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ABSTRACT Existing joint maintenance decision research typically ignores remaining useful lifetime (RUL)
predictions for the accelerated degradation of equipment. A joint maintenance decision method for the
replacement and spare-parts ordering strategy based on RUL prediction using accelerated degradation data
for equipment is proposed in this paper. First, an RUL prediction model under accelerated stress is built by
considering the proportional relationship between the drift coefficient and diffusion coefficient in theWiener
process. Second, based on the principle of step-by-step estimation, accelerated degradation test (ADT) data
of the equipment are used to estimate the a priori unknown parameters. Finally, based on the RUL prediction
results, a joint optimization model for the replacement and spare-parts ordering strategy is developed.
Through example verification and cost parameter sensitivity analysis, the proposed method is shown to
effectively improve the accuracy of RUL prediction and the scientific value of the joint optimization plan
for equipment replacement and spare-part ordering, which is important to many engineering applications.

INDEX TERMS Accelerated degradation test, proportional relationship, Wiener process, remaining useful
lifetime prediction, joint maintenance decision.

I. INTRODUCTION
With the increasingly complex battlefield environment of
modern war, the technological level of weapons and equip-
ment has improved markedly in recent decades. As a result,
stricter requirements for the reliability of equipment as well
as themaintenance and support capability of troops have been
proposed. To improve the reliability of equipment, as well as
the maintenance and support capability of troops, prognostics
and health management (PHM) have been proposed and
have gained wide public attention. This technology could
effectively improve the maintenance support efficiency of
equipment and represents the future development direction
of equipment support [1]–[4].

The essence of PHM is to obtain the status information of
weapons and equipment via advanced sensor technology and
then to predict their performance evolution trends and failure
states, thereby obtaining RUL prediction information. Thus,
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scientific maintenance support methods have been developed
to effectively improve themaintenance and support efficiency
of equipment. Narrowly defined PHM technology primarily
consists of two components: 1) predicting the RUL of equip-
ment; and 2) making maintenance decisions for equipment
based on RUL prediction information.

The specificity of the immediate task makes the weapons
and equipment generally exhibit high reliabilities and long
lifetimes, which makes it difficult to determine sufficient
lifetimes or degradation data via conventional life and degra-
dation testing. To address the shortcomings of traditional
methods, the accelerated degradation test (ADT) was used
in this study for the RUL prediction of equipment with
high reliability and long lifetimes, and good results were
achieved [5], [6]. Tang et al. [7] analyzed the accelerated
degradation data of lasers and constructed an accelerated
degradation model based on theWiener process to predict the
RUL. However, the fact that the diffusion coefficient varies
with stress was not considered; thus, the accuracy of RUL
prediction decreased. Based on Tang’s research, Liu et al. [8]
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believed that accelerated stress affects the drift coefficient
and the diffusion coefficient to some extent. Based on this
assumption, the effectiveness of the method was validated via
accelerometer degradation data by Liu et al. [8]. However,
this method can only predict the RUL via the accelerated
degradation data of equipment, and the on-site monitoring
data are more general in the real operating environment.
Accelerated degradation data and on-site monitoring data can
improve the accuracy of RUL prediction. Thus, a method to
update the parameters of the accelerated degradation model
of equipment using the Bayes principle was proposed by
Cai et al. [9], and the online RUL prediction of equipment
based on the fusion data was realized. However, in this
method, the effect of accelerated stress on the diffusion
coefficient was neglected, and thus, the accuracy promotion
of RUL prediction was limited because only the drift
coefficient was updated. To synchronously update the drift
and diffusion coefficients, Wang et al. [10] used Bayes’
principle to online update the drift and diffusion coefficients
based on the assumption that these coefficients obey a
specific conjugate prior distribution. However, prediction
was poor when the drift and diffusion coefficients did not
meet the specific conjugate prior distribution hypothesis.
Based on [10], Wang et al. [11] proposed a method
in which the Bayesian statistical inference of the drift
coefficient and diffusion coefficient was conducted based on
a no conjugate prior distribution. In combination with the
accelerated degradation data and on-site test data, the RUL
of the target equipment was predicted, which extends the
application scope of the method. However, to develop the
degradation model, the default drift/diffusion coefficient in
the Wiener process obeys the conjugate prior distribution
similar to the normal-gamma distribution. However, when the
drift and diffusion coefficients do not obey the distribution
type, the RUL prediction result obtained by this method lacks
credibility. Also, considering the acceleration factor constant
principle in [12],Wang et al. [13] andWang et al. [14] showed
that the drift and diffusion coefficients both change based
on stress and satisfy the proportional relationship. Based on
these conclusions, Wang et al. [15] proposed a proportional
relationship between the drift and diffusion coefficients under
accelerated stress. Thus, an accelerated degradation model
is constructed, which improves the effectiveness of the RUL
prediction method. However, this model cannot be applied
to accelerated-stress situations and does not consider the
effects of individual differences and measurement errors on
degradation modeling.

