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ABSTRACT As hazardous locations of a road, freeway tunnels have a higher risk of casualty than open
roads. Therefore, it is necessary to seek a reliable crash prediction model and propose targeted improvement
measures. However, existing studies on freeway tunnel crash models mainly suffer from the following
problems: 1) They ignore the correlation between different injury severity levels of crashes; 2) They ignore
the impact of excess zero observations; 3) They do not consider the influence of heterogeneity between
samples and the spatio-temporal correlation. To solve the above problems, this paper has compiled a dataset
with freeway tunnel design features, three years of traffic conditions, pavement conditions, and traffic crash
data. Then, a bivariate random parameters negative binomial Lindley model (ST-BRPNB-L) is established
for jointly modeling crash counts and injury severity levels, which consider excess zero observations by
introducing Lindley parameters, characterize the heterogeneity, and spatial-temporal correlation between
samples by introducing random parameters and spatio-temporal parameters. The Bayesian estimation results
have shown that ST-BRPNB-L has the best goodness-of-fit among a series of comparison models, which
verifies the superiority of the proposed model. On this basis, the influence of the risk factors on the
frequency and severity of crashes was quantitatively analyzed based on the ST-BRPNB-Lmodel’s parameters
estimation results, which provides a scientific basis for safety improvement measures of freeway tunnels.

INDEX TERMS Freeway tunnel, traffic safety, crash modeling techniques, crashes by severity, excess zero
observations, spatio-temporal correlation, unobserved heterogeneity, bivariate random parameters Lindley
model.

I. INTRODUCTION
Many factors may affect road traffic safety. Therefore, the
authorities and researchers have long been searching for ways
better to understand the influence of risk factors on crashes.
The current research on road traffic safety risk factors mainly
focuses on exploring the impact of road geometric design
characteristics and traffic flow on the frequency of crashes on
open roads. As a particular road structure in freeways, tunnels
are limited by their rapidly changing lighting conditions,
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restricted cross-section width, and a narrowed vision field,
resulting in a more complicated driving environment with a
higher probability of road traffic crashes [1]. According to
the 2019 statistical report of the Ministry of Transport of
the People’s Republic of China, freeway tunnels in China
only account for 0.03% of the total road mileage, but the
number of tunnel traffic crashes accounts for 0.24% of the
entire road crashes. At the same time, the tunnels’ relatively
enclosed space would make it difficult for rescue operations
to carry out and are likely to cause secondary accidents,
thus aggravating the severity of tunnel accidents. Data shows
that the fatality rate of freeway tunnel accidents in China
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is 0.55 persons per occurrence. Therefore, it is of great sig-
nificance to the design and management of tunnels to seek
suitable models of the frequency and severity of freeway
tunnel crashes based on years of freeway tunnel operating
data and analyze the influencing factors of tunnel crashes and
injury severity levels.

A. EXISTING TUNNEL TRAFFIC SAFETY RESEARCH
Currently, there are mainly two types of research on tun-
nel safety. The first category focuses on the analysis of
the spatio-temporal distribution characteristics of crashes by
region using mathematical statistics, that is, dividing the tun-
nels into multiple regions according to the lighting conditions
and driving environment, including the three-zone [3], [4],
four-zone [5], five-zone [6], six-zone [7], and seven-zone
analysis methods [8]. However, this research idea only probes
into the characteristics of crash frequency distribution rather
than further explores the causes of crashes and the acting
mechanism of various risk factors on crashes.

On the other hand, the second category accurately corre-
lates risk factors and crash variables by establishing safety
performance functions(SPFs). Taking the over-dispersion of
crash data into account, Caliendo, Guglielmo, and Guida [9]
used a bivariate negative binomial (NB) model to study the
factors affecting the frequency of freeway tunnel crashes in
Italy. The results showed that, as the length of the tunnel,
annual average daily traffic volume, the proportion of trucks,
and the number of lanes increase, the crash frequency will
increase. Caliendo, Guglielmo, and Guida [10] also used the
random parameter negative binomial model to characterize
the unobserved heterogeneity of tunnel crash data. In addi-
tion to data heterogeneity, other studies [11]–[13] further
considered the interaction of heterogeneity using the rele-
vant random parameter models, the results show that more
precise estimations of crashes can be obtained when the
random parameters are assumed to be correlated in statis-
tical analysis. However, these models failed to consider the
spatio-temporal correlation and the excess zero observations
of crash panel data. Meanwhile, studies [14], [15] introduced
Lindley parameters and random parameters, respectively,
to fully observe the interference of excess zero observa-
tions and heterogeneity on the model performance, and then
achieved considerable goodness of fit.

