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ABSTRACT The motors and reducers of traditional industrial robots are installed at the joints, which leads
to large moment of inertia and difficult to effectively improve the dynamic performance of the robots.
In particular, the residual vibration at the end of the robots will significantly reduce its working efficiency and
fatigue life. Therefore, this paper proposes a new method to reinstall the motor and reducer near the frame,
which can effectively suppress the residual vibration of the robots and simultaneously reduce the moment
of inertia. Taking the series industrial robot as the research object, four types of CM robots are designed
based on the theory of a multi-DOF controllable mechanism (CM). The motor and reducer of the robot are
reinstalled near the frame through different branch chains, and their moments of inertia are calculated and
compared. The dynamic equations of residual vibration of the four CM robots considering concentrated
mass are established based on the finite element method (FEM) and Timoshenko space beam element (SBE)
model, and the correctness of the equations are verified by experiments. The results show that the installation
position of motor and reducer has a significant influence on the value of moment of inertia of the robot. The
motor and reducer of configuration D are reinstalled near the frame by three branches, which can effectively
reduce the attenuation time and amplitude of residual vibration at the end of the robot. The research provides
a new idea for improving the dynamic performance of industrial robots.

INDEX TERMS Controllable mechanism robot, finite element method, moment of inertia, residual vibration
suppression.

I. INTRODUCTION
Industrial robots are widely used in assembly, welding and
palletizing. However, the residual vibration of industrial
robots will reduce their work efficiency [1], [2] and affect
the operational accuracy [3], [4]. It is therefore of great
significance to suppress the residual vibration of robots. The
spot welding robot [5], [6] and assembly robot [7]–[9] need to
wait until the residual vibration of the working arm is reduced
before they can perform their next work task [10], [11].
To enable industrial robots to complete maneuvering tasks
both quickly and accurately, many researchers have con-
ducted extensive and in-depth research on the residual vibra-
tion of robots from different aspects [12]–[14].
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In the 1980s, Thompson and Liao [15], [16] studied the
residual vibration of robot mechanisms with laminated com-
posite components after their motion stopped. By optimizing
the material parameters of the robot, these researchers sig-
nificantly reduced the amplitude and time of residual vibra-
tion. Yavuz [17] researched a single-link flexible glass fabric
reinforced epoxy-glass composite manipulator by ANSYS,
and it was concluded that the residual vibration amplitudes
of the flexible composite manipulator were suppressed with
the proposed method by up to 99% for all velocity inputs.
In engineering practice, composite components have striking
advantages, such as a light weight and short attenuation time
of residual vibration [18], [19]. On the one hand, the manip-
ulator can be made of composite materials instead of metal
materials to suppress the residual vibration of the manipula-
tor, while on the other hand, we can apply damping materials
to absorb the energy of residual vibration or add isolation
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devices to quickly reduce the residual vibration time [20],
[21]. For example, Biglari et al. [22] designed a damped link
to replace a simple link and verified through experiments
that the damped link has a better performance in terms of
vibration suppression than the simple link. Kraus et al. [23]
designed an active vibration absorber with three degrees of
freedom. The mechanical structure of the 3-DOF absorber
has been designed such that it has a multiple eigenfrequency
equal to the first eigenfrequency of the robotic arm. In addi-
tion, the suppression of residual vibration by the active con-
trol method was proven to be feasible by experiments [24].
Active control includes the feedforward control method and
the feedback control method. Feedforward control methods
include the component synthesis method, the input shaping
method [25]–[28] and the S-curve method [29]–[31]. This
method does not require an additional vibration controller
and is relatively convenient to implement [32]. A good effect
has been achieved in the vibration suppression of industrial
robots. Zhang et al. [33] used the component synthesis active
vibration suppression method based on the zero-placement
technique to construct the synthesized command in order to
suppress the multi-harmonic vibration in the discrete domain
at the same time. Thomsen et al. [34], based on fractional
delay time-varying input shaping technology, proposed a
vibration suppression method of multi-mode time-varying
input shaping technology for industrial robot manipulators.
Yoon et al. [35] proposed a method to reduce the resid-
ual vibration of an object moved by a robot manipulator
by optimizing the acceleration/deceleration time calculated
using the object’s natural frequency. However, the results
of vibration suppression are not ideal in the high-speed
motion environment of highly coupled flexible parallel robots
or space robots. Feedback control methods often require
adding piezoelectric sensors and piezoelectric actuators to
the structure, which can not only suppress the vibration,
but also measure the vibration of a distributed parameter
system [25], [36]–[40]. Zhang et al. [41] designed a strain
and strain rate feedback (SSRF) controller and established
a general motion equation, including sensors. Experiments
show that the SSRF controller can effectively suppress the
residual vibration of a three-degrees-of-freedom flexible par-
allel robot. Bai et al. [42] devised an adaptive fuzzy inversion
control strategy for the 7- DOF dual arm control system,
which can suppress the time-varying nonlinear residual vibra-
tion of the end effector caused by the inertia change of the
series robot. Garcia Perez et al. [5] proposed a combined
control scheme that divides the control system into two parts.
One is sliding mode control based on cascaded PID, and the
other is to attach a piezoelectric brake onto the flexible beam
to realize active control of residual vibration and multiple
positive positions feedback. This method requires the use
of piezoelectric materials, shape memory alloys and electro-
magnetic rheological materials. There is no doubt that this
method increases the manufacturing and maintenance cost of
the robot and is not suitable for wide applications.

In summary, various methods have been proposed to sup-
press the residual vibration of robot manipulators, and satis-
factory results have been achieved. However, these works are
performed under three aspects: a lightweight design, passive
control and active control. These studies do not consider the
influence of the motor and reducer installed at the joint of
the series robot on the residual vibration of the robot. If the
motor and reducer can be installed on or near the frame, then
the moment of inertia of the robot can be reduced, and its
residual vibration can be suppressed. In addition, the current
parallel robot is not suitable for all series robots because of
its small workspace [43].