Scientific maintenance decisions can effectively improve
the operating state of equipment and reduce the maintenance
cost during their life cycle, which is important in military
and economic considerations. In daily maintenance, the
maintenance strategy that only considers equipment cannot
effectively reduce maintenance costs during equipment life
cycles. A well-developed spare-parts management strategy
can reduce costs, thus promoting the transformation from
a single maintenance strategy to joint optimization of the

maintenance strategy and a spare-parts management strategy.
The joint optimization between the preventive replacement
strategy and spare parts production strategy was performed to
achieve the lowest maintenance cost by Aghezzaf et al. [16].
The combined optimization of the preventive replacement
strategy and spare parts inventory strategywas also conducted
by Zequeiraa et al. [17]. Overall, the RUL prediction
information of equipment was not considered in the literature,
which has reduced the scientific nature of maintenance
decisions to a certain extent. Currently, few studies have
investigated the joint optimization of maintenance and spare-
parts ordering strategies based on RUL prediction. The RUL
prediction was obtained by Elwany et al. [18] using the linear
and exponential degradation model. Thus, the maintenance
cost was reduced by establishing the sequential optimization
model of product replacement and spare-parts inventory.
To expand the applicability of this method, Wang et al.
[19] constructed a degradation model based on the Wiener
process, and the maintenance decision model was established
according to the RUL prediction of the equipment. Thus,
the optimal decision of the equipment replacement strategy
and spare-parts ordering strategy was achieved. However, the
spare-parts ordering decision was made based on the optimal
replacement strategy, which may lead to local optima of the
decision result and affect its effectiveness. Jiang et al. [20]
effectively enhanced the scientific nature of the results and
ensured the rationality of the maintenance scheme via the
joint optimization of the equipment replacement strategy and
spare parts ordering strategy. However, this method can only
update the drift coefficient online during RUL prediction but
fails to update the diffusion coefficient synchronously, which
restricts the accuracy enhancement of RUL prediction and
is not conducive to the realization of scientific maintenance
decisions.

According to the problems with current joint optimization
for equipment replacement and the spare-parts ordering strat-
egy based on the RUL prediction information of accelerated
degradation, the synchronous effect of accelerating stress on
the drift coefficient and diffusion coefficient is analyzed in
this study, where the relationship between the drift coefficient
and diffusion coefficient is assumed to be proportional.
Also, the drift and diffusion coefficients were updated
synchronously using a Kalman filter and on-site monitoring
data of target equipment, which can effectively reduce the
uncertainty of prediction while ensuring RUL prediction
accuracy. Thus, this study develops a joint optimization
model of replacement and spare-parts ordering strategy that
considers RUL prediction information based on the renewal
reward theory and determines the optimal average cost ratio
of an equipment operation cycle via joint optimization with
the equipment replacement time and spare-parts ordering
time.

II. RUL PREDICTION MODEL
In different situations, Wiener process models can be
generally divided into linear drift models, logarithmic change
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models, time scale transformation models, and general
Wiener process models [21], [22], among which the time-
scale transformation model is primarily used in the process of
accelerated degradation modeling and can be expressed as:

X (t) = X (0)+ α3(t |ν )+ βB (3(t |ν )) (1)

where X (t) is the performance degradation for the equipment
at t time; 3(t |ν ) is the function of t , ν is the unknown
parameter; α is the drift coefficient, and α ∼ N (µα, σ 2

α );
β is the diffusion coefficient; B(t) is the standard Brownian
motion item, and B(3(t |ν )) ∼ N (0,3(t |ν )).

To shorten the time and reduce the cost of highly
reliable product degradation tests, a high-stress level is often
used to accelerate equipment degradation. Considering the
effect of acceleration stress on the drift coefficient and
diffusion coefficient, an accelerated degradation model can
be established as follows:

X (t) = X (0)+ α(S |θ )3(t |ν )+ β(S |η )B (3(t |ν )) (2)

where α(S |θ ) and β(S |η ) are the drift coefficient and
diffusion coefficient of the equipment under stress S; and θ
and η are unknown parameters. If the stress in Equation (2)
is S0 and Equation (1) equals Equation (2), the degradation
model under constant stress is a special form of the
accelerated degradation model.

[12] demonstrated that the accelerated degradation test
should satisfy the principle of a constant acceleration factor,
which can be expressed as follows:

AS1,S2 =
α(S1 |θ )
α(S2 |θ )

=
β(S1 |η )2

β(S2 |η )2
(3)

where S1 and S2 are the accelerated stress levels; and AS1,S2 is
the accelerated factor of S2 to S1, and its value only depends
on S1 and S2.
Equation (3) implies that:

α(S1 |θ )
β(S1 |η )2

=
α(S2 |θ )
β(S2 |η )2

=
1
g

(4)

where g is a constant. Equation 4 implies that the drift and
diffusion coefficients of the equipment degradation model
have a fixed proportion relationship under any acceleration
stress, the ratio is independent of the stress level under the
circumstance that the failure mechanism does not change, and
α(S |θ )/β(S |η )2 = 1/g. Substituting this proportion relation
into Equation (2), the proportional accelerated degradation
model can be obtained:

X (t) = X (0)+ α(S |θ )3(t |ν )+
√
gα(S |θ )B (3(t |ν )) (5)

For ease of analysis, the Arrhenius acceleration model
and step-accelerated degradation test are used as examples
in this study. The combination of other acceleration models
and the accelerated degradation test types is similar to the
abovementioned analysis and will not be described here. The
Arrhenius model can be expressed as follows:

α(S |θ ) = a exp(−b/S) (6)

where θ = {a, b}; S is the thermodynamic temperature; a ∼
N (µa, σ 2

a ); µα = µa exp(−b/S); and σ
2
α = σ

2
a exp(−2b/S).

