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ABSTRACT This paper proposes a friction model parameter identification routine that can work with
highly nonlinear and chaotic systems. The chosen system for this study is a passively-actuated tilted Furuta
pendulum, which is known to have a highly nonlinear and coupled model. The pendulum is tilted to ensure
the existence of a stable equilibrium configuration for all its degrees of freedom, and the link weights are
the only external forces applied to the system. A nonlinear analytical model of the pendulum is derived,
and a continuous friction model considering static friction, dynamic friction, viscous friction, and the
stribeck effect is selected from the literature. A high-gain Universal Adaptive Stabilizer (UAS) observer
is designed to identify friction model parameters using joint angle measurements. The methodology is
tested in simulation and validated on an experimental setup. Despite the high nonlinearity of the system,
the methodology is proven to converge to the exact parameter values, in simulation, and to yield qualitative
parameter magnitudes in experiments where the goodness of fit was around 85%on average. The discrepancy
between the simulation and the experimental results is attributed to the limitations of the friction model. The
main advantage of the proposed method is the significant reduction in computational needs and the time
required relative to conventional optimization-based identification routines. The proposed approach yielded
more than 99% reduction in the estimation timewhile being considerablymore accurate than the optimization
approach in every test performed. One more advantage is that the approach can be easily adapted to fit other
models to experimental data.

INDEX TERMS Furuta pendulum, rotary inverted pendulum, parameter identification, universal adaptive
stabilizer, viscous friction, dry friction.

I. INTRODUCTION
The Furuta pendulum (also known as a rotary inverted pen-
dulum) is an under-actuated system, which is formed by two
bodies in series. The first one is rotating around a vertical
axis followed by a pendulum rotating around a horizontal
axis. It was first proposed by Furuta [1] mainly to test dif-
ferent control laws [2]. The Furuta pendulum is mainly used
as a testbed of nonlinear control strategies and is also of
educational value. Many of the works in the literature use
the Furuta pendulum to illustrate a proposed control law
[1]–[4]. However, these works did not elaborate on the
dynamic model of the Furuta pendulum and they limited their
work to a simplified model [5], [6].
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Few papers dealt with the modeling of the Furuta pendu-
lum. They highlighted the complexity of the dynamic model
and the necessity to simplify it based on several assumptions.
The authors of [1] and [7] proposed a linearized model based
on a small angle assumption. Others neglected one or more
of the cross coupling terms relating the two rotations [1], [3],
[6], [8], [9]. The authors of [7] showed, through simulations,
that the aforementioned assumption is not acceptable and
it could have an important effect on the dynamic response.
The authors of [8] derived a significantly simplified system
and carried a brief three-second test. All the experimental
works on the Furuta pendulum are directed at testing various
control strategies [10], [11]. The nonlinear dynamic behavior
of the system, which includes Coriolis and centrifugal forces
in the two rotating frames of motion, is often overlooked or
linearized. However, the knowledge of the dynamic behavior
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of a system is highly desirable to design advanced nonlinear
controllers for a given nonlinear system. In this paper, the
developed Furuta pendulum model, which encompasses the
aforementioned dynamics, is validated experimentally.

The problem of identifying the different parameters of
the Furuta pendulum, or similar mechanical systems, is also
treated in the literature [6], [12], [13]. Most of the authors
dealing with this problem mentioned the high complexity
of the model, especially the friction effects arising from the
wide range of velocities the links go through. The parameters
representing the dry and viscous frictions in the joints are
one of the most difficult parameters to identify [8], [14]–[20].
Other works dealing with passive identification include [21]
where the Karnopp friction model is selected to describe
joint friction moments in a pendulum link. Response surface
methodology was used to fit the Karnopp model parameters
to experimental data of the single degree of freedom pendu-
lum in the study. The authors of [22] investigated different
classical models to describe the friction inside the joints
of a triple inverted pendulum and stressed on the difficulty
fitting the parameters of these models considering the small
magnitude of frictional torques involved. The same authors
proposed a Neuro-fuzzy friction model for the same appa-
ratus in [23] where it was concluded that the more novel
approach realized better results. Indeed, there is no universal
model to represent damping, and the literature contains sev-
eralmodels that attempt to capture the physics of this complex
phenomenon [24]–[26].

When the Furuta pendulum is used in a passive mode,
the gravity, which is the only external load, actuates only
the second joint. In this case, the Furuta pendulum does not
have a stable configuration, which makes any reproducible
experimentation nearly impossible. Moreover, this will cause
the passive Furuta pendulum to exhibit chaotic behavior such
that the motion of both links become heavily dependent
and sensitive to initial conditions. This fact could explain
the reason of the nonexistence in the literature of dynamic
models of a passively actuated Furuta pendulum. The closest
work to passive excitation was in [27] where friction in a
cart pendulum system was identified. Nevertheless, that work
decoupled the pendulum from the cart and dealt with them
separately in the identification phase. A significant portion of
the literature work, attempting parameter estimation, chooses
an active excitation of the setup, often alongside a controller
that helps stabilize the system. However, a controller might
mask system dynamics and thus hinder parameter identifica-
tion results.Moreover, a dynamicmodel of the passive system
could capture the physics of the system without the perturba-
tion of the input torque. In this paper, to actuate both joints
in the passive mode, we propose to tilt the Furuta pendulum.
In this case, the Furuta pendulum has a stable equilibrium
configuration for both links, which is defined by gravity. The
oscillations of the pendulum around this equilibrium could
then be studied analytically and experimentally. After tilting,
the model reveals a contribution of the gravity in the two
generalized forces applied to the two joints. The existence of

FIGURE 1. The Furuta pendulum in its tilted position.

the stable equilibrium configuration, around which the per-
turbed system oscillates, is also seen. The developed model
includes the effect of the static and dynamic frictions, viscous
friction, and the stribeck effect. We propose a novel Universal
Adaptive Stabilizer-based model identification algorithm and
apply it to estimate the parameters of the friction model in
the joints of the Furuta pendulum. The proposed approach is
tested in simulation and in experiment, and it is compared
against grey box optimization-based parameter estimation.
After identification, validation is performed by simulating the
system model using the identified parameters and comparing
that to the experimental time response of the system. The
coefficient of determination, R2, is used as a benchmark
statistic, and the computation time the algorithm takes to
run is also noted for comparison with the optimization-based
approach.