To solve these problems, this paper proposes a method
to suppress the residual vibration of industrial robots from
the structural design. This method does not require accurate
sensors or intelligent materials. First, according to the theory
of multi-DOF CM [44] and host parasitic (H-P) mechanisms
[45], [46], four CM robots are designed: configuration A
without a branched chain, configuration B with one branched
chain, configuration C with two branched chains, and con-
figuration D with three branched chains. In addition, the
three branch chains of configuration D reinstall the motor
and reducer at the robot joint near the frame. Second, the
moments of inertia of the four types of robots are calculated
and compared. Then, the dynamic models of the four config-
urations of the CM robot are established by using the FEM
and Timoshenko SBE [47], and the dynamic models are fitted
using theMonte Carlo method. The Newmark method is used
to solve the dynamic equations. Finally, the effectiveness and
reliability of the method are verified via simulation analysis
and experimental results.

The remainder of this paper is structured as follows. The
process of forming the CM robot from the series robot is
developed in Section II. Section III gives the calculation
model of the moment of inertia of the CM robot. The resid-
ual vibration models of the CM robot are established in
Section IV. The moment of inertia of each CM robot is
calculated and compared in Section V. In Section VI, the
simulation results and experimental results are given to ver-
ify the effectiveness of adding a branch chain to suppress
residual vibration. Conclusion and future work are given in
Section VII.

II. CM ROBOT FORMATION PROCESS
This section analyzes the formation process of the CMmech-
anism and obtains four configurations for the robots. To keep
the working range of the optimized robot unchanged, the
angle relationship of each CM robot is given as the basis of a
subsequent analysis.

A. SERIAL ROBOT
Figure 1 shows a schematic diagram of a current 4-DOF
series robot mechanism, which is a series robot configu-
ration commonly used in industrial production [9]. It can
be seen from figure 1 that the mechanism belongs to
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FIGURE 1. Schematic diagram of a 4-DOF series robot mechanism.

FIGURE 2. Evolution law of the branch chain hierarchical relationship of the CM robot.

a multi-loop mechanism, and the purpose of the branch chain
A5A8A10A11 is to control the end member A12A13 in order
to remain horizontal. In Figure 1, o − xyz is the overall

coordinate system, Ai (i = 1, 2, · · · , 13) represents the num-
ber of kinematic pairs, ϕi (i = 1, 2, · · · , 7) is the included
angle between each component and the horizontal direction,
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and θij (i = A,B,C,D, j = 1, 2, 3, 4) represents the driving
angle of the jth motor of configuration i. Each motor and
reducer of the mechanism are installed at the revolute pair;
specifically, motor 1 controls the rotating movement of the
entire robot, motor 2 controls the rotation of beam A6A9,
motor 3 controls the rotation of forearm A9A12, and motor 4
controls the rotation of end gripper. In this paper, taking the
series robot shown in Figure 1 as configuration A of the CM
robot, we can obtain the following constraints:



LA2A3 = LA4A7
LA2A4 = LA3A7
LA6A9 = LA8A10
LA9A12 = LA10A11
ϕ1 = ϕ4 = ϕ6 = π/2
ϕ2 = ϕ3

ϕ5 = ϕ7

(1)

where LAiAj (i, j = 1, 2, · · · , 8) represents the member
length, and ϕ2 = θA2, ϕ5 = π − θA3.

B. EVOLUTION PROCESS OF CM ROBOT CONFIGURATION
[45] first proposed a new type of H-P mechanism accord-
ing to the tree–rattan parasitic relationship in nature, clas-
sified the parasitic branch chains of the H-P mechanism,
and obtained a variety of reconfigurable parasitic mecha-
nisms. Both the CM robot and H-P mechanism have obvious
hierarchical relationships. In other words, the host mecha-
nism is the main support of the entire mechanism and has
the entire DOF of the mechanism, and the branch chain
mechanism is connected with the host mechanism through
kinematic pairs or components. According to the hierarchi-
cal relationship of the CM robot, the branch chain can be
continuously added to the host mechanism or to the upper
branch chain in order to obtain CM mechanisms with differ-
ent configurations. Therefore, on the basis of the hierarchical
relationship of the CM robot, taking configuration A shown
in Figure 1 as the host mechanism, three new CM robot
configurations can be obtained, as shown in Figure 2. It is
worth noting that the blue part represents configuration A
(including symbols), configuration A plus the red part is
configuration B, configuration B plus the green part is
configuration C, and the entire schematic diagram denotes
configuration D.

According to the evolution law of the CM mechanism, the
three new CM robots have 4 DOFs and are driven by four
motors. The hierarchical relationship of the CM mechanism
is reflected in two aspects: one is that the motor and reducer
move to or near the frame, which can reduce the moment of
inertia of the CM robot; the other is that the increase in the
branch chain can improve the structural stiffness of the robot
and reduce the residual vibration. On the basis of satisfying
the constraints of equation (1), configuration B satisfies the

FIGURE 3. Virtual prototype of the CM robot.

following constraints:
LA6A9 + LA6B1 = LB2B3
LB1B2 = LA9B3
ϕ2 = ϕ9

ϕ5 = ϕ8

(2)

whereϕ2 = θB2,ϕ8 = π+θB2−θB3. ConfigurationC satisfies
not only the following constraints but also the conditions of
equations (1) and (2):

LA5C1 = LA8C2

LA5A8 = LC1C2

ϕ2 = ϕ12 = ϕ10

(3)

Similarly, on the basis of satisfying the constraints of equa-
tions (1)-(3), configuration D also satisfies the following
constraints: 

LD1D2 = LID3 = LJD4

LHB3 = LD2D3

ϕ2 = ϕ12 = ϕ10

(4)

where ϕ2 = π/2 − θC2, ϕ8 = π + θB2 − θB3. According
to the geometric dimensions of the CM robot, the 3D model
diagram and physical prototype of the CM robot correspond-
ing to configuration D are obtained, as shown in Figure 3 and
Figure 4.