We assume that the test data of the on-site equipment are
Y1:k = [Y1,Y2, · · · ,Yk ], and its corresponding performance
degradation data are X1:k = [X1,X2, · · · ,Xk ]. According
to Equation (5) and Equation (6), the degradation model of
equipment under constant stress is:

X (t) = X (0)+ a exp(−b/S0)

·3(t |ν )+
√
g exp(−b/S0)aB (3(t |ν )) (7)

In this study, the unknown parameters in the degradation
model are updated online based on the Kalman filtering
principle. The state-space model of the equipment under
constant stress is:

Xk = Xk−1 + ak−1exp(−b/S0)13(tk |ν )

+

√
gak−1exp(−b

/
S0)B (13(tk |ν ))

ak = ak−1
Yk = Xk + ε

(8)

where 13(tk |ν ) = 3(tk |ν ) − 3(tk−1 |ν ); t0 = 0;
B (13(tk |ν )) = B (3(tk |ν ))−B (3(tk−1 |ν )); ε is the error
term; and ε ∼ N (0, σ 2

ε ).
Also, Equation (8) can be converted into the standard form

of the Kalman filter:{
Zk = AkZk−1 +W k−1

Yk = LZk−1 + ε
(9)

where

Zk = [Xk , ak ]T,

W k = [
√
gak−1exp(−b/S0)B(13(tk |ν )) ,

and L = [1, 0], and Ak =
[
1 exp(−b/S0)13(tk |ν )
0 1

]
.

The iterative process of Kalman filtering can be expressed
as:

Ẑk|k = Ẑk|k−1 + Kk (Yk − LẐk|k−1 ) (10)

Pk|k = Pk|k −1 − KkLPk|k −1 (11)

Ẑk|k−1 = Ak Ẑk−1|k−1 (12)

Kk = Pk|k−1LT(LPk|k−1LT + σ̂ 2
ε )
−1 (13)

Pk|k−1 = AkPk−1|k −1AT
k

+

[
E (ak−1 |Y1:k−1 ) ĝexp(−b̂/S0)13(tk

∣∣ν̂ ) 0
0 0

]
(14)

where:

Ẑk|k =
[
E (Xk |Y1:k )

E (ak |Y1:k )

]
(15)

Pk|k =
[

D (Xk |Y1:k ) Cov (Xk , ak |Y1:k )

Cov (Xk , ak |Y1:k ) D (ak |Y1:k )

]
(16)

Ẑk|k−1 =
[
E (Xk |Y1:k−1 )

E (ak |Y1:k−1 )

]
(17)
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Pk|k−1 =
[

D (Xk |Y1:k−1 ) Cov (Xk , ak |Y1:k−1 )

Cov (Xk , ak |Y1:k−1 ) D (ak |Y1:k−1 )

]
(18)

Ẑ0|0 =
[

0
µ̂a

]
, P0|0 =

[
0 0
0 σ̂ 2

a

]
(19)

In [23], the probability distribution function of RUL
corresponding to the degradation model is as follows:

fLk (lk |ak ,Xk , S0,Y1:k ) ∼=
ψ(lk )∫

+∞

0 ψ(lk )dlk
(20)

where lk is the RUL of the equipment under constant stress
and ψ(lk ) is the function of lk . More information is available
in [23].

A Kalman filter was used to update the process, where
Z is a two-dimensional normal random variable, and the
distribution coefficient of ak Xk can be obtained. The
integral representation of Equation (20) is as follows:

fLk |S0 (lk |S0 ,Y1:k )

=

∫
+∞

−∞

∫
+∞

−∞

fLk (lk |ak ,Xk , S0,Y1:k )P(Xk |ak ,Y1:k )

·P(ak |Y1:k )dXkdak (21)

III. PRIOR PARAMETER ESTIMATION
To determine the specific situation of the probability distribu-
tion of the RUL of the equipment, it is necessary to estimate
the unknown parameters contained in Equation (21). In this
paper, the unknown parameters in the RUL prediction model
under constant stress were estimated using the degradation
data of similar equipment under accelerated stress. Due
to the complexity of the model considered in this study,
the traditional prior parameter estimation method based on
the maximum likelihood principle and EM principle has
difficulty establishing the likelihood function and performing
the iterative calculation. Therefore, a new step-by-step
maximum likelihood estimation (MLE) method is proposed
to estimate model parameters.

In this study, 2 = {µa, σ 2
a , b, ν, σ

2
ε , g} represents all the

unknown parameters of the RUL predictionmodel. Assuming
that the accelerated degradation test contains N samples, and
each sample undergoes M accelerated stress, then if ti,j,k is
the kth observed time of the ith sample under the jth stress,
Yi,j,k = Y (ti,j,k ) is its measured value of degradation value,
Sj is the accelerated stress, i = 1, 2, · · ·N , j = 1, 2, · · ·M ,
and k = 1, 2, · · · Li,j. YT

i,j = [Yi,j,1,Yi,j,2, · · · Yi,j,Li,j ]
represents all the degradation data of the ith sample under
the Sj stress. If 1Yi,j,k = Y (ti,j,k ) − Y (ti,j,k−1) and 1YT

i,j =

[1Yi,j,1,1Yi,j,2, · · ·1Yi,j,Li,j ]. Y j = [Y1,j,Y2,j, · · · ,YN ,j]
represents all the degradation data under the stress of j, and
all the data from the accelerated degradation test can be
expressed as Y = {Y1,Y2, · · · ,YM }.
Based on this analysis, 1Y i,j ∼ N (µi,j,6i,j), µi,j is the

expectancy matrix, and 6i,j is the covariance matrix, which
can be expressed as follows:

µi,j = αi,j1T i,j (22)

6i,j = β
2
i,jDi,j + σ

2
ε Fi,j (23)

1TT
i,j = [1Ti,j,1,1Ti,j,2, · · ·1Ti,j,Li,j ] (24)

1Ti,j,k = 3(ti,j,k |ν )−3(ti,j,k−1 |ν ) (25)

Di,j =



1ti,j,1 0 · · · 0

0 1ti,j,k
...

...

... · · ·
. . . 0

0 · · · 0 1ti,j,k


Li,j×Li,j

(26)

1ti,j,k = ti,j,k − ti,j,k−1 (27)

Fi,j =



1 −1 0 · · · 0

−1 2 −1 · · ·
...

