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ABSTRACT Direction-of-arrival (DOA) mismatch can degrade the performance of adaptive beamforming
algorithms. Thus, a projection method is proposed to correct this mismatch. In a beamforming algorithm,
the DOA error is usually regarded as a steering vector error which is corrected using a steering vector
optimization algorithm. This approach can provide an optimal steering vector but ignores the actual DOA
estimate. The proposed algorithm provides correction after DOA estimation but before beamforming to
improve both the DOA estimation accuracy and beamforming gain. First, the signal-to-noise ratio (SNR) of
the signal is estimated and used to regularize the covariance matrix. Then, an estimated steering vector with
DOA close to the true value is determined based on a minimum number of projections. Numerical results are
presented to verify the effectiveness of the proposed method for DOA estimation correction. In most cases,
this method improves the performance of the beamforming algorithms without changing them.

INDEX TERMS Direction-of-arrival (DOA)mismatch correction, adaptive beamforming, covariancematrix
regularization, projection method.

I. INTRODUCTION
Adaptive beamforming is an important technique in array
signal processing. It has been widely applied in radar [1],
sonar [2], wireless communication [3], microphone array
speech signal processing [4], medical imaging [5], and
radio astronomy [6]. Compared with traditional beamforming
which does not depend on the received data, adaptive beam-
forming optimizes the weight vector based on the received
data and an optimality criterion. Moreover, this vector can
be adjusted according to the environment to suppress both
noise and interference. However, errors exist in practical
antenna arrays due to the effect of the signal-of-interest
(SOI) on the training data and a small number of snap-
shots can severely degrade performance. Several adaptive
beamforming algorithms have been proposed to solve these
problems including diagonal loading [7]–[9], eigenspace
projection [10]–[12], uncertainty constraint [13], [14],
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steering vector estimation [15]–[18], covariance matrix
reconstruction [19]–[21], and a combination of the latter
two [22]–[24].

Diagonal loading is a simple robust adaptive beamform-
ing (RAB) method that has low computational complexity.
However, it is difficult to choose an appropriate loading level.
To deal with this issue, some schemes select the loading
level automatically [25], [26]. Low computational complexity
and simplicity make eigenspace projection methods pop-
ular for real-time applications. While they can deal with
arbitrary errors in the steering vector, the number of sub-
spaces can impact performance. Further, the performance
is poor when the SNR is low. Uncertainty set constraint
beamformers such as worst-case (WC) [13] can solve the
problems with eigenspace projection methods, but the perfor-
mance is degraded at high SNRs. Combined methods which
employ steering vector estimation and covariance matrix
reconstruction can be employed to overcome these issues.
They are robust to many types of array errors and effective
over a wide SNR range, but the computational complexity
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is high. Thus, there is a tradeoff between complexity and
performance.

Steering vector estimation algorithms [18] require an initial
SOI estimate. With the approaches in [19], [20], the steering
vector of the interference signal is needed a priori to recon-
struct the interference-plus-noise covariance (INC) matrix.
The DOA is required to form the steering vector, and this can
be determined using a DOA estimation algorithm or approxi-
mate orientation prediction. However, a large DOAmismatch
in the received signal will result in significant errors in the
steering vector [18], [23]. This will also make it difficult
to determine the INC matrix [19], resulting in performance
degradation. Conventional algorithms such as multiple signal
classification (MUSIC) [27] and Capon [28] are commonly
used in DOA estimation, but the estimation performance is
poor when the SNR is low and with gain-phase uncertain-
ties. Several techniques have been proposed to improve the
performance of these algorithms such as sparse array con-
figurations [29], DOA estimation with uncertain gain-phase
sensors [30], and modified MUSIC algorithms [31].