There are also some differences in the dependent variable.
Most of researchmentioned above used Univariate dependent
variables, like crash frequency and crash rate. There are also
some studies for specific types of traffic crashes, they used
the univariate dependent variables, like study analyzed the
truck crash frequency and crashes of serious injury severity
level, study [16] explored the influence of contributing factors
on tunnel truck crashes, the result shows that the gender,
age of driver, mid-night to dawn and afternoon peak hours,
weekdays, snowy or icy road conditions, the interior zone
of a tunnel, the combination truck, overloaded trucks, and
extra-long tunnels are associated with higher truck crash
severity. Study [17] used a random forest algorithm with

standard binomial regression to analyze the risk factor of
serious injury severity, the adverse weather, fatigued and
distracted drivers, collision type (i.e., head-on/angle/rear-
end), tunnel exit, tunnel width, curve radius (radius less
than 1800 m), and heavy vehicle positively influences the
severity of crashes. Another type of dependent variable is
multivariate dependent variables, which analyze the risk fac-
tors’ contribution to crashes of different injury severity lev-
els. Study [18] used a two-level binary logistic modeling
approach to identify significant influential factors with tunnel
crash safety, shows that speed limit, tunnel length, truck
involvement, rear-end crash, rainy and foggy weather, and
sequential crash were found to be positively associated with
crash severity in freeway tunnels. Research [19] employed a
random parameter logit model to examine the factors affect-
ing the injury severity of the freeway tunnel group crashes,
the result shows that the daytime, weekdays, entrance zone,
downgrades, elder drivers, speeding, fatigue driving, and
rollover collisions are positively associated, while winter,
curves, and sideswipes are negatively associated with severe
crashes.

After reviewing the above studies, it was found that there
are still problems to be solved in the study of tunnel crash
modeling, which is: 1) The safety performance functions only
take heed of the relationship between crash frequency and
risk factors. No model that considers the correlation between
the severity of crashes and the number of crashes of differ-
ent severity has been established; 2) Existing tunnel safety
research rarely considers the characteristics of excess zero
observations of crash data; 3) The mainstream crash models
mainly uses random parameters to handle the heterogeneity
between samples, but rarely discusses the spatio-temporal
correlation.

B. EXISTING RESEARCH ON INFLUENCING FACTORS OF
TUNNEL CRASHES
Many reasons can lead to traffic crashes, such as road design,
traffic conditions, and pavement conditions. Among them,
the traffic safety influencing factors related to road geometric
design characters include roadside facilities and horizontal,
vertical, and cross-sectional alignment indicators. In terms of
the safety effect of horizontal alignment, the research results
of the studies [20]–[25] consistently showed that the increase
in the curvature of a road segment could reduce the frequency
of crashes on the said road segment. The reason lies in the
fact that the increase in the curvature can effectively put
the drivers on guard, thereby reducing the risk of crashes.
Research [12] believed that the increase in the curvature
of a tunnel would lead to an increase in the frequency of
crashes. In sharp turning segments of a tunnel, factors such
as restricted cross-section, poor lighting, and poor visibility
will aggravate driving risks. In terms of the safety effect of
vertical alignment, studies [20]–[23], [26], [27] showed that
slope length and gradient are positively correlated with the
frequency of crashes. In particular, research [27] believed that
the fewer gradient change points set in a road segment, the

38046 VOLUME 10, 2022



M. Cai et al.: Bayesian Bivariate Random Parameters and Spatial-Temporal Negative Binomial Lindley Model

lower the frequency of accidents on the said road segment.
Study [26] collected and analyzed a total of 567 collision
accidents in a 50km-long tunnel in China, and it was discov-
ered that the crash frequency of the descending road segment
of the tunnel was higher than that of the ascending road
segment. In terms of cross-section safety effects, the results
of research [21], [23], [24] showed that the frequency of
highway crashes decreases with the increase of the width
of the median strip. Research [25], [28] indicated that road
segments that have wider shoulder widths tend to have lower
accident frequency. Research [26] showed that the frequency
of highway accidents increases with the number of lanes.
Whereas research [22] indicated that the farther the vehicle
is from the tunnel wall, the more significantly the crash
frequency decreases.