0 −1 2
. . . 0

...
...

. . .
. . . −1

0 0 · · · −1 2


Li,j×Li,j

(28)

Based on this analysis, the contour logarithmic likelihood
function corresponding to the accelerated degradation data is
as follows:

lnL(Y |2 )

= −
ln 2π
2

N∑
i=1

M∑
j=1

Li,j −
1
2

N∑
i=1

M∑
j=1

ln
∣∣6i,j

∣∣
−
1
2

N∑
i=1

M∑
j=1

(1Y i,j − µi,j)
T6−1i,j (1Y i,j − µi,j) (29)

If 6̃i,j = 6i,j/β
2
i,j, σ̃

2
ε = σ 2

ε /β
2
i,j, Equation (29) can be

described by follows:

lnL(Y |2 )

= −
ln 2π
2

N∑
i=1

M∑
j=1

Li,j

−
1
2

N∑
i=1

M∑
j=1

ln
∣∣∣6̃i,j

∣∣∣− 1
2

N∑
i=1

M∑
j=1

Li,j lnβ2i,j

−
1
2

N∑
i=1

M∑
j=1

1

β2i,j
(1Y i,j − αi,j1T i,j)T

·6̃
−1
i,j (1Y i,j − αi,j1T i,j) (30)

Taking the partial derivatives with respect to and for
Equation (30) and making them equal to zero, we can obtain:

α̂i,j =
1TT

i,j6̃
−1
i,j 1Y i,j

1TT
i,j6̃
−1
i,j 1T i,j

(31)

β̂2i,j =
(1Y i,j − αi,j1T i,j)T 6̃

−1
i,j (1Y i,j − αi,j1T i,j)

Li,j
(32)
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Substituting Equations (31) and (32) into Equation (30),
we can obtain:

lnL(Y |2 ) = −
1+ ln 2π

2

N∑
i=1

M∑
j=1

Li,j

−
1
2

N∑
i=1

M∑
j=1

ln
∣∣∣6̃i,j

∣∣∣− 1
2

N∑
i=1

M∑
j=1

Li,j ln β̂2i,j

(33)

The covariance matrix 6̃i,j contains unknown parameters ν
and σ 2

ε ; the maximum value of Equation (33) can be obtained;
and an estimate of the parameters ν̂ and σ̂ 2

ε can be obtained.
Substituting ν̂ and σ̂ 2

ε into Equation (31) and Equation (32),
and combining the degradation data of the equipment, the
parameters α̂i,j and β̂2i,j, which represent the estimated drift
coefficient and diffusion coefficient for the ith sample under
the jth stress, can be determined. The set of the total drift
coefficient and the estimated diffusion coefficient is α̂ and β̂

2
.

Based on the assumption of a random distribution of the drift
coefficient and the proportional relationship above, we can
obtain:

lnL(α̂, β̂
2
|2 )

= −

N∑
i=1

M∑
j=1

ln 2π −
N∑
i=1

M∑
j=1

ln σ 2
a +

N∑
i=1

M∑
j=1

2b/Sj

−
1

2σ 2
a

N∑
i=1

M∑
j=1

(
α̂i,j−µae−b/Sj

)2
+

(
β̂2i,j/g− µαe

−b/Sj
)2

e−2b/Sj

(34)
µ̂α

=

N∑
i=1

M∑
j=1
α̂m,i +

N∑
i=1

M∑
j=1
β̂2i,j/ĝ

2
N∑
i=1

M∑
j=1

e−2b/Sj
(35)

σ̂ 2
a

=
1

2NM

N∑
i=1

M∑
j=1

(
α̂i,j−µ̂ae−b/Sj

)2
+

(
β̂2i,j/ĝ−µ̂αe

−b/Sj
)2

e−2b/Sj

(36)
ĝ

=

N∑
i=1

M∑
j=1

(
β̂2i,je

b/Sj
)2

µ̂a
N∑
i=1

M∑
j=1
β̂2i,je

b/Sj

(37)

Substituting Equations (35)∼(37) into Equation (34)
yields:

lnL(α̂, β̂
2
|2 ) = −MN

−

N∑
i=1

M∑
j=1

ln 2π −
N∑
i=1

M∑
j=1

ln σ̂ 2
a

+

N∑
i=1

M∑
j=1

2b/Sj (38)

The parameter estimation b̂ can be obtained by determining
the maximum value of Equation (38). b̂ Then, is substituted
into Equations (35)∼(37), and, µ̂α, σ̂ 2

a , and ĝ can be obtained.

IV. JOINT OPTIMIZATION MODEL OF THE REPLACEMENT
AND SPARE PARTS PURCHASING STRATEGY
Replacement and spare-parts ordering are the key factors that
restrict the efficient operation of equipment. The reasonable
replacement and spare-parts strategy can effectively reduce
the cost in the life cycle of the equipment. Currently,
the renewal reward theorem has been widely used in the
study of equipment maintenance decisions [24]. With this
theorem, the mathematical relationship between equipment
maintenance cost per unit time and maintenance decision
variables can be easily expressed, which could lay a solid
foundation for the forthcoming study.

In this study, the RUL prediction information, in combina-
tion with the renewal reward theorem, was used to develop
the joint optimization model of equipment replacement and
spare-parts purchasing strategy to minimize the cost of one
life cycle. The detailed information can be expressed as
follows:

minc(tp, ts) =
E (C(τ ))
E(τ )

(39)

where tp is the preventive replacement time; ts is the spare
part procurement time; and c(tp, ts) is the average cost ratio
of the equipment operating cycle under the circumstance of
(tp, ts). C(τ ) is the total cost of running the equipment for
one life cycle; τ is one life cycle of the equipment; and E(·)
represents the expectation.