The rest of the paper is organized as follows: after the
introduction, Section II describes the model developed. The
identification approach is presented in Section III. The com-
parison of the results, along with a discussion, are presented
in Section IV. Some concluding remarks and future work are
presented in Section V.

II. MATERIALS AND METHODS
A. THE FURUTA PENDULUM
Figure 1 shows the Furuta pendulum in its tilted position. The
angle φ is taken around the fixed y-axis, which is pointing out
of the page. The obtained tilted reference frame is x0−y0−z0,
where z0 is now the axis of the first joint between the ground
and the arm. The joint is disconnected from the existingmotor
and the pendulum is subjected only to its weight. Figure 2
shows the schematic of the Furuta pendulum in its tilted
position. The arm is rotating around the fixed axis z0 by an
angle θ0 and the pendulum is rotating with respect to the
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TABLE 1. Parameters of the Furuta pendulum model.

FIGURE 2. Schematic of the tilted setup.

moving axis x1 by an angle θ1. The different parameters of
the two links are defined in Table 1.

B. DYNAMIC MODEL OF THE FURUTA PENDULUM
Based on the schematic of the Furuta pendulum, shown
in Figure 2, the dynamic model is elaborated. The
Euler-Lagrange formulation is used to derive the equations
of the motion of the system. Two generalized coordinates are
required to fully describe the dynamics of the two-degrees-
of-freedom system, and they are the angular displacements
of the Arm and Pendulum links given by

q =
[
θ0
θ1

]
(1)

The Euler-Lagrange equation, for the ith generalized coor-
dinate of the system can be written as follows:

d
dt

(
∂T
∂ q̇i

)
−
∂T
∂qi
+
∂V
∂qi
= Qi (2)

where the kinetic energy, T , is written as the sum of the linear
and angular kinetic energies of the two links, which is given
by

T =
2∑
i=1

1
2
miv2Gi +

2∑
i=1

1
2
miωTi−1(Jiωi−1), (3)

where ω0 = θ̇0z0, ω1 = θ̇0z0 + θ̇1x1 and vGi is the velocity
of Gi (i = 1 for the Arm and i = 2 for the Pendulum).
The potential energy of gravity, V , is obtained following the

scalar product between the global vertical axis and the center
of gravity position vector in the local tilted frame of reference.

V = −m1g(z · OG1)− m2g(z · OG2) (4)

The generalized forces due to friction in the joints, Qi, are
written in (5) as the sum of friction torques acting on the links.
Thismodel, proposed in [28], is chosen for numerous reasons.
It is versatile in modeling different friction phenomenon, its
parameters are physically meaningful and not added on an ad
hoc basis, and it is continuously differentiable. The latter two
properties are required by the proposed algorithm as upper
and lower limits on the estimated parameters steady-state
values need to be placed in the algorithm, and the time deriva-
tive of the friction term is a necessary part in the algorithm
formulation.

fi(θ̇i) = Fniµdi tanh
(
4
θ̇i

θ̇ti

)
+ Fni

(µsi − µdi )
θ̇i

θ̇ti

1

4

(
θ̇i

θ̇ti

)2

+
3

4

+µvi θ̇itanh
(
4
Fni
Fnti

)
(5)

where Fni is the normal force in joint i, which is a function of
the system parameters as well as the state q and its derivatives;
µdi , µsi , and µvi are the dynamic, static and viscous friction
coefficients; θ̇ti is the transition angular velocity responsible
for shaping the stribeck curve; and Fnti is the transition force
that activates the viscous friction term.

The final model is given in the following form:

H (q)q̈+ B(q, q̇)+ G(q) = Q(q̇) (6)

where the generalized inertia matrix is given by

H (q) =


 j1z + m1l21
+ (m2l22 + j2y ) sin(θ1)

2

+ j2z cos(θ1)
2

 − m2l2L1 cos(θ1)

−m2l2L1 cos(θ1) j2x + m2l22


(7)

the centrifugal and coriolis forces are given by

B(q, q̇) =


(
−(m2l22 − j2y + j2x ) sin(2θ1) θ̇0 θ̇1

−m2l2L1 sin(θ1) θ̇21

)
(m2l22 − j2y + j2z )sin(θ1) cos(θ1) θ̇

2
0

 (8)
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the effect of gravity is given by

G(q) =


 m1gl1 sin(θ0) sin(φ)

+m2g
(

L1 sin(θ0)
− l2sin(θ1) cos(θ0)

)
sin(φ)


−m2gl2

(
sin(θ0) cos(θ1) sin(φ)
− sin(θ1) cos(φ)

)
 (9)

and the generalized forces due to friction are given by

Q(q̇) =

[
f0(θ̇0)

f1(θ̇1)

]
(10)

where the full term is presented in Equation (5).

C. SETUP
The experimental setup is comprised of a Furuta Pendulum
and a Dspace 1104 data acquisition system (Figure 1). The
system is equipped with two Baumer rotary incremental
encoders with a resolution of 40, 000 counts/rev to record
the angular positions of the two joints as a function of time.
A sampling frequency of 10 kHzwas used to capture the time
response of the system. The acquisition time covers the full
motion until the links stop moving.