III. MOMENT OF INERTIA OF THE CM ROBOT
This section gives the calculation method for the moment
of inertia of the CM robot. A large moment of inertia will
lead to a poor dynamic performance of the robot and easily
produces a large residual vibration. Therefore, it is neces-
sary to calculate the moment of inertia of the CM robot
with different branch chains. As shown in Figure 1 and
Figure 2, o-xyz is the global coordinate system of the CM
robot, and A13-x ′y′z′ is the local coordinate system of the
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FIGURE 4. Physical prototype of the CM robot.

end output component of the CM robot. The four configu-
rations of the CM robot have 4 DOFs, including two rota-
tions around the x-axis and Z -axis and two translations of
the y-direction and z-direction. Therefore, when calculating
the moment of inertia of the CM robot, it is necessary to
consider the moment of inertia for different rotating axes. Let
D1 (0, y1, z1) be a point in the YOZ plane and D2 (x2, y2, 0)
be a point in the XOY plane. Considering the moment of
inertia caused by the concentrated mass of the driving motor,
the minimum moment of inertia of the CM robot in the two
planes is:

Jxmin =

N∑
i=1

(∫ (
(y1 − yi)2 + (z1 − zi)2

)
dmi

)
+

4∑
j=1

((
y1 − yj

)2
+
(
z1 − zj

)2)mj
Jzmin =

N∑
i=1

(∫ (
(x2 − xi)2 + (y2 − yi)2

)
dmi

)
+

4∑
j=1

((
x1 − xj

)2
+
(
y1 − yj

)2)mj

(5)

where N is the number of members, represents the mass of
component i, and mj represents the mass of motor j. The
coordinates of the driving joint where the motor is located are(
xj, yj, zj

)
. It is assumed that the masses of each link of the

four configurations of the CM robot are evenly distributed.
When y1 = z1 = x2 = y2 = 0, and considering the concen-
trated mass of the motor at the driving joint, the moment of
inertia of each CM robot about the x-axis and z-axis can be
obtained from equation (5):

Jx =
N∑
i=1

(∫ (
y2i + z

2
i

)
dmi

)
+

4∑
j=1

(
y2j + z

2
j

)
mj

Jz =
N∑
i=1

(∫ (
x2i + y

2
i

)
dmi

)
+

4∑
j=1

(
x2j + y

2
j

)
mj

(6)

IV. DYNAMIC MODEL OF THE CM ROBOT
The mathematical model of the residual vibration of the CM
robot and its fitting method are introduced in this section.

A. MODELLING STEPS OF THE DYNAMIC MODEL
OF THE CM ROBOT
Figure 5 is a flowchart of the dynamic model modeling of the
CM robot. The following details the steps:

Step 1: Configurations A, B, C and D of the CM robot
are selected as the research objects. For each configuration,
a single extreme working pose is selected for the analysis.

Step 2: The initial FE model of the CM robot virtual
prototype is established in ADAMS software. The residual
vibration of the CM robot by impulse excitation is solved as
the initial condition for theoretical modeling.

Step 3: According to the length of each link, the length
of the flexible 3D beam element is reasonably divided to
calculate the total number of units for each configuration of
the CM robot.

Step 4: In the process of theoretical modeling, the influ-
ence of the irregular boundary and stiffener of the CM robot
on the residual vibration is ignored. Therefore, the Monte
Carlo method is used to fit the area moment of inertia and
the polar moment of inertia of each element. Based on the
initial FE model analysis results of the CM robot, the fitting
order of the area moment of inertia and polar moment of
inertia is determined. Because the stiffness of the CM robot
in the Y -direction and Z -direction is large, it is approxi-
mately simplified according to 90 deformations, so the fit-
ting factors Fy = 0.09, Fz = 0.09 and FI = 0.09 are
determined.

Step 5: The beam element is assumed to be Timoshenko
SBE. Then, the kinetic energy and strain energy of the beam
element are calculated, and the dynamic equation of the SBE
is established by using the Lagrange equation.

Step 6: The rigid body motion constraints, elastic defor-
mation constraints and force constraints of the CM robot
are analyzed, and the constraint equations of the system are
obtained.

Step 7: The mass matrix and stiffness matrix of each ele-
ment are assembled to obtain themassmatrix and the stiffness
matrix of the CM robot system.

Step 8: According to the displacement boundary conditions
in the constraint equation of the system, the mass matrix
and stiffness matrix of the system are modified to eliminate
the rigid degree of freedom of node displacement, and the
modified system dynamic equation is obtained.

Step 9: The residual vibration response of configuration D
of the CM robot under pulse excitation is measured exper-
imentally. The Rayleigh damping coefficients and are fitted
by the Monte Carlo method to obtain the damping matrix of
the system.

Step 10: Themodified dynamic equation of configuration D
of the CM robot is obtained, and the residual vibration
response of the end link of the CM robot is solved using
a numerical method. Step 11: The FE model of the virtual
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FIGURE 5. Flowchart of the dynamic modeling of the CM robot.

FIGURE 6. Timoshenko SBE model.

prototype established in step 2 is modified to obtain the
residual vibration response of the CM robot under the same
pulse excitation.

Step 12: Repeat steps 2 to 10 for different CM robot con-
figurations. Verify the correctness of the theoretical modeling
of the four configurations.

B. TIMOSHENKO SBE MODEL
The Timoshenko SBE model is shown in Figure 6, where
XOY is the system coordinate system and is the local

coordinate system of the beam element. Any point on the
SBE is after deformation. It is assumed that the generalized
coordinate vector ef of the SBE is:

ef =
[
u1 v1 w1 θx1 θy1 θz1 u2 v2 w2 θx2 θy2 θz2

]T (7)

where ui, vi and wi are the displacements of node i along the
local coordinate direction, and θxi, θyi and θzi are the rotation
angles of node i around the three coordinate axes. In addition,
θxi represents the corner of the section.
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The displacement of point P on any cross-section in the
SBE is expressed in generalized coordinates as:

wx (x̄P, t) =
∑
i
φi (x̄P) ug

wy (x̄P, t) =
∑
j,k

(
φj (x̄P) vg + φk (x̄P) θyg

)
wz (x̄P, t) =

∑
p

(
φp (x̄P)wg + φs (x̄P) θzg

)
θx (x̄P, t) =

∑
r
φr (x̄P) θxg

(8)

where i = 1, 7, g = 1, 2, j = 2, 8, k = 6, 12, p = 3, 9, s =
5, 11, r = 4, 10, wx , wy and wz represent the elastic displace-
ment along the corresponding coordinate axis after point P of
the beam element is deformed, respectively, θx represents the
elastic rotation angle along the x-axis direction, and φ (x̄P) is
a shape function related to the geometric parameters of SBE.