In terms of traffic conditions, research [21] believed that
different vehicles are more likely to have crashes on low-
traffic roads; as the traffic volume increases, the frequency
of crashes on road segments decreases significantly, which is
contrary to the results of studies [11], [24], [26]. Study [12]
believed that the frequency of highway accidents is signif-
icantly related to the increase in the proportion of class
5 vehicles, which is consistent with the result of [25], [29].
Whereas research [30] believed that the frequency of crashes
would initially increase with the increase in the proportion of
heavy vehicles but decrease when the frequency of crashes
when reaching a certain threshold. The reason is that when
the traffic volume exceeds a certain value, the highway will
be extremely congested, and the driving speed will be far
below the speed limit. Research [25] indicated that setting a
lower speed limit on a road segment can effectively reduce the
frequency of crashes. In contrast, research [23] believed that
a lower speed limit increases the probability of single-vehicle
accidents.

Pavement performance also has a significant impact on
crashes. Research [21]demonstrated that the higher the fric-
tion coefficient of the pavement, the lower the probabil-
ity of slight injury crashes, but the possibility of severe
injury related crashes increases. Research [32] indicated that
increasing the friction coefficient of wet pavements can effec-
tively reduce the crash frequency, which is of great reference
significance for the design and maintenance of roads in rainy
areas. Study [24] showed that the crash frequency would
increase with the increase in the international smoothness
index (IRI) value, while study [12] believed that the crash
frequency would decrease with an increase in the IRI value.
Study [22] held that the higher the Pavement surface con-
dition index(PCI) value and Skidding resistance index(SRI)
value, the lower the crash frequency of the road segment.
Study [33] analyzed the relationship between the pavement
surface conditions and the crash frequency, and according to
the road damage index and IRI value of the road segments,
concluded that flat roads are more likely to see fatal crashes
because drivers tend to be more aggressive when driving on
a flat road. Study [34] showed that segments with a combina-
tion of poor road conditions and steep slopes would double

the probability of crashes. Study [35] analyzed the impact of
pavement damage and traffic characteristics on the frequency
of crashes at various damage stages over time and evaluated
the safety effects of the roads in different damage stages.

In summary, traffic crashes are mainly due to road align-
ment design indicators, traffic conditions, and pavement per-
formance. One-sided consideration of crash factors will lead
to deviations in parameters estimation and may cause oppo-
site inferences. Therefore, selecting all aspects of factors as
comprehensively as possible and establishing a comprehen-
sive data set is essential for identifying crash risk factors.

C. EXISTING RESEARCH ON EXCESS ZERO OBSERVATIONS
MODELING TECHNOLOGY
Regarding crash modeling technology, the negative binomial
model satisfies the requirements for non-negativity and ran-
domness of crash frequency and those for the over-dispersion
of most crash data. Thus, the prevailing crash modeling
method adopts this model and its improved models as the
basis for technical improvements. However, the freeway tun-
nel crashes are rare events, the vast majority of tunnel seg-
ments may never have had a crash during their operational
period, and secondly, the study needs to count crashes at
specific periodicities, the tunnel segments may not have had
a crash during these periodicities. So, there are a large num-
ber of zero observations in the statistical crash data. The
Poisson and negative binomial models are commonly used
models that the Poisson distribution tends to under-estimate
the number of zeros given the mean of the data, while the
NBmay over-estimate zeros, but under-estimate observations
with a count [22]. From the above,concluding that excess
zero observations result in a deviation between the actual
distribution of crash frequency, neglecting the excess zero
observations to construct a model will lead to bias or even
to false inferences. The zero-inflated model [25], [36], [37]
was first used to process excessive zero observations and
divide road segments into absolute safety and non-absolute
safety states using the Logit and Probit models. Then, this
model adopted NB and other aggregate models to fit the zero
and non-zero observations in the data of the non-absolute
safety state to maximize the fitted data. Study [38] believed
that the ZINB model arbitrarily divides road segments into
absolute safety and non-absolute safety states can only fit
data statistics instead of genuinely explaining the logic of the
crashes. The Markov model proposed in study [39] allowed
the road segments to shift between the absolute safety state
and non-absolute safety state, but this model also has a short-
coming, which is its complex computing process [40]. Many
studies have been conducted on processing excessive zero
observations in recent years. The introduction of a new distri-
bution combined with NB distribution can effectively process
excessive zero observations and objectively explain the logic
of crash occurrence. For example, the results of Study [41]
indicated that the NB-L model has a better goodness-of-fit
for data sets that contain a large number of zero values.
On the other hand, study [42] used theNB-GEmodel, Poisson
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TABLE 1. Overview of crash frequency modeling technology and the superiority of the proposed model.

model, NB model, and NB-L model in data samples with
over-dispersion and many zero observations. The results indi-
cated that the performance of the NB-GE model is similar to
theNB-Lmodel and is significantly better than theNBmodel.

