low
SNR regime.

V. SIMULATION AND RESULTS
In this section, we present the simulation results to demon-
strate the effectiveness of the proposed method. For com-
parison, we test the traditional DoA detection methods
in low SNR level. The simulations are implemented on
TensorFlow [36], and its embedded tools are used to compute
the gradients directly.

A. SIMULATION SETTINGS
We consider ULAwithM elements are used in the estimation
of K signals impinging from the spatial scope of

[
θ [0], θ [J ]

)
.

The inter-element spacing of the ULA is half-wavelength,
and the potential space is divided into J sub-areas with equal
spatial scopesV0 grids. The covariance vector r in the training
dataset of both DAE andmultilayer classifiers are all obtained
from I snapshots. The simulation parameters of DAE-DNN
system and the value of training data are shown in Table 1.

In the DAE training phase, we obtain a direction set
(δ1 = −90◦, δ2 = −89◦, · · · , δV = 89◦) through sampling
with an interval of δ in the spatial scope

[
θ [0], θ [J ]

)
and com-

pute the covariance vectors and associated labels on the basis
of (22) and (23).
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Algorithm 2 Parallel Multilayer Classifiers Based on DNN
Scheme for DoA Estimation (PMC-DNN).
Input: Impinging signal angles {θ1, θ2, · · · , θK }.
Output: DoA estimation

{
θ ′1, θ

′

2, · · · , θ
′
K

}
.

1: Step1: Get the input r of DAE from impinging direc-
tion {θ1, θ2, · · · , θK }.

2: It is the same as Step1 in Algorithm 1.
3: Step2: Train the PMC-DNN with data-label (8,9).
4: After the training in DAE scheme, we can get some

parameters (such as w′
l1,l1−1, b

′
l1 ), then fix them. Gen-

erate training sequences (8,9) of PMC-DNN according
to (30), (32), (31) and (33). Also, set the learning rate, the
loss rate and the error threshold as Algorithm 1.

5: while error ≥ 10−6 : do
6: Train the PMC-DNN based on the given sequences

according to the proposed learning policy by back-
propagated gradients algorithm;

7: Update the weight matricesW ′
l2,l2−1 and bias vectors

p′l2 of each layer by (35) and (36).
8: end while
9: Step3: Obtain the DoA estimation

{
θ ′1, θ

′

2, · · · , θ
′
K

}
.

10: for v = 1, 2, · · · ,V do
11: Calculate the conjugate transpose matrix r̂ (δv)H based

on the input r (δv).
12: end for
13: for m = 1, 2, 3, · · · ,K − 1 do
14: Calculate the PMC-DNN estimation y (θ, c1, · · · , cm)

of r (θ, c1, · · · , cm) by interpolating the one or
two spectrum peaks. Obtain the DoA estimation{
θ ′1, θ

′

2, · · · , θ
′
K

}
by r (θ, c1, · · · , cm).

15: end for
16: return DoA estimation

{
θ ′1, θ

′

2, · · · , θ
′
K

}
.

On each direction grid, we compute one covariance vector
by the collection of one group of snapshots. For the training
by the minibatch training strategy, the dataset shuffled in
each epoch with training parameters are: batch size of B and
learning rate of µ1, and epoch1. We set the size of the input
layer, hidden layer and output layer as o = M (M − 1) = 90,
90/2 = 45 and oJ = 90× 9 , respectively.

In the DNN training phase, we collect another dataset to
train the classifiers with more than one signal when the DAE
parameters are fixed after the training process. In this setting,
we chooseK signals. The inter-signal angle c is sampled from
the dataset, which covers all scenarios of adjacent signals
separated by the double width of the spatial spectrum grid.
If one signal direction (denoted by θ ) is sampled with an
interval of 1◦ from −90◦ to 90◦ − c, then the other signal
direction is θ + c. Then, the covariance vectors are collected,
which are used for training with a batch size of B and learning
rate of µ2, and the order of the vector is shuffled during
each training epochs of epoch2. In order to obtain a trade-
off between the expressivity power (improves with deeper
networks) and undertraining risk (aggravates with more

TABLE 1. Simulation parameter of DAE training.

network parameters) of the classifiers, we set the size of
hidden layers to L2 − 1 = 2. In each classifier, we set the
sizes of the hidden layer and output layers to b2/3× oc = 60,
b4/9× oc = 40, respectively. Based on a uniform distribu-
tion between −0.1 and 0.1, we initialize all the weights and
biases of the DNN randomly.