To reduce DOA mismatch and make beamforming more
robust, the DOA is corrected in this paper based on a min-
imum number of projections of the steering vector in the
observation region. The received signal characteristics when
the SNR is low and high differ. Thus, an SNR estimation
algorithm is designed to distinguish between low and high
SNRs. Since the noise level is large when the SNR is low, the
influence of noise should be reduced in this case by adjusting
the signal covariancematrix. One approach employs a tridiag-
onal matrix, but this requires selecting an appropriate loading
level. Therefore, we combine the estimated SNR with the
desired signal steering vector and signal covariance matrix to
adaptively determine this level. In beamforming algorithms,
the DOA error is usually regarded as a steering vector error
which is corrected by a steering vector optimization algo-
rithm. Here, a modified DOA is determined based on the
minimum number of projections of a presumed steering vec-
tor onto the eigenvalues of the modified covariance matrix.
This requires only the received signal, the array geometry, and
the approximate DOA or angular sector of the desired signal.
This method can improve beamforming performance in most
cases by correcting the DOA mismatch without changing the
algorithm.

The rest of this paper is organized as follows.
Section 2 presents the background and introduces the signal
model for adaptive beamforming. The proposed method is
given in Section 3. Numerical results are presented and
discussed in Section 4, and finally some conclusions are given
in Section 5.

II. SIGNAL MODEL AND BACKGROUND
Consider a uniform linear array (ULA) composed ofM omni-
directional sensors that receive N uncorrelated narrowband
signals from far-field sources. These N signals consist of
one SOI and N − 1 interference signals impinging on the
array from directions θ1, . . . , θN , respectively. The length M

received signal vector at time k can be expressed as

x(k) = xs(k)+ xi(k)+ xn(k) (1)

where xs(k) = s1(k)a1, xi(k) =
∑N

j=2 sj(k)aj and xn(k)
are the desired signal, interference and noise, respectively.
The desired signal waveform is s1(k) and the corresponding
steering vector is a1. The interference signal waveforms are
sj(k), j = 2, 3, . . . ,N and the corresponding steering vectors
are aj. xn(k) is complex white Gaussian noise with zero mean
and variance σ 2

n .
The steering vector of the array can be formulated as

a(θ) = [1, e−j2πd sin θ/λ, . . . , e−j2π(M−1)d sin θ/λ]
T

(2)

where (·)T denotes transpose, λ is the carrier wavelength, d is
the distance between adjacent sensors, and the signal angle is
θ . The output of the beamformer at time k can be expressed as

y(k) = wHx(k) (3)

where (·)H denotes Hermitian transpose and w =

[w1,w2, . . . ,wM ]T is the complex weight vector. The opti-
mal weight vector can be obtained by maximizing the out-
put signal-to-interference-plus-noise ratio (SINR) which is
defined as

SINR =
σ 2
1

∣∣wHa1
∣∣2

wHRinw
(4)

where σ 2
1 is the power of the desired signal andRin is the INC

matrix given by

Rin = E{(xi(k)+ xn(k))(xi(k)+ xn(k))H }

=

N∑
j=2

σ 2
j aja

H
j + σ

2
n IM (5)

σ 2
j and σ 2

n are the power of the jth interference signal and
noise, respectively, E{·} denotes statistical expectation, and
IM is the M ×M identity matrix.
The SINR in (4) can be maximized by minimizing the

output interference-plus-noise power. Thus, the weight vector
optimization problem is

min
w

wHRinw s.t. wHa1 = 1 (6)

known as the minimum variance distortionless response
(MVDR) beamformer. The corresponding solution is given
by

w =
R−1in a1

a1HR−1in a1
(7)

The total received signal covariance matrix R is usually used
instead of Rin because an estimate of Rin is difficult to obtain
in practice. R can be expressed as

R = E{(xs(k)+ xi(k)+ xn(k))(xs(k)+ xi(k)+ xn(k))H }

= σ 2
1 a1a

H
1 +

N∑
j=2

σ 2
j aja

H
j + σ

2
n IM

= Rs + Rin (8)
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where Rs is the desired signal covariance matrix. The eigen-
value decomposition (EVD) of R is

R =
M∑
i=1

λieieHi (9)

where λ1 ≥ λ2 ≥ . . . ≥ λN+1 = . . . = λM = σ 2
n

are the eigenvalues of R, and ei, i = 1, 2, . . . ,M , are the
corresponding eigenvectors. In practical applications, R is
also unavailable and so is commonly replaced by the sample
covariance matrix (SCM)