Also, the basic assumptions of the joint optimizationmodel
can be given:
Assumption 1: The target equipment runs under normal

working stress and exhibits single performance degradation,
and its degradation process satisfies the nonlinear Wiener
process.
Assumption 2: The equipment begins to run at the initial

moment, and there is no spare-part inventory at the initial
moment, but at most one spare part is purchased or stored
at any time thereafter.
Assumption 3: There is a fixed delivery period for spare

parts from the beginning of procurement to the arrival of the
goods.
Assumption 4: The time required to replace the equipment

can be neglected compared to the running time. If the
equipment can still run properly after the spare parts arrive,
preventive replacement is performed at time tp, and the
replacement cost isCp. The storage cost of spare parts per unit
time isH1. If the equipment fails before the spare parts arrive,
the replacement cost is Cf , and the unit time loss caused by
downtime is H2.
For Assumption 1, the Wiener process can accurately

describe monotonic and nonmonotonic degradation pro-
cesses, and its universal applicability makes degradation
modeling more general. For Assumption 2, taking single
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FIGURE 1. Replacement strategy.

equipment as the research object is representative, and similar
ideas can be used for modeling and analysis under multiple
equipment conditions. Assumptions 3 and 4 are set based
on the real process of spare parts ordering and equipment
maintenance support.

In this study, progressive analytical thinking was used
to analyze the equipment replacement strategy model and
spare parts ordering strategy model, and then, the combined
optimization model was obtained.

A. REPLACEMENT STRATEGY MODEL
The replacement strategy model is primarily used to deter-
mine the optimal preventive replacement time to balance the
costs of preventive replacement and failure replacement of the
equipment. A schematic diagram of the replacement strategy
is shown in Figure 1.

Figure 1 shows the possible replacement process of
the equipment in a life cycle, and the maintenance costs
incurred during a replacement cycle may include preventive
replacement costs or inoperative replacement costs.

If the equipment does not fail before the preventive
replacement time, preventative replacement can proceed
under time tp, and the total cost is Cp. If the equipment
fails between the current operating time tk and the preventive
replacement time tp, fault replacement can be performed
immediately under time tf , and the total cost is Cf . Thus,
the total cost expectation corresponding to the replacement
strategy model is:

E (C(τ )) = Cp + (Cf − Cp)FLk |S0 (tp − tk |S0 ,Y1:k ) (40)

Figure 1 shows that the running time of equipment in the
replacement strategy model can be divided into two areas of
Q1 and Q2, where Q1 is the area before the current running
time, in which the equipment is running properly, and Q2 is
the area in the future running time, in which the equipment
is running properly. Thus, the expectation of the operation
period corresponding to the replacement strategy model is as
follows:

E(τ ) = E(τf )+ E(τp) = τf P(τf )+ τpP(τp)

= tp −
∫ tp−tk

0
FLk |S0 (lk |S0 ,Y1:k )dlk (41)

See Appendix A for the details on the solution process for
Equation (40) and Equation (41).

FIGURE 2. Spare parts ordering strategy.

B. SPARE PARTS ORDERING STRATEGY MODEL
The model of the spare parts purchasing strategy is primarily
used to determine the optimal spare-parts ordering time to
balance the cost caused by spare-parts shortage and spare
parts storage. Figure 2 shows a schematic diagram of the
spare parts ordering strategy.

Figure 2 shows the procurement process of spare parts in
a life cycle, and the related costs incurred in a procurement
cycle may include the storage cost of spare parts or the loss
of spare parts shortage. If ts + τo ≤ tp, then the spare parts
arrived before preventive replacement of equipment, and the
spare parts were in storage; if ts+τo ≥ tp, then the spare parts
could not arrive before preventive replacement of equipment.
If τ+ and τ− represent the storage time and shortage time of
spare parts, τ+ = tp−ts−τo, τ− = ts+τo−tp. Then, the total
cost expectation corresponding to the spare parts ordering can
be written as:

E (C(τ )) = H1E(τ+)+ H2E(τ−)

= H1

∫ tp−tk

ts+τo−tk

(
1− FLk |S0 (lk |S0 ,Y1:k )

)
dlk

+H2

∫ ts+τo−tk

ts−tk
FLk |S0 (lk |S0 ,Y1:k )dlk (42)

Figure 2 shows that if ts+ τo ≤ tp, preventive replacement
is performed when the equipment is in good condition, and
its operation cycle is τp. If ts + τo ≥ tp, the operating period
of the equipment is prolonged due to the waiting for spare
parts, τp+τ−. Thus, the expectation of the spare parts ordering
strategy model corresponding to the equipment operation
cycle is as follows:

E(τ ) = E(τp)+ E(τ−)

= tk +
∫ tp−tk

0

(
1− FLk |S0 (lk |S0 ,Y1:k )

)
dlk

+

∫ ts+τo−tk

ts−tk
FLk |S0 (lk |S0 ,Y1:k )dlk (43)
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See Appendix B for the details on the solution process for
Equation (42) and Equation (43).

C. JOINT OPTIMIZATION MODEL
Considering the entire process of replacement and spare-
parts ordering during the life cycle, a joint optimization
model of replacement and spare-parts ordering strategy was
developed to determine the optimal spare-parts ordering
time and preventive replacement time to achieve the lowest
average cost rate of the equipment operation cycle.