At the same time, those mentioned above excess zero
observations modeling technology is only applicable in uni-
variate analysis, without considering the severity of crashes
and the correlation between different severity levels, and
the applicability and portability of each model for freeway
tunnels in China remain to be further verified.

D. EXISTING RESEARCH ON RANDOM PARAMETERS AND
SPATIO-TEMPORAL MODELING
Freeway tunnel crashes are complex events that involve
a variety of human responses to external stimuli, as well
as complex interactions between the vehicle, roadway fea-
tures/condition, traffic-related factors, and environmental
conditions. With such a complex situation and limited col-
lection methods, it is impossible to have access to all of
the data that could potentially determine the likelihood of
a freeway tunnel crash or its resulting injury severity. The
absence of such important data can potentially present serious
specification problems for traditional statistical analyses that
can lead to biased and inconsistent parameter estimates, erro-
neous inferences, and erroneous accident predictions. In other
words, the unobserved heterogeneity arises from misspecifi-
cation of the model, randomness of covariates, and omission
of independent variables. If a model ignores the unobserved
heterogeneity and the impact of the observed variable on
all road segments on the crash is fixed, that is, adopting
the fixed-parameter model, it will result in biased estima-
tion and may lead to completely different conclusions [43].

Therefore, study [26], [44] introduced a negative binomial
model with random effects and assumed the intercept term
to follow normal distribution so that the model has better
goodness of fit compared to the NB model. However, only
considering the intercept term is not enough to explain the
unobserved heterogeneity [22]. Therefore, studies [12], [24]
allowed the regression parameters of each variable to vary
randomly to explain the heterogeneity caused by unobserved
factors. At the same time, to further capture the influence of
unobserved heterogeneity shared by continuous cycles and
adjacent road segments, the relevant parameters of temporal
correlation, spatial correlation, and spatio-temporal interac-
tion were included in the link function of the model to express
the spatial-temporal correlation. For example, study [15]
incorporated temporal correlation into the model and found
a significant temporal effect in the model. Research [45]
considered the spatial correlation, found significant spatial
effects and improved the goodness of fit of the model.
Research [14] introduced spatio-temporal parameters and the
spatio-temporal interaction effect, and the results indicated
that the spatio-temporal parameters of the model are all
significant, and the goodness of fit of the model consider-
ing the spatio-temporal effects is significantly higher than
that of the control model. Although random parameters and
spatio-temporal parameters have been used to explain the
heterogeneity caused by various factors, it is still of great
significance to introduce a bivariate model to analyze the
mechanism of crashes of different injury severity levels.

E. RESEARCH PURPOSE AND METHODOLOGY
The current tunnel safety researches have the following prob-
lems: 1) The severity of crashes in freeway tunnels and its
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FIGURE 1. Technical roadmap in this paper. The top of the figure shows creating a dataset that includes different injury severity levels of crashes
and three types of risk factors. The bottom of the figure presents the proposed ST-BRPNB-L model and the comparative SP-BRPNB-L, BRPNB-L,
and BRPNB models. The middle of the figure illustrates the problem solved by the ST-BRPNB-L model and evaluation and analysis methods. The
BRPNB, BRPNB-L, SP-BRPNB-L, and ST-BRPNB-L models represent the bivariate random parameters negative binomial model, bivariate random
parameters negative binomial Lindley model, bivariate random parameters and spatial negative binomial Lindley model, and bivariate random
parameters and spatial-temporal negative binomial Lindley model, respectively.
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relationship with crash frequency, which have more apparent
impacts on society, is not included in the scope of tunnel
safety studies; 2) The modeling technology for excessive
zero observations is rarely applied in tunnel studies; 3) Few
tunnel safety studies adopt the random parameters method
and the spatio-temporal parameters method to consider the
unobserved heterogeneity and the spatial-temporal correla-
tion. Because of the shortcomings of the above studies, this
paper proposes to 1) establish a bivariate model to jointly
consider the number of crashes of different severity in the
tunnel; 2) introduce the Lindley distribution to consider the
excess zero observations contained in data; 3) introduce ran-
dom parameters and spatio-temporal correlation parameters
to consider the unobserved heterogeneity and the spatial-
temporal correlation.