Now that the setup is explained, the preliminaries required
for Universal Adaptive Stabilizer (UAS) based parameters
estimation are provided in Section III-A. This is followed by
description of the proposed parameters identification frame-
work in Section III-B, and the mathematical justification in
Section III-C.

III. UAS-BASED HIGH GAIN ADAPTIVE PARAMETER
IDENTIFICATION ROUTINE
A. UNIVERSAL ADAPTIVE STABILIZER (UAS)
Nussbaum functions are switching functions used in
high-gain adaptive control such as with a UAS. They are
employed where the control direction is generally unknown.
Hence, they are selected as no assumptions and no restrictions
on the parameter signs and magnitudes are made. This has
been successfully employed in [29], [30] in estimating the
parameters of various other systems. Equation (12) shows
some examples of Nussbaum functions.

A Nussbaum function is a piecewise right continuous and
locally Lipschitz function N (.) : [k ′,∞)→ R that satisfies

sup
k>k0

1
k − k0

∫ k

k0
N (τ ) dτ = +∞

and

inf
k>k0

1
k − k0

∫ k

k0
N (τ ) dτ = −∞ (11)

A Mittag-Leffler function was chosen to act as a Nussbaum
function for the purpose of tuning the design parameters.
It is of interest to note that a Mittag-Leffler function can
act as a Nussbaum function under certain conditions that
are documented in [31]. The Mittag-Leffler function depends
on two positive real parameters, α and β. Authors in [31]
determined the conditions under which the Mittag-Leffler

function acts as a Nussbaum function, which are if α ∈ (2, 3]
and β = 1. The Nussbaum function of Mittag-Leffler type is
given in (12) as N1(−λzα).

N1(z) =
∞∑
γ=0

zγ

0(αγ + β)
, α ∈ (2, 3], β = 1 (12)

N2(z) = z cos(
√
|z|) (13)

N3(z) = z2 cos(|z|) (14)

N4(z) = cos(
πz
2
) ez

2
(15)

The above functions differ in how fast they vibrate. In other
works [29], [30], it was advantageous to choose a rapidly
vibrating Nussbaum functions in applications involving DC
motor and Li-ion Battery Dynamics. For that reason, the
Mittag-Leffler Nussbaum function is used in this work.

B. PARAMETER IDENTIFICATION
The models in Equation (6) and Equation (5) are rewritten
here to setup the parameter identification procedure as the
following:

H (q̂) ¨̂q+ B(q̂, ˙̂q) ˙̂q+ G(q̂) = Q̂( ˙̂q)+ u (16)

here ¨̂q, ˙̂q, q̂ are the estimated acceleration, velocity and posi-
tion, respectively, and u is the UAS input given by Equa-
tion (22). Also note that the parameters ofH , B, andG in (16)

are known, and Q̂ =
[
f̂0(
˙̂
θ0) f̂1(

˙̂
θ1)
]T

is the estimated friction
vector whose entries are given in (17), and (18).

f̂0(
˙̂
θ0) = Fn0 ẑ1tanh

(
4
˙̂
θ0

ẑ4

)
+ Fn0

(ẑ2 − ẑ1)
˙̂
θ0

ẑ4

1

4

 ˙̂θ0
ẑ4

2

+
3

4

+ ẑ3
˙̂
θ0tanh

(
4
Fn0
ẑ5

)
(17)

f̂1(
˙̂
θ1) = Fn1 ẑ6tanh

(
4
˙̂
θ1

ẑ9

)
+ Fn1

(ẑ7 − ẑ6)
˙̂
θ1

ẑ9

1

4

 ˙̂θ1
ẑ9

2

+
3

4

+ ẑ8
˙̂
θ1tanh

(
4
Fn1
ẑ10

)
(18)

In these equations ẑn represents the frictional model param-
eter estimates where z1 = µd0 , z2 = µs0 , z3 = µv0 , z4 = θ̇t0 ,
z5 = Fnt0 , z6 = µd1 , z7 = µs1 , z8 = µv1 , z9 = θ̇t1 ,
z10 = Fnt1 , the following equations complete the high-gain
universal adaptive observer used for parameters estimation in
this work.

e(t) = q̇(t)− ˙̂q(t) (19)

k̇(t) = ‖e(t)‖22 , k(t0) = k0 > 0 (20)

N (k(t)) = N1(−λk(t)α) (21)

39180 VOLUME 10, 2022



A. Wadi et al.: Identifying Friction in Nonlinear Chaotic System Using Universal Adaptive Stabilizer

FIGURE 3. Algorithm flowchart.

u(t) = H (q̂)N (k(t))e(t) (22)

In Equation (21), λ = 1, and α = 3, thus resulting in
a Nussbaum function of the Mittag-Leffler form. In Equa-
tion (22) H is the generalized inertia matrix from (7). Equa-
tion (23) is used in identifying the friction model parameters
ẑn in Equation (17), and Equation (18).

˙̂zn(t) = (γ + λnu(znu − ẑn(t))+ λnl(znl − ẑn(t))) ‖e(t)‖2
(23)

where ẑn(t) ∈ R represents each parameter that needs to
be identified, and n ∈ 1, 2, . . . ,N refers to the parameter
number where N = 10 is the number of unknown parameters
that need to be identified. Also, γ is a tuning parameter to
control the rate at which the parameters adapt.

The proposed parameter evolution equation requires steady
state upper and lower bounds znu and znl , as well as their
confidence levels λnu and λnl , respectively. The parameters
λnu, λnl > 0 and the parameters znu, znl, λnu, λnl ∈ R.
The upper and lower bounds znu and znl are constants which
represent the limits within which ẑn(t) is desired to settle, as
t → ∞. The constants λnu and λnl represent the
users confidence in their choice of steady state upper and
lower bounds znu and znl , respectively. The flowchart of
the proposed parameter identification routine is presented
in Figure 3.