The links of the CM robot are subjected to an axial force,
bendingmoment, torque, and shear force. It can be considered
that all links are Timoshenko SBE. The cross-section of the
Timoshenko SBE perpendicular to the centerline of the beam
before deformation is not perpendicular to the centerline of
the beam after deformation. The deformation diagram of the
beam element is shown in Figure 6, and the corner of the cross
section is as follows:

θ =
dv
dx
− γ (9)

According to the generalized Hooke’s law, we can obtain:

Eεx = σx − v
(
σy + σz

)
Eεy = σy − v (σz + σx)
Eεz = σz − v

(
σx + σy

)
Gγxy = τxy
Gγyz = τyz
Gγzx = τzx

(10)

where E is the elastic modulus; G is the shear modulus; and
v is Poisson’s ratio.

For a micro element dV , the stored strain energy is:

dU =
1
2
(σxεx + σyεy + σzεz + τxyγxy

+τyzγyz + τzxγzx)dxdydz (11)

where σx , σy and σz are normal stress components; τxy, τyz
and τzx are shear stress components; εx , εy and εz are nor-
mal strain components; and γxy, γyz and γzx are shear strain
components. Substituting equation (10) into equation (11),
the strain energy of Timoshenko SBE considering axial force,
torque, transverse force and bending moment is as follows:

U =
b
2

∫ l

0

∫ h
2

−
h
2

εTx Eεxdydx +
ρ

2

∫ l

0

∫ h
2

−
h
2

αTEαdydx

+
b
2

∫ l

0

∫ h
2

−
h
2

κTz Eκzdzdx +
h
2

∫ l

0

∫ b
2

−
b
2

κTy Eκydydx

+
1
2
b
∫ l

0

∫ h
2

−
h
2

γ T
G
k
γ dydx (12)

By substituting the geometric relationship of the beam
element deformation into equation (12), we can obtain:

U =
1
2

∫ l

0
EA

(
du
dx

)2

dx +
1
2

∫ l

0
GJ

(
dθx
dx

)2

dx

+
1
2

∫ l

0
EIy

(
−
dθ
dx

)2

dx +
1
2

∫ l

0
EIz

(
−
dθ
dx

)2

dx

+
1
2

∫ l

0

GA
k

(
dv
dx
− θ

)2

dx (13)

where Iy =
∫ h

2

−
h
2
bz2dz, Iz =

∫ b
2

−
b
2
hy2dy, A =

∫ h
2

−
h
2
bdz, J =∫ h

2

−
h
2

∫ b
2

−
b
2
ρ2dydz, where b, h and l are the width, height, and

length of the SBE, respectively, Iy and Iz are the areamoments
of inertia of the SBE to the y-axis and z-axis, respectively, G
is the shear modulus of the SBE, F is the cross-sectional area
of SBE, and k is the correction factor, which is introduced
because the strain and stress of the actual shear deformation
are not uniformly distributed, where k = 6/5 .
According to the deformation energy of Timoshenko SBE,

we can obtain the element stiffness matrix:

Ke
=

[
K11 K12
K21 K22

]
(14)

where

K11 = K22 =


a1

a2 a3
a2 −a3

a4
−a3 a5

a3 a6



K12 = K21 =


−a1

−a2 a3
−a2 −a3

−a4
a3 a7

−a3 a8


a1 =

EA
l
, a2 =

GA
4kl

, a3 = −
GA
2k
, a4 =

GJ
l
,

a5 =
GAl
4k
+
GIy
l
, a6 =

GAl
4k
+
GIz
l
,

a7 =
GAl
4k
−
GIy
l
, a8 =

GAl
4k
−
GIz
l
.

It is assumed that the mass of the SBE is concentrated on
the axis. The kinetic energy expression of Timoshenko SBE
is as follows:

T =
1
2

∫ h
2

−
h
2

∫ b
2

−
b
2

u̇Tρu̇ldydz+
1
2

∫ l

0

∫ h
2

−
h
2

v̇Tρv̇bdzdx

+
1
2

∫ l

0

∫ b
2

−
b
2

ẇTρẇhdydx +
1
2

∫ le

0
θ̇2x (x, t) dJc (15)

where ρ is the material density, u̇, v̇ and ẇ are absolute
velocity arrays along three coordinate axes, v̇ = v̇s + v̇t ,
v̇s is the transverse velocity caused by bending deformation,
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FIGURE 7. Schematic diagram of the element division of FEA.

and v̇t is the lateral velocity caused by shear deformation.
By substituting equation (7) and the shape function φ (x̄P)
into equation (15), we can obtain the SBE mass matrix as
follows:

Me
=
ρAl
6

[
M11 M12
M21 M22

]
(16)

where

M11 = M22 =


2

2
2

2J/A
l

l



M12 = M21 =


1

1
1

J/A
0

0


When the Lagrange equation is applied to the SBE, we can

obtain:

d
dt

(
∂T
∂ ėf

)
−
∂T
∂ ėf
+
∂U
∂ ėf
= F+ Q (17)

where F is the generalized force array of the applied load,
and Q represents the array of interaction forces between ele-
ments. The derivatives of equation (13) and equation (15) are
calculated at the same time and substituted into equation (17),
and the viscous damping theory is used to take the influence
of damping into account. The dynamic model of SBE is as
follows:

12∑
j=1

M e
ij ëf +

12∑
j=1

Ce
ijėf +

12∑
j=1

K e
ijef = Fi + Qi (18)

where i = 1, 2, · · · , 12.
Equation (18) is written in matrix form as follows:

Meëf + Ceėf + Keef = F+ Q (19)