R̂ =
1
K

K∑
k=1

x(k)xH (k) (10)

where K is the number of samples. Then, the MVDR
beamformer becomes the sample covariance inversion (SMI)
beamformer and the corresponding weight vector is

wSMI =
R̂−1a1

a1H R̂−1a1
(11)

III. PROPOSED METHOD
A. DIRECTION-OF-ARRIVAL CORRECTION
DOA estimation mismatch will affect the steering vector
according in (2). Further, if the beamformer weight vector w
is obtained using (7) or (11), SOI steering vector mismatch
will affect this weight vector. Moreover, if the reconstruction
of Rin in (7) requires the interference steering vectors, then
DOAmismatch of the interference signals will also influence
w. In this section, an algorithm is introduced for DOA mis-
match correction (DC).

The goal of DC is to determine the most suitable steering
vector using the projection of each steering vector on the
eigenvectors in the observation region. From [32], the mis-
match between the actual steering vector a and the presumed
steering vector ā is small. Thus, the eigenvectors related to
the projection of ā on the eigenvectors ei can be used to
construct the desired signal subspace. This projection can be
represented as

pi =
∣∣∣eiH ā∣∣∣2 i = 1, 2, . . . ,M (12)

Now rearrange the pi in descending order so that ṗ[M ] ≥

ṗ[M−1] ≥ . . . ≥ ṗ[1] where ṗ[M ] denotes the largest of pi
values and ṗ[1] denotes the smallest. Then, the corresponding
eigenvectors are ė[M ], ė[M−1], . . . , ė[1]. From [18], [32], if

ṗ[M ] + ṗ[M−1] + · · · + ṗ[m]∑M
i=1 pi

> ρ (13)

then the eigenvectors [ė[M ], ė[M−1], . . . , ė[m]] span a new
estimated desired signal subspace where

∑M
i=1 pi = M , 0 <

ρ < 1 is the energy threshold, and m is the largest value such
that (13) is satisfied.

Different from [18], [32], the purpose of the proposed DC
method is not to find the desired signal subspace, but to find
the minimum number of projections, i.e. the maximum value

of m, that satisfies (13) in a given angle interval. In theory, a
and ei are orthogonal for i = N + 1, . . . ,M ,

∣∣eiHa∣∣2 = 0,
so
∣∣eiH ā∣∣2 = 0 if ā is equal to a, i.e. pi = 0 for i = N +

1, . . . ,M and pi > 0 for i = 1, . . . ,N . The closer ā is to
a, the more pi are zero and the fewer pi are nonzero. Since
the sum of the pi is constant, an increase in the number of
nonzero pi will reduce their average value, so the number of
elements required in the numerator to satisfy (13) will also
increase when ρ is properly valued. Thus, considering only
look direction error, different signal angles θ will result in
different ā and each will have a corresponding value of m.
When there is no look direction error (ā = a), let ṗ[M ] +

ṗ[M−1] + · · · + ṗ[m1]/
∑M

i=1 pi > ρ. Then, if there is a look
direction error (ā 6= a), for anm2 that satisfies ṗ[M ]+ṗ[M−1]+
· · · + ṗ[m2]/

∑M
i=1 pi > ρ, it can be concluded that m1 ≥

m2. Therefore, for θ located in the angular sector 2s of the
desired signal, the θ corresponding to the maximum value of
m,mmax , can be considered to reconstruct the steering vector.
In practice, R is replaced by R̂, ei is derived from the EVD
of R̂ and

∣∣eiHa∣∣2 6= 0 for i = N + 1, . . . ,M . Since the value

of
∣∣eiHa∣∣2 is small for i = N + 1, . . . ,M , the proposed DC

method is still applicable.
Fig. 1 presents the average value of m versus the estimated

angle θ without mismatch when the true DOA is 5◦ for 500
Monte Carlo trials and K = 30. Some values of m appear
as non-integers because it is the average of 500 trials, and m
are integers in each trial. It is assumed that the signal angular
sector is2s = [θ̄−5◦, θ̄+5◦] with angle interval 0.5◦ where
θ̄ = 5◦ is the presumed DOA and θ ∈ 2s. These results show
that the value of m increases as θ approaches the true DOA,
and the maximum value ofm is not unique when θ is near the
real DOA. The projection in (12) can be rewritten as

pi =
∣∣∣eiHd(θ )∣∣∣2 (14)

where d(θ ) is the steering vector corresponding to θ and θ is
located in the angular sector 2s of the desired signal. mmax
is obtained by substituting θ in (14) and determining the
corresponding largest value of m satisfying (13).