In this paper, we consider mutual coupling as the main
source of the array inaccuracy, which occurs often in almost
all types of arrays and leads to considerable deterioration in
conventional algorithms [37]. The mathematical model in the
simulations is shown as

e = ρ ×
[
0, ζ 1, . . . , ζM−1

]T
(37)

where the parameter ρ ≥ 0 is used to indicate the strength
of array inaccuracies, ζ = 0.5ejπ/3 is the mutual coupling
coefficient between adjacent sensors. Further, the perturbed
array responding function is

a (θ, e) = (IM + Emc)× a (θ) (38)

where IM is theM×M unitary matrixEmc is a toeplitz matrix
with parameter vector e.

B. ANALYSIS ON THE PARAMETERS AND
DoA ESTIMATION
In Fig. 7, we plot the RMSE performance of the DoA esti-
mation against different SNR of the proposed scheme with
different snapshot number I . Recall that the snapshot I of
receiving array is a controlling parameter in DAE-DNN.
We consider I = 100, 400, 500, 600, and 800 in the simu-
lation with an ascending order. Note that dB scale of SNR
is defined as SNR = 10log10

(
Psignal/Pnoise

)
, where Psignal

and Pnoise are the power of signal and noise respectively.
We observe that the RMSE of the DoA estimation decreases
with SNR, and it becomes stable gradually until the SNR is
large enough. Meanwhile, the simulation results demonstrate
that the RMSE performance can be enhanced when adopting
a large snapshot number. However, as the number of snapshot
continues to increase, the accuracy improves substantially.
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This result is dedicated to the fact that a larger snapshot
of receiving array can stir the effectiveness of the off-line
training process of DAE-DNN scheme, which can capture
complete information about DoA.

Additionally, Fig. 8 (a)-(c) displays that the RMSE perfor-
mance against different strength of array inaccuracies param-
eter ρ for different SNR levels. It demonstrates that as I
increases, the RMSE of DAE-DNN scheme decreases with
better robustness to the array inaccuracies. However, the large
snapshot will result in complex computation and long-time
consumption. Thus, in this paper, we choose I = 500 to get
a trade-off between them.

Figure 9 exhibits the RMSE performance of the DoA
estimation in different SNR levels with different batch
sizes. In our simulations, we test various batch sizes
(16, 32, . . . bits). We set the length of the training sequence
as 16 bits initially. From Fig. 9, we see that the RMSE
decreases with SNR in each batch size setting.When the SNR
is higher than -8dB, the RMSE performance decrease first
and then increase when the batch size varies from 16 bits
to 32 bits, 64 bits, and 128 bits. More details of the RMSE
performance in different SNR levels with different batch sizes
are shown in Fig. 10 (a)-(d). As is clear from the figure,
‘‘Batch size x= 32 bits’’ has lower RMSE and also more
stable when compared to that of other batch sizes (16 bits,
64 bits, and 128 bits). This means that in the training proce-
dure of the DAE-DNN scheme, the small-batch size reduces
the convergence rate while the large-batch size enlarges the
epochs. Therefore, we choose ‘‘Batch size = 32 bits’’ for
optimizing the network between RMSE performance and the
stability of the proposed DAE-DNN scheme.

In Fig. 11, we show the RMSE performance of the DoA
estimation as a function of SNR of the proposed DAE-DNN
system, where the learning rate is set as 0.0001, 0.0005,
0.001, 0.005, and 0.01, respectively. Here, the length of the
training sequence is initialized to 32 bits. For ‘‘learning rate’’
is 0.0005 and 0.001, the RMSE performance of the DoA
estimation decreases more significantly as SNR increases.
However, the RMSE performance in the case of ‘‘learning
rate = 0.0001, 0.005 and 0.01’’ shows a slow convergence
speed in the low SNR range while performing worse and
unstable as SNR increases. It can be concluded from this
group of simulation results that selecting an appropriate
learning rate is a significant issue for boosting the perfor-
mance of the DAE-DNN scheme for DoA estimation. When
‘‘learning rate’’ is smaller than 0.001, it takes quite a bit of
time to attain good DoA estimation. In contrast, ‘‘learning
rate’’ being larger than 0.001 will lead to worse DoA perfor-
mance improvements. Considering this tradeoff, we set the
‘‘learning rate’’ to be 0.001 in simulations. More details are
shown in Fig. 12 (a)-(c), which we observe that ‘‘learning
rate = 0.001’’ shows the best performance.
Figure 13 provides an RMSE comparison of the DoA

estimation against the SNR, for various epochs. As the SNR
increases, the RMSE performance is improved, which is
similar to the results in the other parameters above. In case

FIGURE 7. RMSE performance of the DoA estimation of the proposed
scheme when the snapshot are set as 100, 400, 500, 600, and 800.