C. DYNAMIC MODEL OF SBE IN THE SYSTEM
COORDINATE SYSTEM
First, the CM robot of each configuration is divided into
elements, and the appropriate number of elements is divided
according to the link length of the configuration. In Figure 7,
each color segment is an element. The number of elements
and nodes of each configuration of the CM robot are shown
in Table 1.
Equation 19 is the SBE dynamic model, which is estab-

lished in the element local coordinate system and needs to
be converted to the system coordinate system to assemble the
element stiffness matrix and mass matrix into the stiffness
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TABLE 1. Division of each configuration element of the CM robot.

matrix and mass matrix of the system. For Timoshenko SBE,
the transformation matrix R between the local coordinate
system and the system coordinate system is as follows [46]:

R =


t 0 0 0
0 t 0 0
0 0 t 0
0 0 0 t

 (20)

where,

t =

cos (x, x̄) cos (x, ȳ) cos (x, z̄)
cos (y, x̄) cos (y, ȳ) cos (y, z̄)
cos (z, x̄) cos (z, ȳ) cos (z, z̄)

 (21)

The first line of equation (21) can be obtained by using the
node coordinates:

cos (x, x̄) =
x̄2 − x̄1

l
cos (x, ȳ) =

ȳ2 − ȳ1
l

cos (x, z̄) =
z̄2 − z̄1

l
l =

√
(x̄2 − x̄1)2 + (ȳ2 − ȳ1)2 + (z̄2 − z̄1)2

(22)

Other lines of equation (21) can be obtained by using the aux-
iliary reference coordinate system o′−x ′y′z′. The following is
the conversion matrix between the auxiliary reference coor-
dinate system o′ − x ′y′z′ and the overall coordinate system
O− XYZ of the system:

t1 =


l m n

−
m
λ

l
λ

0

−
nl
λ
−
mn
λ

λ

 (23)

where

cos (x, x̄) =

(
x̄j − x̄i

)√(
x̄j − x̄i

)2
+
(
ȳj − ȳi

)2
+
(
z̄j − z̄i

)2 = l

cos (x, ȳ) =

(
ȳj − ȳi

)√(
x̄j − x̄i

)2
+
(
ȳj − ȳi

)2
+
(
z̄j − z̄i

)2 = m

cos (x, z̄) =

(
z̄j − z̄i

)√(
x̄j − x̄i

)2
+
(
ȳj − ȳi

)2
+
(
z̄j − z̄i

)2 = n

λ =
√
l2 + m2

The following is the conversion matrix between the auxiliary
reference coordinate system o′ − x ′y′z′ and the element local

coordinate system o− xyz:

t2 =

1 0 0
0 cosα sinα
0 − sinα cosα

 (24)

where A is the angle between the Y -axis of the local coordi-
nate system of the element and the Y ′-axis of the auxiliary
reference coordinate system. t in equation (21) is as follows:

t = t2t1 =

1 0 0
0 cosα sinα
0 − sinα cosα




l m n

−
m
λ

l
λ

0

−
nl
λ
−
mn
λ

λ


(25)

If the x of the SBE is parallel to the z-axis of the overall
coordinate system, then the transformation matrix t2 is as
follows:

t2 =

 0 0 1
− sinα cosα 0
− cosα − sinα 0

 (26)

The following is the relationship between the element node
displacement in the local coordinate system and the element
node displacement in the overall coordinate system:

ef = Tēf (27)

Substituting equation (27) into equation (19) and multiplying
both sides by TT , the dynamic model of SBE in the system
coordinate system can be obtained as follows:

M̄
e
ëf + C̄

e
ėf + K̄

e
ef = F̄

e
+ Q̄

e
(28)

where M̄
e
= TTMeT is the element mass matrix in system

coordinates, C̄
e
= TT C̄

e
T denotes the element damping

matrix in system coordinates, K̄
e
= TT K̄

e
T represent the

element stiffness matrix in system coordinates, F̄
e
= TTFe

is the external load force vector array in system coordinates,
and Q̄

e
= TTQe denote the vector array of interaction forces

between elements in system coordinates.

D. DYNAMIC MODEL OF CM ROBOT
The element dynamic model in the global coordinate system
is discrete and needs to be assembled. The dynamic equations
of each SBE are superimposed according to the global coordi-
nate sequence of the overall number, and the dynamic models
of the four configurations of the CM robot can be obtained as
follows:

Miëf + Ciėf + Kief = Fi (t)+ Qi (θi1, θi2, θi3, θi4) (29)

where i = A,B,C,D. Mi =
Nu∑
k=1

M̄
e
k is the mass matrix

of CM robot configuration i, Ci =
Nu∑
k=1

C̄
e
k denotes the

damping matrix of CM robot configuration i, Ki =
Nu∑
k=1

K̄
e
k

represents the stiffing matrix of CM robot configuration i,
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FIGURE 8. Moment of inertia of configuration A without a branched
chain.

Fi (t) is the external load force vector array of configura-
tion i, Qi (θi1, θi2, θi3, θi4) denotes the inertial force array of
the system, and Nu represents the total number of system
elements.

E. FITTING THE ORDER OF BOUNDARY
CHARACTERISTIC PARAMETERS
Timoshenko SBE is used to establish the theoretical model,
but the effects of the bearing clearance, irregular boundary
and stiffener of the CM robot on the dynamic performance
are not considered. The stiffener has a significant effect on
the residual vibration of the robot. Therefore, to allow the
theoretical modeling to represent the actual situation, the
boundary characteristic parameters that significantly affect
the dynamics of the CM robot are fitted according to the
fitting method proposed in the literature [46]. According to
equation (13), the bearing clearance, irregular boundary of
the link and stiffener have little influence on the tensile and

FIGURE 9. Moment of inertia of configuration B with one branched chain.

compressive deformation of SBE and have a great influence
on other deformations. The boundary characteristic param-
eters are Iy = fIy I

′
y, Iz = fIz I

′
z and J = fJJ ′. Therefore,

according to the dynamic simulation analysis results of the
CM robot, we can determine the order of fitting parameters
fIy , fIz and fJ , as shown in Table 2.
In each configuration of the CM robot, a pulse excitation

of -50N along the Z direction is applied at the end point
A13, that is, Finitial = [0, 0− 50N ]T . Taking the ampli-
tude of the residual vibration as the objective function, the
boundary characteristic parameters are fitted by the Monte
Carlo method. By comparing and analyzing the change in
the residual vibration amplitude A at the end of the CM
robot, the size and order of the fitting parameters are deter-
mined. By comparing the variation in the residual vibra-
tion amplitude e60 = [u60, v60,w60]T at the end of the
CM robot, the size and order of the fitting parameters are
determined.
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TABLE 2. Influence of the boundary characteristic parameters of configuration D on residual vibration.