In practice, the modified DOA θ̂ can be obtained by aver-
aging θmin and θmax

θ̂ = (θmin(mmax)+ θmax(mmax))/2 (15)

where θmin is the minimum angle for which m is maximum
and θmax is the maximum angle for which m is maximum.
If there is only one maximum for m in 2s, then θ̂ = θmin =

θmax. For an input SNR of−20 dB,−10 dB, 0 dB, 10 dB, and
20 dB, Fig. 1 indicates that the value of θ̂ estimated using the
DC method is 2.5◦, 4◦, 4.5◦, 5◦, and 5◦, respectively.
Fig. 2 shows the average value of m versus the estimated

DOA angle θ when the direction mismatch is uniformly
distributed in [−4◦, 4◦] when the true DOA is 5◦ (so θ̄ is
uniformly distributed in [1◦, 9◦]), for 500 Monte Carlo trials.
For input SNR values −20,−10, 0, 10 and 20 dB, θ̂ is 3.5◦,
4.75◦, 5◦, 4.5◦, and 5◦, respectively. The root-mean-square-
error (RMSE) of the DOA estimates with and without the DC
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FIGURE 1. Average m versus the estimated angle for 500 Monte Carlo
trials.

FIGURE 2. Average m versus the estimated angle with DOA mismatch for
500 Monte Carlo trials.

method versus SNR is shown in Fig. 3 with K = 30 and
look direction mismatch uniformly distributed in [−4◦, 4◦]
for 500 Monte Carlo trials. Figs. 1, 2, and 3 show that the DC
method can reduce the DOA estimation mismatch when the
SNR is high but large errors still exist when the SNR is low.
Thus, an algorithm for low input SNR is developed in the next
section.

B. MODIFIED COVARIANCE MATRIX
Figs. 1, 2, and 3 show that the DOA estimation error increases
as the SNR decreases. This performance degradation is
mainly due to noise. In order to reduce the influence of noise
when the SNR is low, the SNR of the desired signal must
first be estimated. The input SNR of the received signal can
be estimated as

SNRinput = 10 log10 σ
2
1 /σ

2
n (16)

Note that both σ 2
1 and σ 2

n are unknown. Thus, the SNR is
approximated as

SNRapprox = 10 log10 0.1λ̇[M ]/σ̄
2
n (17)

FIGURE 3. RMSE of the DOA estimates versus input SNR with direction
mismatch.

The estimated noise power is then

σ̄ 2
n =

1
M − N

M∑
i=N+1

λi (18)

The input SNR is considered low if SNRapprox < 0. Define
β = 0.1λ̇[M ]/σ̄

2
n where λ̇[M ] is the eignevalue corresponding

to the eigenvector ė[M ] obtained from
∣∣∣ėH[M ]ā

∣∣∣2 = ṗ[M ].
This expression was determined based on extensive simula-
tions. In this paper, a tridiagonal loading algorithm is used to
reduce the DOA estimation mismatch when the input SNR is
low. This is an effective way to mitigate beamforming issues
caused by noise and/or model errors [33]. The loaded SCM
can be expressed as

R̂L = R̂+ τT (19)

where τ is the loading level and the loading matrix T is a
simple tridiagonal Toeplitz matrix given by

T =



1 −2 0 · · · 1 1
−2 1 −2 · · · 0 1
0 −2 1 · · · 0 0
...

...
...

. . .
...

...