FIGURE 8. RMSE performance of the DoA estimation in different rho
values when the snapshot are different. (a) I = 100. (b) I = 500.
(c) I = 800.

of ‘‘Epoch = 300’’ and ‘‘Epoch = 2000,’’ the RMSE per-
formance are decrease between -10dB and 5dB and increase
between 5dB and 10dB. This is because too small epoch and
too large epoch will result in under-fitting or over-fitting,
which is always different in different DNN-based systems
or schemes. Furthermore, compared to the ‘‘Epoch = 500’’
situation, the RMSE performance of ‘‘Epoch = 1000’’ is
degraded in the range of -10dB to 10dB. More details are
shown in Fig. 14 (a)-(d), when SNR larger than -5dB, all of
the epoch number will get a satisfied RMSE performance.
This is an expected result since the DAE-DNN scheme is
a promising tool for ensuring robustness in low SNR when
array inaccuracies exist.

Figure 15 depicts the RMSE performance against differ-
ent ρ in different SNR levels (e.g., −10dB<SNR<10dB).
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FIGURE 9. RMSE performance of the DoA estimation of the proposed
scheme when the batch size set as 128 bits, 64 bits, 32 bits and 16 bits.

FIGURE 10. RMSE performance of the DoA estimation in different batch
size. (a) Batch size=128 bits. (b) Batch size = 64 bits. (c) Batch
size = 32 bits. (d) Batch size=16 bits.

As the ρ increases, all RMSE values fluctuate around the
mean value of each SNR. When SNR > 0dB, DAE-DNN
scheme will perform good achieving RMSE under 0.5. In the
low SNR regime (e.g., −5dB<SNR<0dB), the DAE-DNN
systemmaintains its robustness evenwhen ρ increases.While
in the lower SNR regime (e.g., −10dB<SNR<−5dB), the
correlation associated with SNR increases, causing severe
degradation of the RMSE performance. The results in Fig. 15
show that the performance of RMSE is dominated by the
value of SNR rather than ρ. Furthermore, Fig. 15 shows
the relationship between RMSE and SNR of DAE-DNN
scheme when ρ is fixed. As the SNR increases, DAE-DNN
shows better robustness performance. When SNR is as low
as −5 dB, DAE-DNN remains to demonstrate small RMSE
performance.

FIGURE 11. RMSE performance of the DoA estimation of the proposed
scheme when the learning rate are set as 0.0001, 0.0005, 0.001,
0.005 and 0.01.

FIGURE 12. RMSE performance of the DoA estimation in different
learning rate. (a) Learning rate = 0.0001. (b) Learning rate = 0.001.
(c) Learning rate = 0.01.

Furthermore, in order to compare the performance of the
proposed scheme and the previous schemes in the complexity
scenarios (low SNR or mutual coupling when the signal
number is unknown), we plot the estimated RMSE against
different mutual coupling and SNR levels in Fig. 16 and
Fig. 17, respectively. Fig. 16 compares the performance of
ESPRIT, CLASSICAL MUSIC, ROOT-MUSIC, I-MUSIC,
and DAE-DNN when SNR = 0 dB, M = 10, K = 2,
I = 500 and the spacing of the sensors equals half of the
wavelength. DAE-DNN exhibited the satisfying performance
in the whole SNR range in terms of RMSE, while MUSIC
and its derivative algorithms were best only when ρ < 0.2.
We should mention here again that it seems that the per-
formance of ESPRIT, MUSIC and its derivative algorithms
is dominated by the quality of array responding function.
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FIGURE 13. RMSE performance of the DoA estimation of the proposed
scheme when the epoch are set as 300, 500, 1000 and 2000.