C. MATHEMATICAL JUSTIFICATION
This section presents the mathematical justification behind
the proposed frictionmodel parameters identification routine.
First, Lemma 1 shows that the adaptive observer’s error head-
ing to zero leads to boundedness of the parameters. Second,
Theorem 1 proves that the adaptive observer’s error is driven
to zero by the designed UAS input. Finally, Theorem 2 estab-
lishes the convergence of the estimated parameters to the true
parameters values.
Lemma 1: Let ẑn be given as in Equation (23). Given

that λnu, λnl > 0, if the parameter adaptation proposed in
Equation (23) is used and e(t) → 0 as t → ∞, then ẑn is
bounded ∀t > t0, for n ∈ {1, 2, . . . , 10}.

Proof of Lemma 1: Observe that (23) is a stable Linear
Time Invariant (LTI) system driven by the input (γ+λnuznu+
λnlznl) ‖e(t)‖2 as shown in Equation (24).

˙̂zn(t)+ (λnu + λnl)ẑn(t) = (γ + λnuznu + λnlznl) ‖e(t)‖2
(24)

The solution of the above equation can be obtained by the
properties of the convolution integral to be

ẑn(t) = ẑn(t0)e−(λnu+λnl )t

+ (γ + λnuznu + λnlznl)

×

∫ t

t0
‖e(t − τ )‖2 e

−(λnu+λnl )τdτ (25)

Because ẑn(t), λnl, λnu, znl, znu are all bounded for n ∈
{1, 2, . . . , 10}, and because ‖e(t − τ )‖2 > 0 for all t , then
Equation (25) yields ẑn(t) → ẑn∞ that is bounded. This
can be seen from the first term on the right hand of (25)
growing smaller as t → ∞, and following the assumption
that e → 0 as t → ∞, the second term under the integral is
bounded. �

With the boundedness of the parameters established in
Lemma 1, the assumption that the estimation error grows to
zero is now proven in Theorem 1.
Theorem 1: Let e(t) = q̇(t) − ˙̂q(t) as in Equation (19),

where the dynamics of q(t) are given by Equation (5) —
Equation (10), and the dynamics of q̂(t) are given by Equa-
tion (16) — (18), u is as given in Equation (22). If H (q(t))
and H (q̂(t)) are invertible for all t ≥ t0 Then, e(t) → 0 as
t →∞.

Proof: Let the system dynamics in Equation (6) and
system model in Equation (16) be split into the dynamics and
the friction counterparts and written as follows

q̈ = H (q)−1[Q(q̇)− B(q, q̇)q̇− G(q)]
¨̂q = H (q̂)−1[Q̂( ˙̂q)− B(q̂, ˙̂q) ˙̂q− G(q̂)]+ H (q̂)−1u (26)

where it is understood that all the estimated quantities
ˆ[ ] vary with time, u is as defined in Equation (16), and

H (q)−1,H (q̂)−1 exist by assumption.
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The error dynamics ė = q̈ − ¨̂q can then be expanded and
written as

ė = H−1Q− Ĥ−1Q̂+ Ĥ−1B̂ ˙̂q− H−1Bq̇

+ Ĥ−1Ĝ− H−1G− Ĥ−1u (27)

where for ease of use we write H ≡ H (q), Ĥ ≡ H (q̂),G ≡
G(q), Ĝ ≡ G(q̂),B ≡ B(q, q̇), B̂ = B(q̂, ˙̂q),Q ≡ Q(q) and
Q̂ = Q̂(q̂).

In Equation (27), we add and subtract 3e, where 3 is a
positive definite design matrix.

ė = H−1Q− Ĥ−1Q̂+ Ĥ−1B̂ ˙̂q− H−1Bq̇

+ Ĥ−1Ĝ− H−1G− Ĥ−1u+3e−3e

ė = H−1Q− Ĥ−1Q̂+ Ĥ−1B̂ ˙̂q− H−1Bq̇

+ Ĥ−1Ĝ− H−1G− Ĥ−1u+3q̇−3 ˙̂q−3e

ė = H−1Q− Ĥ−1Q̂+ Ĥ−1Ĝ− H−1G− Ĥ−1u−3e

− (3− Ĥ−1B̂) ˙̂q+ (3− H−1B)q̇ (28)

The following notation simplifications are applied to
Equation (28).

ė = H−1Q− Ĥ−1Q̂︸ ︷︷ ︸
Q

+ Ĥ−1Ĝ− H−1G︸ ︷︷ ︸
G

−Ĥ−1u−3e

− (3− Ĥ−1B̂)︸ ︷︷ ︸
B2

˙̂q+ (3− H−1B)︸ ︷︷ ︸
B1

q̇

= Q+ G + B1q̇− B2 ˙̂q− Ĥ−1u−3e (29)

In Equation (29), we add and subtract B2q̇.

ė = Q+ G + B1q̇− B2 ˙̂q− Ĥ−1u−3e+ B2q̇− B2q̇

ė = Q+ G + B1q̇− B2q̇+ B2(q̇− ˙̂q)− Ĥ−1u−3e

ė = Q+ G + (B1 − B2)q̇+ B2e−3e− Ĥ−1u

ė = Q+ G + (B1 − B2)q̇− (3− B2)e− Ĥ−1u (30)

To prove the stability of the error dynamics above, pre-
multiply (30) by eT to get

eT ė = eTQ+ eTG + eT (B1 − B2)q̇− eT (3− B2)e

− eT Ĥ−1u (31)

Equation (31) can be rearranged and rewritten as the fol-
lowing inequality taking into account that terms like eTQ can
be used to form 2 eTQ ≤ eT e + QTQ as explained in the
Appendix. Also, The substitution u = ĤN (k)e is used.