1 0 0 · · · 1 −2
1 1 0 · · · −2 1


(20)

The loading level in (19) is given by

τ = (
∥∥ã∥∥ )−1ãH R̂ã (21)

where the weighted steering vector is

ã = β � ā (22)

and� denotes componentwise product. The modified sample
covariance matrix can be expressed as

Rc =

{
R̂, β ≥ 1
R̂L , β < 1

(23)

The proposed DOA correction algorithm is given in
Algorithm 1. The complexity of this algorithm is O(M3).
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Algorithm 1 Proposed DOA Correction Algorithm

Step 1: Estimate the sample covariance matrix R̂ using (10).
Step 2: Eigen-decompose R̂ to get the eigenvalues λi and
eigenvectors ei.
Step 3: Compute pi in (12), find the maximum value ṗ[M ] in pi to
get the eigenvector ė[M ] and the corresponding eigenvalue λ̇[M ].
Step 4: Let β = 0.1λ̇[M ]/σ̄

2
n and adjust Rc according to (23).

Step 5: Eigen-decompose Rc to get the new eigenvectors ei,
substitute θ in (14) in sequence within the angular sector 2s to
obtain the pi, calculate the corresponding m using (13).
Step 6: Find mmax and determine θ̂ from 2s using (15).

IV. PERFORMANCE EVALUATION
In this section, numerical results are presented to validate the
effectiveness of the proposed method. Consider a uniform
linear array with M = 10 omnidirectional sensors spaced
half a wavelength apart. The noise is modeled as complex
Gaussian which is temporally and spatially white with zero
mean and unit covariance. Each result is the average of 500
Monte-Carlo trials.

A. DOA ESTIMATION PERFORMANCE
1) DOA CORRECTION WITH RANDOM LOOK
DIRECTION ERRORS
The performance with large DOA errors is now considered.
The desired signal impinges on the array from the direction
θ1 = 5◦, and the direction mismatch is randomly and uni-
formly distributed in [−4◦,4◦]. Fig. 4 presents the RMSE
of the DOA estimate versus SNR for K = 30. The red
dotted line is the RMSE with no correction, the blue dotted
line is the RMSE with correction using the DC method, and
the solid green line is the RMSE with correction using the
proposed method. This shows that the proposed algorithm
effectively corrects the DOA error even at low SNRs. Fig. 5
presents the RMSE versus the number of snapshots for an
input SNR of 20 dB (high SNR). This shows that the number
of snapshots has a negligible effect on the RMSE. Note that
for a high SNR, Rc in the DC method is the same as that in
the proposed method, so the blue dotted and solid green lines
coincide.

2) RMSE PERFORMANCE
DOA estimation algorithms with the proposed method are
now examined. The RMSE differences with and without
the proposed method are used to evaluate the perfor-
mance. The MUSIC and Capon DOA estimation methods
as well as the rational invariance (ESmusic) [34], propagator
method (PM) [35], modified propagator method (MPM) [36],
and DOA estimation with uncertain gain-phase sensors
(DSS) [30] techniques are considered. The desired signal
impinges on the array from the direction θ1 = 5◦.
Fig. 6 presents the RMSE of the DOA estimation algo-

rithms versus the input SNR under ideal conditions with K =
30, and Fig. 7 gives the corresponding RMSE versus the num-
ber of snapshots under ideal conditions with SNR = −10 dB.

FIGURE 4. DOA estimation RMSE versus input SNR.

FIGURE 5. DOA estimation RMSE versus the number of snapshots.

TABLE 1. Angle sectors for different SNRs.

These results show that the RMSE is large at low SNRs and
small at high SNRs, so the angle range considered should be
based on the SNR. As a consequence, the signal angle sector
is set according to the input SNR as shown in Table 1. Taking
the second row as an example, when the input SNR is between
[−15,−5], the angle sector is 2s = [θ1 − 5◦, θ1 + 5◦] with
angle interval 1◦.
The RMSE difference is shown in Fig. 8 versus the SNR.

A difference less than 0 indicates that the proposed method
reduces the RMSE of the algorithm andmakes it better. These
results show that when the input SNR is less than 10 dB,
the proposed method can reduce the estimation error of the
Capon, ESmusic, PM, and MPM algorithms. For the MUSIC
and DSS methods, this difference is slightly greater than
0 when the SNR is in the range [−5, 5]. When the SNR
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FIGURE 6. RMSE versus input SNR under ideal conditions with K = 30.