FIGURE 10. Moment of inertia of configuration C with two branched
chains.

V. NUMERICAL CALCULATION OF THE MOMENT
OF INERTIA
A. GEOMETRIC PARAMETERS OF THE CM ROBOT
As shown in Figures 1-4, Lij is the length of each link in
configuration i. Aij is the cross-sectional area of each link,
Iyij is the cross-sectional moment of inertia of each link of
configuration i in the xoz coordinate plane, Izij is the cross-
sectional moment of inertia of each link of configuration i
in the xoy coordinate plane, and Jij = Iyij + Izij is the polar
moment of inertia of each member of configuration i. The
CM robot was fabricated with aluminum alloy. The geometric

FIGURE 11. Moment of inertia of configuration D with three branched
chains.

parameters of the four configurations of the CM robot are
shown in Table 3.
The mass of the motor is the main factor affecting the

moment of inertia. Each CM robot has four drive motors. The
mass of the driving motor is shown in Table 4.

B. COMPARATIVE ANALYSIS OF THE MOMENT OF
INERTIA OF THE CM ROBOT
The moment of inertia of the robot is determined by the
driving torque of the robot. A largemoment of inertia requires
a large driving torque, and a large driving torque is provided
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TABLE 3. Geometric parameters of CM robots.

TABLE 4. The mass of the drive motor.

by a large mass motor. The mass of the driving motor is very
large, which will lead to the problem of a large amplitude
of residual vibration at the end of the robot and a long
attenuation time of the residual vibration. The branch chain
described in this paper can move the motor at the driving joint
of the series robot to or near the frame.

To avoid interference and singularity during the movement
of the robot, the range of the driving angle of configuration A

of the CM robot is θA2 ∈ [−7.49, 37.40] and θA3 ∈

[18.03, 70], respectively, in order to ensure that the motion
spaces of configurations B, C and D remain unchanged after
adding branch chains. According to equations (1)-(4), we can
determine that the ranges of the driving angles of configura-
tions B, C and D are θB2 = θC2 = θD2 ∈ [−7.49, 37.40] and
θB3 = θC3 = θD3 ∈ [10.54, 107.40], respectively. Based
on equation (6), we can calculate the moment of inertia
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TABLE 5. Comparison of the moment of inertia of the CM robot.

TABLE 6. Comparison of the residual vibration response of the CM robot configuration D.

FIGURE 12. Experimental test system for the residual vibration of the CM robot.

distribution of the entire workspace of four configurations,
as shown in Figures 8-11.

Figure 8 shows that with an increasing driving angle
θA2 and driving angle θA3, the moment of inertia of

configuration A of the CM robot about the x-axis gradually
increases, and the variation range is [65 kg·m2, 90 kg·m2].
In addition, when the driving angle θA2 and the drive angle θA3
decrease gradually, the moment of inertia of configuration A
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FIGURE 13. Comparison of the residual vibration response of the end
point in configuration D with three branched chains.

about the z-axis increases, with a variation range of
[20 kg· m2, 30 kg· m2]. When the driving angles θA2 and
θA3 of the CM robot gradually decrease, the end effector
of the robot gradually reaches the farthest position of the
workspace. Therefore, it can be seen that the change in the
moment of inertia is consistent with reality.

Figure 9 shows that with an increasing driving angle θB2
and driving angle θB3, the moment of inertia of configuration
B of the CM robot about the x-axis gradually increases, and
the variation range is [66 kg· m2, 82 kg· m2]. When the
driving angles θB2 and θB3 decrease gradually, the moment of
inertia of configuration B about the z-axis increases gradually,
and the variation range is [14 kg·m2, 24 kg· m2]. Comparing
Figures 8 and 9, it can be seen that due to the addition of
branch chain Bi, the forearm drive motor originally in the
A4 position is moved to joint B2, which significantly reduces
the moment of inertia of the entire robot about the x-axis and
z-axis.

FIGURE 14. Comparison of the residual vibration response of
configuration A without branched chain.

FIGURE 15. Comparison of the residual vibration response of
configuration B with one branched chain.

According to Figure 10, with an increase in the driving
angle θC2, the change in the moment of inertia of config-
uration C of the CM robot with respect to the x-axis is
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FIGURE 16. Comparison of the residual vibration response of
configuration C with two branched chains.

small. With a decrease in the driving angle θB3, the change
in the moment of inertia of configuration C about the x-axis
increases gradually, and the variation range is [71 kg· m2,
81 kg·m2]. When the driving angles θB2 and θB3 decrease
gradually, the moment of inertia of configuration C about the
z-axis increases gradually, and the variation range is [8 kg·m2,
26 kg·m2]. When the driving angle θC2 is the largest and
the driving angle θC3 is the smallest, the moment of inertia
of configuration C about the z-axis reaches its maximum.
Comparing Figure 9 and 10, it can be seen that due to the
addition of the branch chain Ci, the driving motor originally
in the A2 position is moved to the joint C1, and the variation
range of the moment of inertia of the CM robot about the
x-axis is reduced.

It can be seen from Figure 11 that with a decrease in driving
angles θD2 and θD3, the moment of inertia of configuration D
of the CM robot about the x-axis gradually increases, and
the variation range is [73kg·m2, 78kg·m2]. When the driving
angles θD2 and θD3 decrease gradually, the moment of inertia
of configuration C about the z-axis increases gradually, and
the variation range is [11 kg·m2, 18 kg·m2]. Comparing
Figure 10 and 11, it can be seen that due to the addition of
the branch chain Di, the driving motor originally in the A13
position is moved to the jointD1, which reduces the variation
range of the moment of inertia of configuration D.