eT ė+ eT (3− B2)e ≤ 3eT e+QTQ+ GTG
+ q̇T (B1 − B2)T (B1 − B2)q̇

− eT Ĥ−1ĤN (k)e (32)

which is further simplified considering k̇(t) = ‖e(t)‖22 = eT e
and that N (k) is scalar.

eT ė+ eT (3− B2)e ≤ 3k̇ +QTQ+ GTG − N (k)k̇

+ q̇T (B1 − B2)T (B1 − B2)q̇ (33)

Integrating both sides of the above system yields∫ t

t0
eT ė dτ +

∫ t

t0
eT (3− B2)e dτ

≤ 3
∫ t

t0
k̇ dτ

+

∫ t

t0
QTQ dτ +

∫ t

t0
GTG dτ −

∫ t

t0
N (k)k̇ dτ

+

∫ t

t0
q̇T (B1 − B2)T (B1 − B2)q̇ dτ (34)

Applying a change in variable in the
∫ t
t0
N (k)k̇ dτ term,

we get

1
2
eT e+

∫ t

t0
eT (3− B2)e dτ

≤ 3(k(t)− k(t0))

+

∫ t

t0
QTQ dτ +

∫ t

t0
GTG dτ −

∫ k

k0
N (k) dk

+

∫ t

t0
q̇T (B1 − B2)T (B1 − B2)q̇ dτ (35)

Dividing both sides by k(t)− k(t0) and rearranging yields

1
2

eT e
k(t)− k(t0)

+

∫ t
t0
eT (3− B2)e dτ

k(t)− k(t0)

≤ 3−
1

k(t)− k(t0)

∫ k

k0
N (k) dk

+

∫ t
t0
QTQ dτ

k(t)− k(t0)
+

∫ t
t0
GTG dτ

k(t)− k(t0)

+

∫ t
t0
q̇T (B1 − B2)T (B1 − B2)q̇ dτ

k(t)− k(t0)
(36)

Dividing both sides by the terms on the R.H.S. except for
1

k(t)−k(t0)

∫ k
k0
N (k) dk yields

1
2

eT e
k(t)−k(t0)

+

∫ t
t0
eT (3−B2)e dτ

k(t)−k(t0)


3+

∫ t
t0
QTQ dτ

k(t)−k(t0)
+

∫ t
t0
GTG dτ

k(t)−k(t0)

+

∫ t
t0
q̇T (B1−B2)T (B1−B2)q̇ dτ

k(t)−k(t0)
]


−1

≤ 1−

∫ k
k0
N (k) dk

k(t)− k(t0)

3+
∫ t
t0
QTQ dτ

k(t)−k(t0)
+

∫ t
t0
GTG dτ

k(t)−k(t0)

+

∫ t
t0
q̇T (B1−B2)T (B1−B2)q̇ dτ

k(t)−k(t0)
]


−1

(37)

It can be noted from the above that with the exception of
the 1

k(t)−k(t0)

∫ k
k0
N (k) dk term on the R.H.S. of Equation (36),

all the terms are quadratic forms and positive. Now if the
term k(t) is monotonically increasing, i.e. k(t) → ∞ as
t →∞, then the Nussbaum function term on the R.H.S. can,
as a whole, take values approaching ±∞ by the definition
of a Nussbaum function as presented in Equation (11). This
violates the inequality above. Consequently, the assumption
that k(t) → ∞ as t → ∞ is false and k(t) must, therefore,
be bounded. However, k̇(t) being a non-decreasing function
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by definition in (20) and k(t) being bounded implies that
k(t)→ k∞ as t →∞. This means that k̇(t)→ 0 as t →∞
i.e. eT e → 0 , or e → 0 . This establishes the required
result. �
With the estimation error going to zero established in

Theorem 1, the convergence of the estimated parameters to
the real parameters is now shown in Theorem 2. It is also
worth noting that verifying the assumptions that H (q(t)) and
H (q̂(t)) are invertible is simple and can be explicitly checked
by numerical computation. Further, before proceeding to the
next result, some notation is defined, to facilitate a condensed
representation of the next result and its proof. Thus motivated
let i ∈ {0, 1}, and j, k ∈ {1, 2, . . . , 9, `}. Here we use the set
{1, 2, . . . , 9, `} and let ` = 10 so that in the statement of
Theorem 2 the subscript value of 10 can be easily visualized.
Now consider the following definitions.

ai(t) = Fniµdi tanh
(
4
θ̇i(t)

θ̇ti (t)

)
(38)

âijk (t) = Fni ẑj(t)tanh
(
4
θ̇i(t)
ẑk (t)

)
(39)

bi(t) = µvi θ̇i(t)tanh
(
4
Fni
Fnti

)
(40)

b̂ijk (t) = ẑj(t)θ̇i(t)tanh
(
4
Fni
ẑk (t)

)
(41)

ci(t) =

Fniµsi
θ̇i(t)

θ̇ti (t)

1

4

(
θ̇i(t)

θ̇ti (t)

)2

+
3

4

(42)

ĉijk (t) =
Fni ẑj(t)

θ̇i(t)

ẑk (t)

1

4

(
θ̇i(t)

ẑk (t)

)2

+
3

4

(43)

di(t) =

Fniµdi
θ̇i(t)

θ̇ti (t)

1

4

(
θ̇i(t)

θ̇ti (t)

)2

+
3

4

(44)

d̂ijk (t) =
Fni ẑj(t)

θ̇i(t)

ẑk (t)

1

4

(
θ̇i(t)

ẑk (t)

)2

+
3

4

(45)

Theorem 2: Considering the definitions in (38)-(45) let

A(t) =
[
a0 − â014 b0 − b̂035 c0 − ĉ024 d0 − d̂014
a1 − â169 b1 − b̂18` c1 − ĉ179 d1 − d̂169

]
,

and x =
[
1 1 1 1

]T . For the parameter identification
problem described in Section III-B, suppose the conditions
required for Theorem 1 to hold are satisfied. Suppose there
exists a time instant t∗ > t0 such that for t → ∞, t > t∗,

x does not belong to the nullspace of A(t),A(t) 6= 0,and

all the following functions: tanh
(
4 θ̇i(t)
θ̇ti (t)

)
, tanh

(
4 θ̇i(t)
ẑk (t)

)
,

tanh
(
4

Fni
Fnti

)
, tanh

(
4

Fni
ẑk (t)

)
tend to 1. Then the parameter

adaptation law in Equation (23) leads to ẑn → zntrue as
t →∞ for n ∈ {1, 2, . . . , 10}.