FIGURE 7. RMSE versus the number of snapshots under ideal conditions
with SNR = −10 dB.

is greater than 10 dB, the effect of the proposed algorithm
is small because the DOA estimation algorithms already
provide accurate results. The RMSE difference versus the
number of snapshots when the input SNR is −10 dB is given
in Fig. 9. This shows that when the number of snapshots
is greater than 20, the DOA estimation algorithms com-
bined with the proposed method outperform the algorithms
alone.

3) RMSE PERFORMANCE WITH ARRAY UNCERTAINTIES
In this section, the amplitude, phase, and sensor location
errors are considered as array uncertainties. The amplitude
and phase errors of each sensor are randomly distributed
according to N (0, 0.12) and N (0, 0.25π2), respectively, and
the sensor location errors are uniformly distributed in the
interval [−0.1, 0.1] measured in sensor space. The nth ele-
ment of the steering vector can then be expressed as

(1+1g)e−j2π (nd+1d) sin θ/λe−j1φ, n = 0, 1, . . . ,M − 1

(24)

where 1g is the gain error, 1φ is the phase error, and 1d is
the sensor location error. The errors were changed each trial

FIGURE 8. RMSE difference versus input SNR under ideal conditions
with K = 30.

FIGURE 9. RMSE difference versus the number of snapshots under ideal
conditions with SNR = −10 dB.

but remain constant over the corresponding snapshots. The
angle sector is chosen as previously. The RMSE difference
is presented in Fig. 10. These results show that when the
SNR is lower than 10 dB, the proposed algorithm can still
reduce the RMSE of the original DOA estimation methods.
Fig. 11 presents the RMSEdifference for different numbers of
snapshots. This indicates that when the number of snapshots
is greater than 20, the proposed algorithm can still reduce
the RMSE.

B. BEAMFORMER PERFORMANCE
In this section, the performance of the proposed method
is evaluated using several beamformers widely used in the
literature. One desired signal and two interference signals
impinge on the array from directions θ1 = 5◦, θ2 =
−50◦, and θ3 = −20◦, respectively. The interference-
to-noise ratio (INR) for both signals is set to 30 dB.
The following beamforming algorithms are considered.
INC matrix reconstruction and steering vector estimation
(ICM) [23], INC matrix reconstruction and steering vec-
tor via subspace estimation (SICM) [22], combined INC
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FIGURE 10. RMSE difference versus input SNR with array uncertainties
and K = 30.

FIGURE 11. RMSE difference versus the number of snapshots with array
uncertainties and SNR = −10 dB.

matrix reconstruction [19] with desired signal steering vec-
tor estimation [18] (SRNSV), worst-case-based beamformer
(WC) [13], minimum sensitivity eigenspace-based beam-
former (MSESB) [12], maximum entropy method (MEPS)
[37], tridiagonal loading beamformer (TLBF) [33], and
SMI [38]. The angle sector of the desired signal is set to
2s = [θ̄ − 5◦, θ̄ + 5◦] with angle interval 0.5◦ for the
methods in [22] and [23], and the proposed method. The
energy threshold for the method in [18] and the proposed
method is set to ρ = 0.9. The number of sampling points for
the MEPS method are set to L = 50 and S = 10. The weight
wSLL for the TLBF method [33] is set to 0.05, the number of
dominant eigenvectors in [22] is set to 7, and ε in [13] is set to
0.3M . The optimization problem is solved using CVX [39].
Fig. 12 presents the output SINR versus input SNR under
ideal conditions with K = 30 and Fig. 13 gives the output
SINR versus the number of snapshots under ideal conditions
with SNR = 20 dB.

1) BEAMFORMING WITH RANDOM LOOK
DIRECTION ERRORS
In this section, the influence of the proposed algorithm on the
beamforming algorithms is evaluated considering signal look

FIGURE 12. Output SINR versus input SNR under ideal conditions
with K = 30.