II. DATA DESCRIPTION
The subjects included a total of 84 one-way tunnels
of three major freeways in Guangdong Province, China,
including (1) the Lianzhou-Huaiji section of the Erenhot-
Guangzhou freeway; (2) the Huaiji-Sanshui section of the
Erenhot-Guangzhou freeway; (3) Ma’an-Hekou section of
the Guangzhou-Kunming freeway. In addition, the collected
data includes information on crashes of freeway tunnel sec-
tions, tunnel design characteristics, traffic conditions, and
pavement conditions, and was collected from 2015 to 2018.
There was a total of 587 tunnel crashes and 20 influencing
factors.

Another critical step in data processing is the division of
tunnel segments. According to the study [12], areas of 100 m
before the entrance and 100 m after the exit of a tunnel can
be defined as its influence area, as shown in Figure 2. The
prevailing classification methods are the fixed-length method
and the homogeneity method. Relevant studies have shown
that, despite its simplicity and feasibility, the fixed-length
method has all indicators averaged, which is difficult to
reflect the true impact of indicators on crashes freeway tun-
nels with complex driving conditions. In contrast, the vari-
ous indicators of the homogeneity method are actual values,
which are conducive to obtaining the existing relationship
between traffic crashes and the causes. Therefore, this paper
adopted the homogeneity method to divide the tunnel sec-
tions, that is, dividing the sections based on the consistency of
speed limit, traffic volume, road width, number of lanes, and
horizontal and vertical alignments for the same road segment.
Finally, 217 homogeneous sections were obtained (the total
samples collected in the three years is 217*3=651).

On the basis of dividing tunnel sections, the number of
crashes of different severity and influencing factors were
collected to establish a data set of tunnel crashes, including:
1) tunnel traffic crashes data provided by the Guangdong
Provincial Freeway Administration; 2) daily traffic condi-
tions data from freeways toll stations; 3) tunnel design charac-
teristics indicators containing detailed tunnel design elements
were provided by the Guangdong Provincial Communica-
tion Construction Group.; 4) pavement conditions indicators

provided by the Guangdong Transportation Group Testing
Center (GTGTC).

The statistical description of each indicator is shown in
Table 2, and the following explanation is required: 1) This
paper divides the severity of crash into two groups: kill and
serious injury (KSI) and slight injury (SI). 2) The traffic
volume data includes the proportion of the vehicles classified
by 5 classes and the annual average daily traffic volume
(AADT). Among them, the former was collected from the
Network Tolling System of Guangdong Provincial Highway,
which classifies vehicles according to the height of the vehi-
cle, the number of axles, the number of wheels, and the
wheelbase. The classification standards are shown in Table 3.
Since the traffic volume between toll stations will not change,
the AADT (annual average daily traffic) is the average num-
ber of vehicles that pass a roadway section each day in a
particular year, calculating based on the conversion ratio of
1:1.5:2:3:3.5 for vehicles of classes 1 to 5 in accordance
with the regulations of the Guangdong Provincial Department
of Transport. For the specific calculation method, refer to
the Traffic Administration Bureau of the Ministry of Public
Security. 3) Referring to the Technical Standards for Highway
Engineering of China, this paper defines a tunnel with a
length of less than 500 m as a short tunnel, and a tunnel with
a length of 500 m or more as a long tunnel. 4) Research [46],
[47], found that the crash frequency for any tunnel segment
with a longitudinal gradient greater than 2% is significantly
higher than that of other tunnel segments. Therefore, this
paper considers whether the gradient is greater than 2% as
one of the influencing factors of the crash frequency. 5) The
pavement conditions of the tunnels were tested annually by
the GTGTC in accordance with the Highway Performance
Assessment Standards. The test indicators include Pavement
Surface Condition Index (PCI), Riding Quality Index (RQI),
Skidding Resistance Index (SRI), and Subgrade Condition
Index (SCI). Among them, PCI is used to determine the
damage of pavement surface according to its cracks, potholes,
ruts, and other distresses, and the data was stored in units
of 20 m intervals. The higher the PCI value, the smaller the
road damage. RQI was calculated according to the smooth-
ness of the pavement surface to evaluate the impact of the
pavement surface on driving comfort, thereby determining
the driving quality of the road. The higher the RQI value, the
greater the driving comfort. SRI was calculated according to
the lateral force coefficient of the pavement surface, and is
used to evaluate the anti-skid performance of the pavement
surface. The higher the SRI value, the better the anti-skid
performance of pavement surface. Whereas SCI was used
to assess the degree of the roadbed damage, including road
shoulder damage, slope collapse, and roadbed settlement. The
SCI data was stored in unites of 50m intervals. The higher the
SCI value, the lower the degree of roadbed damage. Since
the length of the divided road sections is greater than the
sampling unit, the pavement conditions indicators of each
road segment were replaced by the weighted average of the
indicators for the sampling unit included.
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TABLE 2. Descriptive statistics of the variables.
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FIGURE 2. Schematic of a tunnel’s influence.