Proof: By the assumptions Theorem 1 is satisfied, this
gives e→ 0 as t →∞. As a result k(t)→ k∞ (a constant),
which further leads u → 0 following the definition of u
in (21)-(22). As e → 0 , therefore by definition of e in (19)
we get that ˙̂q→ q̇, and ¨̂q→ q̈.

Considering this, the model of the system in Equation (6)
and the estimator dynamics in Equation (16) can be written
as

H (q)q̈+ B(q, q̇)q̇+ G(q) = Q(q̇)

H (q̂) ¨̂q+ B(q̂, ˙̂q) ˙̂q+ G(q̂) = Q̂( ˙̂q)+ u. (46)

Because u → 0 , ˙̂q → q̇, ¨̂q → q̈, subtracting the lower
equation in (46) from the upper one, and substituting q̂ = q
provides

Q(q̇)− Q̂(q̇) =
[
f0(θ̇0)
f1(θ̇1)

]
−

[
f̂0(θ̇0)
f̂1(θ̇1)

]
= 0. (47)

Now using the definitions of the friction force model in (5),
and the concerned estimates as defined in (17), (18) one can
rewrite (47) as (48) using the notation in (38)-(45).

[
a0 − â014 b0 − b̂035 c0 − ĉ024 d0 − d̂014
a1 − â169 b1 − b̂18` c1 − ĉ179 d1 − d̂169

]
︸ ︷︷ ︸

A(t)


1
1
1
1


︸︷︷︸
x

= 0

(48)

We have arrived at (48) because as t → ∞ we have e→ 0.
Recall that, by the assumptions of the theorem, there exists
a time instant t∗ > t0 such that for t → ∞, t > t∗, x does
not belong to the nullspace of A(t),A(t) 6= 0. So for such t >
t∗ from (48) we can write â014 = a0, b̂035 = b0, ĉ024 = c0,
d̂014 = d0, â169 = a1, b̂18` = b1, ĉ179 = c1, d1 = d̂169. Now
considering â014 = a0, b̂035 = b0, ĉ024 = c0, d̂014 = d0 along
with their definitions in (38)-(45), the following are obtained.

Fn0 ẑ1tanh
(
4
θ̇0

ẑ4

)
= Fn0µd0 tanh

(
4
θ̇0

θ̇t0

)
(49)

ẑ3θ̇0tanh
(
4
Fn0
ẑ5

)
= µv0 θ̇0tanh

(
4
Fn0
Fnt0

)
(50)

Fn0 ẑ2
θ̇0

ẑ4

1

4

(
θ̇0

ẑ4

)2

+
3

4

=

Fn0µs0
θ̇0

θ̇t0

1

4

(
θ̇0

θ̇t0

)2

+
3

4

(51)

As per the assumptions of the theorem, all the tanh(·)
terms tend to unity. Considering the equations (49) and
equation (50) with this gives ẑ1 = µd0 , ẑ3 = µv0 . Now
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considering (49) again with ẑ1 = µd0 and explicitly writing
the tanh(·) terms gives

tanh
(
4
θ̇0

ẑ4

)
= tanh

(
4
θ̇0

θ̇t0

)
. (52)

Now from the definition of the hyperbolic tangent func-
tion, and from its graph, it is known that its inverse can be

found, i.e. so let p = tanh
(
4 θ̇0
ẑ4

)
= tanh

(
4 θ̇0
θ̇t0

)
. Then,

tanh−1(p) = 4 θ̇0
ẑ4
= 4 θ̇0

θ̇t0
, leading to ẑ4 = θ̇t0 . Now using

this exact same process with (50), considering ẑ3 = µv0 and
inverting the tanh(·) terms provides ẑ5 = Fnt0 . Further using
the fact that ẑ4 = θ̇t0 and considering (51) gives us ẑ2 = µs0 .

The exact same procedure as followed from after (48) to
the line above, can be used to explicitly analyze â169 = a1,
b̂18` = b1, ĉ179 = c1, d1 = d̂169. Using this process provides
the following to z6 = µd1 , z7 = µs1 , z8 = µv1 , z9 = θ̇t1 ,
z10 = Fnt1 . This completes the proof. �
It is worth mentioning that the assumptions of the above

theorem are not necessarily restrictive. This is because during
experimentation it has been routinely observed that all the
tanh(·) terms frequently approach unity. So it is easy to pick
time intervals at which e ≈ 0, and tanh(·) ≈ 1 so that the
values of ẑi(t), i ∈ {1, 2, . . . , 10} in such an interval of time
can be used as candidates for parameters estimates. Also,
once such estimated parameters values are available, they can
be fed into (38)-(45) to reconstruct matrix A mentioned in
Theorem 2. This will easily allow ascertaining if the nullspace
related assumptions in Theorem 2 are met. If they are not met
then estimates from another interval in time where e ≈ 0, and
tanh(·) ≈ 1, can be checked for satisfaction of the nullspace
assumption.