FIGURE 13. Output SINR versus the number of snapshots under ideal
conditions with SNR = 20 dB.

direction errors with random direction mismatch uniformly
distributed in [−4◦, 4◦]. Thus, the DOA estimates of the
SOI and two interference signals are uniformly distributed in
[1◦,9◦], [−54◦, −46◦] and [−24◦, −16◦], respectively. The
direction errors of the three signals are changed each trial but
remain constant over the corresponding snapshots. Fig. 14
presents the output SINR of the beamformers versus input
SNR with K = 30. Comparing these results with Fig. 12
indicates that the output SINR of the beamformers decreases
in the presence of look direction errors. Fig. 15 gives the
output SINR difference of the beamforming algorithms with
and without the proposed method versus the input SNR.
These results show that the proposed method can improve
beamformer performance when there are DOA estimation
errors. The improvement with the SRNSV and SICM meth-
ods is significant while the improvement with the SMI and
TLBF algorithms is greater when the input SNR is high.

In the SRNSV [18], [19], ICM [23], SICM [22],
TLBF [33], and SMI [38] methods, w is obtained using (7)
and the output SINR is improved with the proposed algo-
rithm. In ICM, the estimated INC matrix is reconstructed
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based on the revised SOI interval, and the steering vector
optimization algorithm uses the steering vector from the pro-
posed method. With MEPS, an improved estimate for the
desired signal steering vector is obtained using the revised
SOI interval. With SICM, the revised direction interval is
needed to calculate the steering vector of the desired signal.
In addition, the DOA of the interference signals must be esti-
mated because the INC matrix is reconstructed based on the
interference signal steering vector. Therefore, correcting the
signal DOAs will improve the output SINR. The INC matrix
reconstruction in SRNSV [19] requires the interference steer-
ing vector, and optimization of the steering vector of the
desired signal in SRNSV [18] is based on constraints on the
estimated steering vector of the desired signal. Determining
these steering vectors requires the corresponding DOAs. As a
result, DOA errors will affect both INCmatrix reconstruction
and steering vector estimation, which will decrease the output
SINR. For TLBF, using the proposed method in estimating
the steering vector of the desired signal and the loaded SCM
regularization will improve the performance.

The performance of the SMI algorithm can be degraded
when the input SNR of the desired signal is high, but using
the modified a in (11) obtained with the proposed method
can alleviate this problem. The WC algorithm is improved
for input SNR in the range 0 to 30 dB, but there is minimal
improvement with MSESB for all SNRs. The weight vector
wwithWC [13] beamforming is obtained based on the worst-
case constraint and so is robust to steering vector errors.
However, when the input SNR is in the range 0 to 30 dB,
the performance of this algorithm is poor. The proposed
algorithm was shown to improve this performance. With the
MSESB method [12], the projection of the steering vector in
the signal-interference subspace is needed to obtain w. It is
robust to steering vector errors and the subspace projection of
the steering vector will reduce the effect of DOA correction.
Thus, the proposed method provides little improvement for
this method.

Fig. 16 presents the output SINR of the beamformers ver-
sus the number of snapshots without the proposed method
for SNR = 20 dB. The corresponding output SINR dif-
ference with and without the proposed method is given
in Fig. 17. These results show that the proposed method
improves the SINR when there are DOA estimation errors,
and the improvement in SINR is greatest for the SMI and
SRNSV algorithms.

2) BEAMFORMING WITH AMPLITUDE, PHASE AND SENSOR
LOCATION ERRORS
In this section, the randomDOAmismatch, amplitude, phase,
and sensor location errors are the same as in Section IV-A3.
Fig. 18 gives the output SINR difference with and without the
proposed method versus the input SNR for the beamformer
algorithms. These results show that the proposed algorithm
improves the performance of all algorithms. SMI and TLBF
are significantly improved when the SNR is high, and ICM,
SICM, MEPS and SRNSV are also better. However, WC is

FIGURE 14. Output SINR versus input SNR with look direction errors and
without the proposed method.

FIGURE 15. Output SINR difference versus input SNR with look direction
errors.

FIGURE 16. Output SINR versus the number of snapshots with look
direction errors and without the proposed method.

only improved in the range SNR = 0 to 30 dB, and there is
little improvement for MSESB.

Fig. 19 presents the output SINR difference versus the
number of snapshots for the beamformer algorithms with
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FIGURE 17. Output SINR difference versus the number of snapshots with
look direction errors.