TABLE 3. Vehicle classifification.

According to the literature [42], when the variance influ-
ence factor (VIF) of the candidate variable exceeds 5, there
is multi-collinearity between the variable and other variables.
Such variables should be excluded when selecting variables.
The VIF is selected to test whether there is multi-collinearity
between the variables (as shown in Table 4). The results in
the table show that the VIF values of the variables selected
in this paper are less than 5, so there is no significant
multi-collinearity between the influencing factors.

III. METHODOLOGY
A. BIVARIATE FIXED PARAMETERS NEGATIVE BINOMIAL
MODEL
The number of freeway tunnel crashes is a non-negative
integer, and the process of a crash is similar to that of the
Bernoulli experiment, which can be regarded as a Poisson
distribution when the number of Bernoulli experiments in
the model is infinite, and the probability of the event is
extremely small. Vehicles passing through the freeway tunnel
segments can be approximated as a large number of repeated
experiments, and occurring crashes on tunnel segments are
small probability events compared to normal driving situa-
tions. Thus, many studies have considered the distribution
type of crashes as Poisson distribution [36], [38]. But the
Poisson distribution restricts the mean and variance to be
equal. As shown in Table 2, the means of the SI and KSI

TABLE 4. VIF values of the explanatory variables.

crashes are 0.572 and 0.171, respectively. The variances
are 1.182 and 0.428, respectively. Means and variances are
not equal, and the means are less than variances, indicating
samples have significant over-dispersion characteristics. The
Poisson distribution can not fit crash frequency effectively.
The negative binomial distribution model introduces discrete
parameters ϕk based on the Poisson distribution, assuming
that the discrete parameters ϕk obey the gamma distribution,
and this form is considered more effective in dealing with
the over-dispersion of the samples [26], [44]. Based on this,
the negative binomial distribution was introduced to describe
the distribution of freeway tunnel crash frequency. So This
paper adopts the bivariate fixed parameters negative bino-
mial model (BFPNB model) as the basic model to match

38052 VOLUME 10, 2022



M. Cai et al.: Bayesian Bivariate Random Parameters and Spatial-Temporal Negative Binomial Lindley Model

the non-negative integer and over-dispersion concerning the
number of crashes of different severity levels in freeway tun-
nel sections. Assuming that the crashes of different severity k
(k = 1, SI crashes; k = 2, KSI crashes, respectively. )that
occur on the road segment i within the period t obey the
NB distribution with a mean value of λi,t,k and a discrete
parameter of ϕk . The probability of the BFPNB modelcan be
expressed as follows:

p
(
Yi,t,k = yi,t,k

)
=
0
[
ϕk + yi,t,k

]
0 (ϕk) yi,t,k !

(
ϕk

ϕk + λi,t,k

)ϕk ( λi,t,k

ϕk + λi,t,k

)yi,t,k
(1)

where, 0(·) is the gamma distribution function, which is used
to describe the non-linear relationship between the exposure
variables and the number of crashes [48]–[50]; λi,t,k refers to
the mean value of the crashes of severity level k occurring on
the tunnel segment i within period t:

λi,t,k = α0F
α1
it EXP

(
β i,t,kn X i,t,kn + εi,t,k

)
(2)

where, Fit is the exposure variables of tunnel segment i at
period t , which is the product of AADT and length of tunnel
segment i at period t . X i,t,kn is the nth vector in the data on
tunnel design characteristics, traffic condition characteristics,
and pavement surface condition characteristics of tunnel seg-
ment i in relation to the severity k at time t , while β i,t,kn is a
vector of the estimable parameters corresponding to the risk
factor n in relation to the crashwith a severity level k on tunnel
segment i at period t:

β i,t,kn =

(
β1,1,kn , β1,2,kn , . . . , β217,3,km

)
,

k = 1, 2, n = 1, 2, . . . , 20 (3)

EXP
(
εi,t,k

)
is the error term between the frequency of

crash with a severity level k on tunnel segment i at period t .
The parameters estimation result, which is used to reflect the
non-structural heterogeneity caused by the individual effects
of the samples. Assuming that it obeys a bivariate normal
distribution with a mean value of 0.