From the above analysis, it can be seen that due to the
hierarchical relationship of the branch chains, the driving
motor away from the frame is installed near the frame, which
significantly reduces the moment of inertia of the CM robot.

FIGURE 17. Comparison of the residual vibration response of
configuration D with three branched chains.

According to Table 4, the maximum value and average value
of the moment of inertia about the z-axis of the CM robot are
significantly reduced. After the addition of the three branch
chains, the average value of the x-axis moment of inertia
of configuration D decreases by 5.13%, the maximum value
decreases by 21.03%, and the minimum value increases by
13.45%. The mean value, maximum value, and minimum
value of the moment of inertia of configuration D about the Z
axis decreased by 43.89%, 39.68% and 45.5%, respectively.

According to Table 5, after adding branch chains in layers,
the maximum and average moment of inertia of the CM
robot in the Z direction are significantly reduced, while the
moment of inertia in the X direction changes little. Because
the rotation around theX axis is the expansion and contraction
of the robot in the Z direction, the rotation around the Z axis
is the rotation of the entire CM robot. Therefore, the moment
of inertia in the Z direction is the largest factor affecting the
residual vibration response.

VI. NUMERICAL SIMULATION AND
EXPERIMENTAL STUDY
The dynamic simulation analysis of the CM robot virtual
prototype shown in Figure 3 can obtain more reliable and
relatively accurate residual vibration response results. The
methods of simulation analysis and experimental research
are as follows: First, the displacement response of the resid-
ual vibration at the D-end of the configuration is measured
using high-speed photography. The measured results are fil-
tered, and more accurate experimental results are obtained.
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FIGURE 18. Comparison of the simulation analysis results of the residual vibration response of the CM
robot.

Second, according to the experimental results, the dynamic
model of configuration D is fitted using the Monte Carlo
method to calculate the residual vibration displacement
response of configuration D. Third, in the virtual simulation
model of configuration D, the same constraints and boundary
loads are set for the simulation. Then, the simulation results,
calculation results and experimental results are compared
to verify the correctness of the configuration D calculation
model. The same constraints and boundary loads as con-
figuration D are added to the virtual prototype models of
configurations A, B and C. The displacement response of the
residual vibration is then obtained via simulation analysis.
According to the simulation results, the theoretical models
of configurations A, B and C are fitted by the Monte Carlo
method to solve the residual vibration displacement response.
Finally, the correctness of the theoretical model is verified.

A. INTRODUCTION TO THE EXPERIMENTAL PLATFORM
As shown in Figure 12, the CM robot experimental test sys-
tem is composed of the physical prototype of configurationD,
the robot control system, a high-speed photography system,
and computer and laser calibration. The component material
of the CM robot prototype is 6061 aluminum alloy, and the
joint bearing material is bearing steel.

In the experimental scheme, the high-speed photography
is fixed, and the shooting position of the camera lens is the
target position. The end of the robot is controlled to be far
away from the target position, and the motor drives the robot

to stop moving after the end reaches the target position. The
residual vibration response at the end of the CM robot began
to be measured via high-speed photography. The coordinates
of the red points in all high-speed photographs are extracted
to obtain the residual vibration responses in the Y and Z
directions. In addition, it is worth noting that the movement
of the CM robot is mainly in the YOZ plane. When the base
rotates, the spatial configuration of the mechanism will not
be changed. Therefore, the amplitude and period in the Y
direction and Z direction are important indexes for analyzing
the CM robot in this paper.

B. RESIDUAL VIBRATION RESPONSE ANALYSIS OF THE
END OF CM ROBOT CONFIGURATION D
According to the experimental results, the theoretical model
of configuration D is fitted using the Monte Carlo method.
The specific values of the fitting parameters are fDIy = 0.009,
fDIz = 0.008, fDA = 2.2 and fDJ = 0.017. Then, the residual
vibration displacement response of configuration D of the
CM robot is obtained by equation (29). Finally, the simula-
tion analysis results, theoretical model calculation results and
experimental test results are shown in Figure 13. To more
clearly discuss the residual vibration of configuration D
with three branches, we extracted the key information of
Figure 13, as shown in Table 6. Next, we combine Figure 13
and Table 6 to verify the correctness of the conclusion.

According to Figure 13, the amplitude of the residual vibra-
tion response at the end of configuration D of the CM robot in
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FIGURE 19. Comparison of the theoretical calculation results of the residual vibration response of the CM
robot.

the Y direction is less than that in the Z direction. The ampli-
tude and period of residual vibration from the simulation
analysis, theoretical calculation and experimental results are
essentially consistent. At the same time, the residual vibration
in the Y direction has a large fluctuation at the beginning,
which may be caused by other vibration types of the CM
robot. This is also our next research direction.

According to Table 6, for the maximum amplitude in the
Y direction, the simulation analysis result is 0.496 mm, the
calculated value of the theoretical model is 0.451 mm, and
the experimental measured value is 0.553 mm. The differ-
ences between the simulation analysis results, the theoretical
calculation results and the experimental measured values are
0.045 mm and 0.057 mm, respectively. For the maximum
amplitude in the Z direction, the simulation analysis result
is 1.370 mm, the calculated value of the theoretical model is
1.198mm, and the experimental measured value is 1.664mm.
The differences between the simulation analysis results, the
theoretical calculation results and the experimental measured
value are 0.294 mm and 0.466 mm, respectively. Therefore,
the simulation analysis and theoretical model are verified.

C. COMPARATIVE ANALYSIS OF THE END RESIDUAL
VIBRATION RESPONSE OF THE CM ROBOT
The virtual prototypes of configurations A, B and C of the
CM robot are imported into Adams dynamic analysis soft-
ware. The same constraint conditions and boundary loads
of configuration D are applied to the virtual prototypes of

configurations A, B and C, and the residual vibration
response curves of each configuration end node A13 in the
Y and Z directions are obtained.