IV. RESULTS AND DISCUSSION
In this section, the proposed parameter identification algo-
rithm is tested in simulation, then experimental validation is
performed. In all experiments, the links start with a zero initial
angular velocity and a specified initial angular position. The
motion is monitored until the system returns to the equilib-
rium position.

A. SIMULATION
Here, the performance of the proposed algorithm is evalu-
ated in simulation. The dynamic equations of motion for the
Furuta pendulum were simulated from some initial condi-
tions, and the angular position and velocity states are fed
into the algorithm. The initial conditions were θ0(0) = 0◦,
θ1(0) = 120◦, θ̇0(0) = 0◦/sec, and θ̇1(0) = 0◦/sec.
The Runge-Kutta method of order 4 with a sampling time
of 0.001 s was used to propagate the equations in time
and solve the ODEs. Normally distributed Gaussian random
white noise characterized by v ∼ N (0, σ = 0.1) was
injected into the simulated states to serve as measurements
noise. Results achieved despite this, show the resilience of
the proposed approach to noise. The initial conditions fed into

the algorithm were also injected with similar noise to account
for the difficulty associated with acquiring highly accurate
and precise initial conditions. Additionally, this serves to
simulate the ramifications of initial conditions mismatch in
chaotic systems such as the Furuta pendulum. The adaptation
parameters used to test the algorithm are detailed in Table 2.
The upper/lower parameters limits in Table 2 were used
to form a normal distribution centered around the mean of
each respective parameter bounds. The initial friction model
parameters were sampled from this distribution to start the
algorithm. The actual parameters and the initial guesses used
to simulate the response are presented in Table 3.
Figure 4 shows the UAS tracking results where it is noticed

that the estimated states quickly approach and converge to
the true simulated response of the system. Further, as the
estimated states approach the simulated states, the norm of
the error is observed to subside in magnitude and approaches
zero, and the UAS gain is observed to also grow smaller as
a consequence of the reduction in estimation error. Figure 5
shows the time trajectories of the parameters of the friction
model as the UAS converges to the correct states of the real
system. It is seen that the parameters do indeed stabilize
around some final values. The values considered to be the
parameter estimates were taken just after the error norm
reduced below some user defined threshold, which here is
recommended to be below ‖e(t)‖2 = 0.01. The identified
values are presented in Table 3. Figure 6 showcases a valida-
tion test of the chosen parameter estimates. The experimental
response is plotted against the response realized from both the
UAS estimated parameters as well as the initial parameters.
The UAS-provided parameter estimates generate a response
very similar to the simulated response, which establishes that
the proposed approach was successful at identifying high
quality parameter estimates in simulation.

Further analysis is presented in frequency domain in
Figure 7 where both the phase and spectrum of the time
responses of the angular positions of the arm and pendu-
lum links are presented. It is evident that the algorithm is
successful at moving from the initial estimates to ones that
are more representative of the system. The portrait is quite
complex considering the nonlinearity of the system, and it
helps explain the compression and expansion effect present
in the time responses shown as a wide array of harmonics
is present in the response. The spectrum plots show good
matching between estimated and actual parameters in this
test.

B. EXPERIMENT
Here, the performance of the proposed algorithm is validated
experimentally. The initial conditions were approximately
θ0(0) = 0.2◦, θ1(0) = 126◦, θ̇0(0) = 0◦/sec, and θ̇1(0) =
0◦/sec. As with the test in simulation, the initial friction
model parameter estimates were randomly generated also
considering the upper/lower limits from Table 2. The Runge-
Kutta method of order 4 with a sampling time of 0.0001 swas
also used here to propagate the equations in time and solve the
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TABLE 2. Friction model parameter identification problem setup.

FIGURE 4. Performance of the UAS observer during the simulation.
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FIGURE 5. Parameter trajectories during the simulation.

FIGURE 6. Validation of the identified parameters during the simulation.

ODEs. The adaptation parameters used to test the algorithm
are detailed in Table 2.

Figure 8 shows the UAS tracking results where it is noticed
that the estimated states quickly approach and converge to
the true response of the system. Throughout that process,
the norm of the error is observed to subside in magnitude
and approach zero, and the UAS gain is observed to fol-
low a similar trend to the estimation error norm. Unlike the

simulated case in the previous section, the UAS gain does
not completely reduce to zero and intermittent spikes are
observed in the response. Figure 9 shows the time trajectories
of the parameters of the friction model as the UAS tracks
the states of the real system. It is seen that the parameters
settle and oscillate within some final range of values, which
makes sense following the behavior of the UAS gain. The
values considered to be the parameter estimates were taken

39186 VOLUME 10, 2022



A. Wadi et al.: Identifying Friction in Nonlinear Chaotic System Using Universal Adaptive Stabilizer

FIGURE 7. Frequency portrait of the identified parameters from the simulation.

TABLE 3. Friction model parameter simulation identification results with the UAS method.

TABLE 4. Friction model parameter experimental identification results with the UAS method.

just after the error norm reduced below some user defined
threshold, which here is recommended to be below ‖e(t)‖2 =
0.05. Due to the extra uncertainty present in the experimental
data, it is recommended to average the parameters estimates

during adaptation between the error subsiding and the system
motion seizing. This provided tighter bounds on the parame-
ters estimates in the experimental test. The identified values
are presented in Table 4. Figure 10 showcases a validation
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TABLE 5. Computation time and quality of estimates. Computation time is presented along with experiment runtime.

FIGURE 8. Performance of the UAS observer during the experiment.

test of the chosen parameter estimates. The experimental
response is plotted against the response realized from both
the UAS estimated parameters as well as the initial param-
eter guesses. It is clear that the UAS-provided parameter
estimates generate a response that is qualitatively similar to
the experiment. However, unlike the simulation test case,
an exact match is not realized between the experimental
response and the estimated one. We reason this to be due to

the limitations of friction models available in the literature
in that they only approximate and not fully characterize the
damping phenomenon. Nevertheless, the proposed approach
proved to be computationally highly efficient at identifying
quality parameter estimates using experimental data.