Based on this analysis, the total cost in the joint opti-
mization model includes the cost generated by equipment
replacement and the cost generated by spare parts ordering,
which can be described as follows:

E (C(τ ))

= C(τf )P(τf )+ C(τp)P(τp)+ H1E(τ+)+ H2E(τ−)

= Cp + (Cf − Cp)FLk |S0 (tp − tk |S0 ,Y1:k )

+H1

∫ tp−tk

ts+τo−tk

(
1− FLk |S0 (lk |S0 ,Y1:k )

)
dlk

+H2

∫ ts+τo−tk

ts−tk
FLk |S0 (lk |S0 ,Y1:k )dlk (44)

Considering that any replacement moment is equivalent to
the end of the current running cycle or the beginning of the
next running cycle, comparing the expression of equipment
operation cycle expectation between the replacement strategy
model and the spare parts ordering model, the expected
operating cycle of the equipment in the easily obtained joint
optimization model is as follows:

E(τ ) = E(τp)+ E(τ−)

= tk +
∫ tp−tk

0

(
1− FLk |S0 (lk |S0 ,Y1:k )

)
dlk

+

∫ ts+τo−tk

ts−tk
FLk |S0 (lk |S0 ,Y1:k )dlk (45)

Considering the derivation of the spare-parts ordering
strategy model, the optimal replacement time (tp) in the joint
optimization model should not be less than ts + τo.

V. CASE STUDY
Micro-electro mechanical system (MEMS) gyroscopes are
the core equipment of modern navigation and positioning
systems; have high service reliabilities and long effective life
cycles; and have been widely used in aviation, aerospace,
and equipment. In this study, the RUL of a target piece of
equipment is predicted based on the step-stress accelerated
degradation data and field monitoring data of a certain
MEMS gyroscope, and the joint optimization decision of
equipment replacement and spare parts ordering strategy is
made accordingly. The step-stress accelerated degradation
test included 4 samples and 3 groups of stress levels (S1 =
40◦C, S2 = 70◦C, S3 = 100◦C), and 50 samples were taken
at an interval of 10 h under each group of stress conditions.
Fifty samples were taken at an interval of 10 h. The field

FIGURE 3. Field monitoring data.

FIGURE 4. Accelerated degradation data.

monitoring data included all degradation data of the target
equipment operating under normal stress (S0 = 25◦C) for
180 days, and the specific degradation process is shown in
Figures 3 and 4.

To verify the accuracy of the parameter estimation method,
we simulate the degradation data of the equipment under
normal stress (S0) for different2 and calculate the estimated
value 2̂ using the proposed step-by-step MLE estimation
method. The parameter estimation results are shown in
TABLE 1.

TABLE 1 shows that the relative errors between the
estimated and real values of the different parameters are all
less than 30%, which indicates that the step-by-step MLE
estimation method can accurately estimate the parameters.

The degradation process of the MEMS gyroscope
is nonlinear under normal stress conditions. We let
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TABLE 1. Comparison of parameter estimation.

TABLE 2. Priori parameter estimation.

3(t |ν ) = exp(νt) − 1 in this study. Using the acceleration
degradation data of the MEMS gyroscope in Figure 4 and the
a priori parameter estimation method proposed above, the a
priori parameter estimates can be described as follows.

The prior parameter estimation results in TABLE 2 are
calculated from accelerated degradation data (hour to day).
Also, on-site monitoring data were used to update the state
based on the Kalman filter method. The detailed update
process is shown in Figure 5.

Generally, when the zero offset increment of the MEMS
gyroscope exceeds 2.5% of the initial value, it can
be considered to fail, and the failure threshold value
D = 2.5. Therefore, the target equipment fails at 180 days;
thus, the real life of the target piece of equipment is 180 days.
Based on this analysis, the RUL online prediction method
was used to perform the online prediction of RUL of
target equipment under the constant stress condition. For the
ease of comparative analysis, the joint optimization model
proposed in this paper is referred to as M0, and the joint
optimization model proposed in [14] is referred to as M1.
The online prediction method of RUL proposed in [11]
is applied to the joint optimization model of replacement

and spare-parts ordering, which can be marked as M2.
The RUL prediction result, mean squared error (MSE) and
95% confidence interval of RUL prediction corresponding to
different methods are shown in TABLE 3.

The MSE of RUL can be calculated by Equation (46):

MSE =
∫
∞

0
(lk − T + tk )2fLk |S0 (lk |S0 ,Y1:k )dlk (46)

where T is the lifetime of the piece of equipment.
TABLE 3 shows that M0 has more accurate RUL

prediction results and smaller MSE than M1 and M2 at
different state monitoring times. The 95% confidence interval
of RUL corresponding to M0 can completely contain the real
RUL of the target equipment, which indicates that the M0
model can predict the RUL of equipment more accurately
and will have a positive impact on the subsequent joint
optimization decision of the replacement and spare parts
ordering strategy. Further analysis of TABLE 3 shows that
M1 has the narrowest confidence interval width compared
to M0 and M2, which shows that the uncertainty of RUL
prediction of M1 is small and the prediction accuracy is
high. The primary cause of this result is that M1 only
updated the drift coefficient as a random variable online,
while M0 and M2 updated the drift and diffusion coefficients
synchronously, increasing prediction uncertainty. However,
M1 can achieve a high prediction accuracy based on the
loss of precision, which keeps the confidence interval from
covering the real RUL of the target piece of equipment,
which is not conducive to scientific maintenance decisions.
Comparing M0 and M2, the prediction results of M0 and
M2 are found to be similar, but the width of the confidence
interval under M0 is narrower than that under M2, which
shows thatM0 has a lower uncertainty and better performance
based on ensuring the accuracy of the RUL prediction.