FIGURE 18. Output SINR difference versus input SNR with hybrid array
errors.

and without the proposed method. This shows that using the
proposed method improves the performance regardless of
the number of snapshots. Further, these results indicate that
the proposed method can improve beamforming performance
with a variety of errors.

3) BEAMFORMING WITH FAST WAVEFRONT DISTORTION
In this section, the case when the signal steering vector is
distorted by wave propagation is considered. Fast wavefront
distortion occurs when the signal propagates in a long and
inhomogeneous medium. It is assumed that the phase dis-
tortion is independent and Gaussian distributed according to
N (0, 0.12), and the distortion changes each trial and from
snapshot to snapshot. The random DOA mismatch is uni-
formly distributed in [−4◦, 4◦]. Fig. 20 presents the output
SINR difference for the beamformers with and without the
proposed method versus the input SNR. This shows that the
performance of the ICM, SRNSV, SMI, SICM, MEPS and
TLBF algorithms with the proposed method are better over
the entire SNR range, while WC is improved for SNR =
0 to 35 dB. Fig. 21 gives the output SINR difference for

FIGURE 19. Output SINR difference versus the number of snapshots with
hybrid array errors.

FIGURE 20. Output SINR difference versus input SNR with fast wavefront
distortion.

the beamformer algorithms with and without the proposed
method for different numbers of snapshots. This indicates that
the output SINR of these algorithms are improved with the
proposed method regardless of the number of snapshots.

4) BEAMFORMING WITH INCOHERENT LOCAL
SCATTERING ERRORS
In this section, the case when the signal steering vector is
affected by incoherent local scattering errors is considered.
The desired signal is time-varying so the steering vector is
modeled as

â1(k) = s0(k)a1 +
4∑

p=1

sp(k)ā(θp) (25)

where sp(k), p = 0, 1, 2, 3, 4 are independent random vari-
ables with distribution N (0, 1), and ā(θp) are the corre-
sponding incoherent scattering paths. The angles θp, p =
1, 2, 3, 4 are independent random variables with distribution
N (5◦, 4◦). sp(k) changes both from trial to trial and snapshot
to snapshot, the directions of arrival θp change from trial
to trial but is constant over the corresponding snapshots.
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FIGURE 21. Output SINR difference versus the number of snapshots with
fast wavefront distortion.

FIGURE 22. Output SINR difference versus input SNR with incoherent
local scattering errors.

The random DOA mismatch is uniformly distributed in
[−4◦, 4◦]. The model in (25) corresponds to the case of
incoherent local scattering [40]. Under this assumption, the
signal covariance matrix Rs is no longer a rank-one matrix
and the output SINR has the form

SINRopt =
wHRsw
wHRi+nw

(26)

which is maximized by the weight vector [41]

wopt = P{R−1i+nRs} (27)

where P{·} denotes the principal eigenvector of a matrix.
Fig. 22 gives the output SINR difference for the beam-

former algorithms with and without the proposed method
versus the input SNR. This shows that the differences for
SMI and MSESB are close to 0 dB, and the proposed method
improves the output SINR of the other algorithms. Fig. 23
gives the output SINR difference for the beamformer algo-
rtihms with and without the proposed method for different
numbers of snapshots. This indicates that except for SMI
andMSESB, the proposed method improves the performance
regardless of the number of snapshots.

FIGURE 23. Output SINR difference versus the number of snapshots with
incoherent local scattering errors.

V. CONCLUSION
In this paper, a DOA correction method was presented
for array signal processing. This method provides a new
approach to SNR estimation and adaptive covariance matrix
modification so it can be used for a wide range of input SNRs.
A modified DOA was determined based on the relationship
between the eigenvectors of the covariance matrix and the
actual steering vector, and this DOA can be used to construct
the steering vector. The proposed approach can be utilized
with any beamforming algorithm and only requires an esti-
mated angle range for the observed signal. It can also be
used after DOA estimation to correct inaccurate estimation
results. Numerical results were presented which show that
the proposed method can not only correct DOA estimation
errors, but can cope with large DOA errors and improve
the performance of beamforming algorithms which require
the DOA of the signal to reconstruct the INC matrix or
estimate the steering vector. Future work includes improving
the robustness of the algorithm to adapt to more complex
environments and employing it for signal detection.
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