FIGURE 14. RMSE performance of the DoA estimation in different epoch
number. (a) Epoch = 300. (b) Epoch = 500. (c) Epoch = 1000.
d) Epoch = 2000.

When ρ increases, these traditional methods perform
worse than DAE-DNN due to the lack of receiving array
information.

For performance comparison, we choose the classical
method (MUSIC-like) since it has low complexity compu-
tational. Also, we choose RBF since it is a typical machine
learning method. As a similar method to DAE-DNN, DOA-
AI can obtain satisfying performance when SNR is high.
In Fig. 17, we plot the RMSE performance of the MUSIC-
like [15], RBF [26], DOA-AI [34] andDAE-DNN against dif-
ferent SNR levels (e.g.,−10dB<SNR<10dB)when ρ = 0.5.
As the SNR increases, all RMSE values become stable. Con-
sidering the inaccurate array and unknown signal number in
the complex scenarios, the methods of MUSIC-like and RBF
all show unsatisfying DoA estimation performance in the
whole SNR range. Additionally, themethod in [34] can obtain

FIGURE 15. The relationship between ρ and RMSE for different SNR
levels.

FIGURE 16. The comparison results of traditional methods and DAE-DNN
when SNR = 0 dB.

a high-resolution DoA estimation in the complex scenarios
and exhibit comparable performance to the proposed DAE-
DNN scheme. However, it shows less robustness when SNR
is lower than 0dB.

C. COMPUTATIONAL COMPLEXITY ANALYSIS
In this subsection, we focus on the computational com-
plexity of the proposed scheme. In essence, the proposed
DAE-DNN scheme mainly consists of following operations:
matrix multiplications, element-wise, and convolution oper-
ations. Since the number of input units, hidden units, out-
put units and total number of layers are n1, n2, . . ., nL , L,
respectively, the computational complexity of the DAE-DNN

scheme isO
(

L∑
l=2

nl−1nl

)
. To compare the proposed scheme

with existing techniques, we consider the MUSIC [9] and
MUSIC-based schemes [15], which we assume that the ULA
contains M sensors, and there exist K -independent signals.
In Table 2, we compare the computational complexity of
various schemes, where N ′ is the number of iterations. Since
the EVD computation is unnecessary, when compared to the
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FIGURE 17. The comparison results of MUSIC-like [15], RBF [26],
DOA-AI [34] and the proposed DAE-DNN scheme when ρ = 0.5.

TABLE 2. Comparison of the computational complexity.

MUSIC-based schemes, the DAE-DNN scheme has lower
computational complexity and exhibits a similar computa-
tional complexity level to RBF [26] and DOA-AI [34]. Due
to the DAE phase in the proposed scheme, the computa-
tional complexity of DAE-DNN is higher than DOA-AI [34].
However, the proposed scheme achieves enhanced robustness
in the low SNR regimes and provides superior DoA estima-
tion performance when the array is inaccurate and the signal
number is unknown.

VI. CONCLUSION
We proposed a novel DoA estimation scheme, DAE-DNN
based on denoising autoencoder and deep neural networks
for multi-signal estimation in an array inaccuracies scenario.
This method is different from the usual DoA estimationmeth-
ods since it takes advantage of DoA sensor array output in the
time domain directly. We have shown that the performance
of DAE-DNN is satisfied in the whole SNR range. Another
advantage of DAE-DNN is that it shows better robustness in
case of array inaccuracies exist. Previous methods are domi-
nated by the array information to find DoAs, so the effect of
array inaccuracies is not considered. The performance of the
estimator can be influenced by the array inaccuracy even in
the high SNR case. To reduce those degradations, we apply
the training data to the properly designed DAE-DNN scheme,
which learns the nonlinear mapping between the data of
the receiving array and the estimation. Simulations demon-
strate that the proposed DAE-DNN scheme is effective in
high-resolution DoA estimation. We believe that DAE-DNN

represents a new way of processing multi-signal and would
be able to improve DoA estimates not only for the weak
signal with strong noise but also for a complex signal having
multiple harmonics. The training phase in the DAE-DNN
scheme will cost some time and produce a certain amount
of calculation. However, with the improvement of the hard-
ware’s computing power, the calculation problem will be
effectively resolved. Therefore, we also believe that there are
many interesting applications of the proposed approaches,
such as mmWave channel estimation and MIMO detection.
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