The same analysis is performed in the frequency domain.
In Figure 11, the phase and the spectrum of the time responses
of the angular positions of the arm and pendulum links are
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FIGURE 9. Parameter trajectories during the experiment.

FIGURE 10. Validation of the identified parameters during the experiment.

presented. Similar to the experimental results, the algorithm
is successful at moving from the initial estimates to the
ones that are more representative of the system. However,
the spectrum plots do not show as good matching between
the estimated and the actual parameters in this test as it is the

case with simulation. This is due to the difficulty concerning
the description of the actual friction present in the system.
Still, very good qualitative parameter estimates were realized
using the proposed approach. In the next section, we explore
alternative methods to address this problem.
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FIGURE 11. Frequency portrait of the identified parameters from the experiment.

C. COMPARISON WITH CONVENTIONAL METHODS
Here, we compare the proposed approach to a conventional
optimization-based one. Specifically, a nonlinear grey-box
identification in the MATLAB environment is selected to
exploit the known structure of the dynamic model and gener-
ate estimates for its parameters. The results for all the cases
are shown in Figure 12, where the quality of fit is measured
through the coefficient of determination R2 metric and is
presented in Equation 53.

fit = 100×

(
1−

∑
(x̂ − xref )2∑
(xref − x̄ref )2

)
(53)

where xref is the reference signal, and x̂ is the estimate of xref .
Additionally, the computation time is computed using

Normalized Computation Time

=
Computation Time

Experiment Time× Sampling Frequency
(54)

Here, the same simulation parameters and initial condi-
tions presented in the previous sections are used. Due to
the high nonlinearity of the problem, optimization alone is
reportedly not always a viable solution to address this prob-
lem. Testing shows that in simulation, optimization alone
is not capable of reaching acceptable parameter estimates
with a goodness of fit of only 13% and 3% for the Arm
Joint and the Pendulum Joint responses, respectively. The
proposed algorithm, in contrast, provided quick estimates that

FIGURE 12. Performance comparison.

provided much better goodness of fit metrics of 98% for both
responses. We conclude that the proposed approach is more
robust to noisy data than the optimization approach. In the
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experimental test, the proposed method, while it is able to
quickly generate quality estimates, it provides estimates,
which can be improved on with a goodness of fit of 77%
and 91% for the responses of the Arm Joint and the Pendu-
lum Joint, respectively. The optimization approach, however,
exhibited a low performance in terms of goodness of fit
with only 3% and 24% for the responses of the Arm Joint
and the Pendulum Joint, respectively. That result was also
achieved at a considerably higher computational cost with
optimization taking approximately 500 and 1300 times more
computation time than the UAS approach for the simulation
and the experiment, respectively. Table 5 summarizes these
results.

V. CONCLUSION
This paper presented a dynamic analysis of a passive tilted
Furuta pendulum. The pendulumwas tilted to ensure the exis-
tence of a stable equilibrium configuration with the weight
of each link as the only external force applied to the system.
A complete analytical model was derived where full inertia
of the pendulum is taken into account, and a comprehensive
friction model was selected form the literature. The prob-
lem of parameter estimation of the friction in the setup was
addressed. A UAS-based high gain observer was designed to
estimate the friction model parameters, and it was tested in
simulation by experiments. The obtained results showed that
the developed algorithm is effective at identifying parameters
in this class of systems. Nonetheless, it was also concluded
that the friction phenomenon is not fully described by the 5-
parameter per joint friction model. Simulation results, even
with a high level of injected and propagated dynamic noise,
were close to the dynamic behavior of the system. Exper-
imental results were qualitatively good when compared to
conventional optimization based parameter estimation strate-
gies. A frequency analysis was performed and it showed
that the system is highly nonlinear with multiple harmonics
detected. Differences between the simulation and the exper-
iments are mainly attributed to the difficulty associated with
characterizing friction in the joints. Future work includes the
implementation of nonlinear control strategy using the devel-
oped model to showcase the performance a more accurate
model of the system would permit.

APPENDIX
PROOF ADDENDUM
Remark 1: Here we show how the inequalities in the math-

ematical justification are formed.
Take the difference of quadratic forms below where the terms
are the same as those in Equation (32)

(e− (B1 − B2)q̇)T (e− (B1 − B2)q̇) ≥ 0 (55)

Expanding the above difference gives

eT e− eT (B1 − B2)q̇− ((B1 − B2)q̇)T e

+ ((B1 − B2)q̇)T ((B1 − B2)q̇) ≥ 0 (56)

Simplifying

eT e− eT (B1 − B2)q̇− q̇T (B1 − B2)T e

+ q̇T (B1 − B2)T (B1 − B2)q̇ ≥ 0 (57)

Rearranging

eT e+ q̇T (B1 − B2)T (B1 − B2)q̇ ≥ 2eT (B1 − B2)q̇ (58)

where the substitution eT (B1 − B2)q̇ + q̇T (B1 − B2)T e =
2eT (B1−B2)q̇was made following the fact that eT (B1−B2)q̇
and q̇T (B1 − B2)T e are scalar quantities implying eT (B1 −

B2)q̇ = (q̇T (B1 − B2)T e)T .
The same procedure can be applied on the following

quadratic difference form

(e−Q)T (e−Q) ≥ 0 (59)

which is modified by multiplying Q by the 2 × 2 identity
matrix I2×2.

(e− I2×2Q)T (e− I2×2Q) ≥ 0 (60)

which leads to the following after applying the same proce-
dure above

eT e+QTQ ≥ 2eTQ (61)
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