To compare and analyze the advantages and disadvantages
of M0, M1 and M2 in the joint optimization decision of
replacement and spare-parts ordering, the variation curves
of the average cost ratio of the equipment operation cycle
corresponding to different models are calculated when it is
40, 80 and 120 days, as shown in Figure 6, where tp = ts +
τo+τp,CP = 50 RMB,Cf = 100 RMB,H1 = 1.5 RMB/day,
H2 = 150 RMB/day, and τo = 20 day.
The optimal spare-parts ordering time and preventive

replacement time with different monitoring times is shown
in Figure 6, and the corresponding results are shown
in TABLE 4.

TABLE 4 shows that the average cost ratio of M0 in
the operation cycle is lower than that of M1 and M2 at
different monitoring times, which demonstrates that the
proposed method is better than the traditional method. The
primary reason for this result is that the proposed RUL
prediction method performs better than M1 and M2; thus,
the preventive replacement time and spare-parts ordering
time can be determined more scientifically. Based on the
abovementioned theory, RUL prediction results have a strong
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FIGURE 5. Degradation state update process.

TABLE 3. RUL prediction.
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FIGURE 6. Cost curves.

TABLE 4. Joint optimization results.

influence on the result of the joint decision of replacement
and spare-parts ordering.

Based on this analysis, the control variable method was
used to analyze the parameter sensitivity of the proposed
joint optimization model, where the condition monitoring
time tk = 80 days; the maintenance cost Cp ∈ [1, 100]
RMB, Cf ∈ [50, 500] RMB; the spare-parts ordering cost
H1 ∈ [1, 10] RMB/day, H2 ∈ [100, 200] RMB/day, and

τo ∈ [1, 50] day. The quantitative relationship between each
parameter and the optimal joint decision result is shown in
Figures 7 through 11.

Figure 7 shows that the average cost ratio in one operating
cycle is strongly influenced by the cost of preventive
replacement. The average cost ratio increases linearly with
Cp, and its corresponding growth rate is 0.0067 day−1.
The optimal spare-parts purchase time ts and preventive

VOLUME 10, 2022 38659



D. Xue et al.: Joint Maintenance Decision Based on RUL Prediction Using Accelerated Degradation Data

FIGURE 7. Sensitivity analysis of Cp.

FIGURE 8. Sensitivity analysis of Cf .

FIGURE 9. Sensitivity analysis of H1.

replacement time tp; ts and tp show a stepwise growth with the
increase of Cp; and the corresponding increment is 12 days.

FIGURE 10. Sensitivity analysis of H2.

FIGURE 11. Sensitivity analysis of τo.

Results show that the optimal spare parts ordering time
and preventive replacement time are sensitive to the change
in preventive replacement cost. With further analysis, the
precision of the optimal joint decision increases with the
increase of Cp, in which the higher preventive replacement
costs can lead to marked increases in the total operating costs.
Therefore, the increase in ts and tp could increase the expected
operation time of the equipment.

Figure 8 shows that the average cost ratio of the equipment
operation cycle increases with increasing failure replacement
cost, but this increase is relatively small, which indicates that
the average cost ratio of the equipment operating cycle is
not sensitive to the change. This result demonstrates that the
probability of failure replacement will markedly decrease,
thus reducing the impact of the failure replacement fee on
the total operating cost when the RUL of equipment can
be accurately predicted. Similarly, the variance of Cf has a
negligible effect on the optimal spare parts ordering time and
preventive replacement time. When ts and tp are 65 RMB
and 265 RMB, a sudden increase occurs.
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Figure 9 shows that the average cost ratio in one operation
cycle is highly sensitive to the storage cost of the spare
parts and exhibits a linear trend except for the point of
0.4 RMB/day. When the increment of H1 is 1 RMB/day, the
average cost ratio in one operation cycle is 0.0017 RMB/day.
H1 has a negligible influence on the optimal spare parts
purchase time ts and preventive replacement time tp, which
is primarily because when ts and tp remain constant, the
cost of the equipment maintenance (replacement) remains
constant, resulting in the total operating cost of the equipment
being primarily affected by the related cost of spare parts.
When H2 remains constant, H1 has a negligible influence
on c(tp, ts).
Figure 10 shows that the average cost ratio in one

operation cycle changes marginally with the change in the
spare parts shortage loss, and ts and tp remain stable.
Therefore, the sensitivity of the optimal joint decision pairs
is low.

Figure 11 shows that the average cost ratio and pre-
ventive replacement time of the equipment operation cycle
remain constant in different spare parts ordering periods.
The spare parts purchasing time decreases linearly with
increasing τo, and the rate of decline was approximately
1.0612. Further analysis shows that the optimal (ts, tp)
and τo obey the equation. τo + ts = tp, which
demonstrates that when the spare parts ordering strategy
perfectly fits the equipment maintenance strategy, the
optimal solution of the joint optimization model can be
realized.

VI. CONCLUSION
In this study, the online prediction of RUL is achieved
by integrating accelerated degradation data and on-site
monitoring data. The optimal replacement and spare parts
ordering strategies are obtained using the RUL prediction
information.

1) To predict the RUL of the accelerated degradation
equipment, it is necessary to update the drift coefficient
and diffusion coefficient of the equipment simultane-
ously, which can effectively improve RUL prediction
accuracy.

2) The accelerated degradationmodel with the proportional
relationship can more intuitively describe the true degenerate
features of the equipment, achieves better model fitting, and
reduces the uncertainty of RUL prediction.

3) The higher the accuracy and precision of the RUL
prediction method are, the more helpful it is to obtain the
optimal maintenance strategy. Higher accuracies can also
achieve lower cost consumptions and effectively improve
maintenance efficiencies.

In this study, the time-scale transformation model is used,
and the application of this model has certain limitations.
In future research, we intend to test a more general nonlinear
Wiener degradation model, such as in [25], to expand the
applicability of the proposed method.