According to the simulation results, the theoretical models
of configurations A, B and C are fitted using the Monte
Carlo method. The specific values of the fitting parameters
are the same as configuration D. According to equation (29),
the residual vibration response of each configuration of the
CM robot can be obtained and compared with the simulation
analysis results, as shown in Figures 14-17.

According to Figures 14-17, the residual vibration
responses in the Y and Z directions at the end of each con-
figuration of the CM robot are essentially consistent. The
correctness of the simulation analysis model and theoretical
calculation model has been verified.

As seen from Figures 18a and 19a, the amplitudes of
residual vibration in the Y directions of each configuration
of the CM robot are essentially the same, and the period
and attenuation time of the residual vibration are suppressed.
According to Figures 18b and 19b, the amplitude, period, and
attenuation time of the residual vibration in the Z direction of
configuration D of the CM robot are obviously suppressed.
In the evolution from configuration A to configuration D, the
residual vibration response of the CM robot is suppressed by
adding different branch chains. The amplitude of the residual
vibration of the CM robot decreases, and the attenuation time
of the residual vibration becomes shorter, which improves the
dynamic performance of the robot.
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VII. CONCLUSION AND FUTURE WORK
A. CONCLUSION
In this paper, the current series robot was used as the host
mechanism, and four configurations of the CM robot were
obtained by optimizing the structural design of the robot.
The CM robot combines the advantages of the CM mecha-
nism and multi-DOF CM. By adding different branch chains,
the moment of inertia of the CM robot is reduced. At the
same time, the motor originally located at the joint can
be reinstalled near the frame by adding different branch
chains, which can suppress the residual vibration of the robot
structurally.

The main contributions are as follows:
(1) The moment of inertia models of the four configura-

tions of the CM robot are established and solved. The results
show that the moment of inertia of the CM robot decreases
with the addition of a branch chain. Specifically, after the four
branch chains are added to configuration A, the maximum
moment of inertia of the entire CM robot about the X axis
is reduced by 21.03%, and the average value is reduced by
5.13%. The maximum value of the Z -axis moment of inertia
decreases by 39.68% and the average value decreases by
43.89%.

(2) Based on the FEM and Timoshenko SBE model, the
elastodynamic equations of the four configurations of CM
robots are established, and the residual vibration responses
of the four configurations of CM robots are solved using
the Newmark method. The analysis of the residual vibration
calculation results shows that the residual vibration of the CM
robot can be suppressed by adding branch chains.

(3) The virtual prototype models of four configurations of
the CM robot are established in ADAMS software, and the
residual vibration response results are obtained via simulation
analysis. The correctness of the theoretical models is verified
by the simulation analysis.

(4) The residual vibration response of the end effector of
configuration D is measured and compared with the theoret-
ical model and simulation analysis. The results show that the
theoretical model and simulation analysis are correct.

B. FUTURE WORK
In this paper, only the residual vibration of the CM robot was
studied in detail. However, the nonlinear vibration problems
in the process of CM robot motion, such as superharmonic
resonance, subharmonic resonance, and combined resonance,
need further theoretical analysis and experimental research.
In addition, the experimental research on the residual vibra-
tion of CM robot needs to be improved, which is also a future
direction for this research.

APPENDIX
NOMENCLATURE
The following symbols are used in this paper:

Ai, Bi, Ci, Di Kinematic pair number, i = 1, 2, . . . , 13.
ϕi Angle between link and horizontal direc-

tion, i = 1, 2, . . . , 7.

θij The driving angle of the jth motor of configu-
ration i, where i = A,B,C,D, j = 1, 2, 3, 4.

Lij Link length, i and j are kinematic pair num-
bers.

Ji Moment of inertia about the i-Axis, i =
x, y, z.

N Link numbers.
mi The mass of link i, where i represents the link

name.
mj jth motor mass, j = θ1, θ2, θ3, θ4
Fi Fitting parameters, i = y, z, I .
ac, bc Damping coefficient.
ef Generalized coordinate vector of Timoshenko

SBE.
ui The displacement of node i along the x-axis

of the local coordinate system.
vi The displacement of node i along the y-axis

of the local coordinate system.
wi The displacement of node i along the z-axis

of the local coordinate system.
θxi The rotation angle of node i around the x-axis

of the local coordinate system.
θyi The rotation angle of node i around the y-axis

of the local coordinate system.
θzi The rotation angle of node i around the z-axis

of the local coordinate system.
wi The elastic displacement along the x-axis

after deformation of Timoshenko SBE, i =
x, y, z.

φ (x̄P) Shape function of Timoshenko SBE.
E The elastic modulus of Timoshenko SBE.
G The shear modulus of Timoshenko SBE.
v The Poisson’s ratio of Timoshenko SBE.
σi The normal stress component of Timoshenko

SBE, i = x, y, z.
τi The shear stress component of Timoshenko

SBE, i = xy, yz, zx.
εi The positive strain component of Timoshenko

SBE, i = x, y, z.
γi The shear strain component of Timoshenko

SBE, i = xy, yz, zx.
U The strain energy of Timoshenko SBE.
T The kinetic energy of Timoshenko SBE.
b The width of Timoshenko SBE.
h The height of Timoshenko SBE.
l The length of Timoshenko SBE.
Ii The area moment of inertia of the Timo-

shenko SBE to the x-axis, i = y, z.
J The polar moment of inertia of the Timo-

shenko SBE.
A The cross-sectional area of Timoshenko SBE.
k The correction factor of Timoshenko SBE.
K e The stiffness matrix of Timoshenko SBE.
M e The mass matrix of Timoshenko SBE.
Ce The damping matrix of Timoshenko SBE.
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R The transformation matrix between the local
coordinate system and the system coordinate
system.

ρ The material density of Timoshenko SBE.
F The generalized force array of applied load.
Q The force array applied by other units.
Mi The ith configuration mass matrix,

i = A,B,C,D.
Ki The ith configuration stiffness matrix,

i = A,B,C,D.
Ci The ith configuration damping matrix,

i = A,B,C,D.
Fi The ith configuration external load force vec-

tor array, i = A,B,C,D.
Qi The ith configuration inertial force array,

i = A,B,C,D.
Nui The ith configuration total number of system

units, i = A,B,C,D.
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