APPENDIX A
Based on the basic principles of probability theory, we can
obtain:

E (C(τ ))
= C(τf )P(τf )+ C(τp)P(τp)
= Cf P(τf )+ CpP(τp)
= Cf P(tk < τ ≤ tp)+ CpP(τ ≥ tp)
= Cf P(0 < τ − tk ≤ tp − tk )+ CpP(τ − tk ≥ tp − tk )
= Cf P(0 < lk ≤ tp − tk )+ CpP(lk ≥ tp − tk )

= Cf

∫ tp−tk

0
fLk |S0 (lk |S0 ,Y1:k )dlk

+Cp

∫
+∞

tp−tk
fLk |S0 (lk |S0 ,Y1:k )dlk

= Cf

∫ tp−tk

0
fLk |S0 (lk |S0 ,Y1:k )dlk

+Cp

(
1−

∫ tp−tk

0
fLk |S0 (lk |S0 ,Y1:k )dlk

)
= Cp + (Cf − Cp)FLk |S0 (tp − tk |S0 ,Y1:k ) (A1)

From the basic property of opposite events, we know that:

P(τf )+ P(τp) = 1 (A2)

Based on Equation (A2),E(τ ) can be calculated as follows:

E(τ )

= τf P(τf )+ τpP(τp)

= tk + (τf − tk )P(τf )+ (τp − tk )P(τp)

= tk +
∫ tp−tk

0
lk fLk |S0 (lk |S0 ,Y1:k )dlk

+(tp − tk )
∫
+∞

tp−tk
fLk |S0 (lk |S0 ,Y1:k )dlk

= tk +
∫ tp−tk

0
lkdFLk |S0 (lk |S0 ,Y1:k )

+(tp − tk )
(
1− FLk |S0 (tp − tk |S0 ,Y1:k )

)
= tk + (tp − tk )FLk |S0 (tp − tk |S0 ,Y1:k )

−

∫ tp−tk

0
FLk |S0 (lk |S0 ,Y1:k )dlk

+(tp − tk )
(
1− FLk |S0 (tp − tk |S0 ,Y1:k )

)
= tp −

∫ tp−tk

0
FLk |S0 (lk |S0 ,Y1:k )dlk = (A3)

APPENDIX B
Based on the basic principles of probability theory, we can
obtain:
E(τ−)

=

∫ ts−tk

0
τofLk |S0 (lk |S0 ,Y1:k )dlk

+

∫ ts+τo−tk

ts−tk
(ts + τo − tp)fLk |S0 (lk |S0 ,Y1:k )dlk

= τoFLk |S0 (ts − tk |S0 ,Y1:k )

+

∫ ts+τo−tk

ts−tk
(ts + τo − tk − lk )fLk |S0 (lk |S0 ,Y1:k )dlk
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= τoFLk |S0 (ts − tk |S0 ,Y1:k )

+(ts + τo − tk )FLk |S0 (ts + τo − tk |S0 ,Y1:k )

−(ts + τo − tk )FLk |S0 (ts − tk |S0 ,Y1:k )

−

∫ ts+τo−tk

ts−tk
lk fLk |S0 (lk |S0 ,Y1:k )dlk

=

∫ ts+τo−tk

ts−tk
FLk |S0 (lk |S0 ,Y1:k )dlk (B1)

E(τ+)

=

∫ tp−tk

ts+τo−tk
(tp − ts − τo)fLk |S0 (lk |S0 ,Y1:k )dlk

+(tp − ts − τo)
∫
+∞

tp−tk
fLk |S0 (lk |S0 ,Y1:k )dlk

=

∫ tp−tk

ts+τo−tk
(lk + tk − ts − τo)fLk |S0 (lk |S0 ,Y1:k )dlk

+(tp − ts − τo)
∫
+∞

tp−tk
fLk |S0 (lk |S0 ,Y1:k )dlk

=

∫ tp−tk

ts+τo−tk
lk fLk |S0 (lk |S0 ,Y1:k )dlk

−

∫ tp−tk

ts+τo−tk
(ts + τo − tk )fLk |S0 (lk |S0 ,Y1:k )dlk

+(tp − ts − τo)
(
1− FLk |S0 (tp − tk |S0 ,Y1:k )

)
= (tp − tk )FLk |S0 (tp − tk |S0 ,Y1:k )

−(ts + τo − tk )FLk |S0 (ts + τo − tk |S0 ,Y1:k )

−

∫ tp−tk

ts+τo−tk
FLk |S0 (lk |S0 ,Y1:k )dlk

−(ts + τo − tk )fLk |S0 (tp − tk |S0 ,Y1:k )

+(ts + τo − tk )fLk |S0 (ts + τo − tk |S0 ,Y1:k )

+(tp − ts − τo)− (tp − ts − τo)FLk |S0 (tp − tk |S0 ,Y1:k )

= tp − ts − τo −
∫ tp−tk

ts+τo−tk
FLk |S0 (lk |S0 ,Y1:k )dlk

=

∫ tp−tk

ts+τo−tk

(
1− FLk |S0 (lk |S0 ,Y1:k )

)
dlk (B2)

E(τp) can be calculated as follows:

E(τp)

= tk +
∫ tp−tk

0
lk fLk |S0 (lk |S0 ,Y1:k )dlk

+(tp − tk )
∫
+∞

tp−tk
fLk |S0 (lk |S0 ,Y1:k )dlk

= tp −
∫ tp−tk

0
FLk |S0 (lk |S0 ,Y1:k )dlk

+ = tk +
∫ tp−tk

0

(
1− FLk |S0 (lk |S0 ,Y1:k )

)
dlk

(B3)

Based on Equation (B1) and Equation (B3), Equation (43)
can be obtained.
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