εi,t∼N2(0,6), εi,t =

(
εi,t,1
εi,t,2

)
, 6 =

[
δ1,1 δ1,2
δ2,1 δ2,2

]
(4)

6 is the variance-covariance matrix, the main diagonal ele-
ment δk,k represents the variance of the error term εi,t,k ,
and the remaining elements represent the covariance between
εi,t,1 and εi,t,2. In order to measure the effect of non-structural
heterogeneity, the standard deviation is calculated using for-
mula σk =

√
δk,k . The correlation coefficient between εi,t,1

and εi,t,2 was calculated using formula ρ = δ1,2/ (σ1σ2). This
parameter indicates the correlation between the frequency
of crashes of different injury severity levels. The larger the
parameter, the stronger the correlation.

B. BIVARIATE RANDOM PARAMETERS NEGATIVE
BINOMIAL MODEL
Freeway tunnel crashes are complex events that involve a
variety of human responses to external stimuli and complex

interactions between the vehicle, roadway features/condition,
traffic-related factors, and environmental conditions. With
such a complex situation, it is impossible to access all of
the data that could potentially determine the likelihood of
a freeway tunnel crash or its resulting injury severity. The
absence of such important data can potentially present seri-
ous specification problems for traditional statistical analyses,
leading to biased and inconsistent parameter estimates, erro-
neous inferences, and erroneous crash predictions.

This paper adopts the random parameters to deal with
unobserved heterogeneity in relation to the number of crashes
of different severity in freeway tunnel sections. Based on
the BFPNB model, the bivariate random parameters negative
binomial model(BRPNB model) was developed by introduc-
ing random parameters. The BRPNB model assumed that the
crashes of different severity k that occur on the road segment
i within the period t obey the NB distribution with a mean
value of λi,t,k and a discrete parameter of ϕ. The probability
of crashes of different severity is consistent with eq.1, and the
mean value is constant with eq.2. Where, β i,t,kn is the random
parameters corresponding to the risk factor n concerning the
crash with a severity level k on road segment i at time t and
is assumed to obey a normal distribution:

β i,t,kn ∼ N
(
βn,k , ω

2
n,k

)
(5)

where, ¯βn,k and ω2
n,k represent the mean value and variance

of random parameters, respectively.

C. BIVARIATE RANDOM PARAMETERS NEGATIVE
BINOMIAL-LINDLEY MODEL
TheBRPNBmodel does not take the excess zero observations
into account. Generally speaking, Freeway tunnel crashes are
rare events. The vast majority of tunnel segments may never
have had a crash during their operational period, and sec-
ondly, every study needs to count crashes at specific period-
icities, the tunnel segments may not have had a crash during
these periodicities. Figure 3 mainly shows the distribution
of crash frequency of different injury severity levels. From
the figure, it can be seen that there are a large number of
zero observations in the data, 359 samples have never had
a SI crash, and 593 samples have never encountered a KSI
crash at the statistical periods. As presented in review of this
article, most of the current models suffer from flaws in the
goodness of fit or the logical interpretation of crashes when
fitting data with excess zero observations, so proposing a
model that can fit the excess zero observations and explain
the crash’s logic is essential. Based on this, we have explored
the new distribution, the Lindley distribution. The Lindley
distribution is characterized by a close to zero mean value and
the observed value far from zero with a long tail. It’s a mixture
of exponential and gamma distribution, and the probability of
the Lindley distribution can be defined as follows:

f
(
X = xi,t,k ; θi,t,k

)
=

θ2i,t,k

θi,t,k + 1

(
1+ xi,t,k

)
e−θi,t,kxi,t,k (6)
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FIGURE 3. Distribution of the crash frequency. (a) respects the frequency distribution of SI crash counts, and (b) respects the frequency distribution of
KSI crash counts. Most of the tunnel segments have never had a crash at both the SI and KSI severity levels. The zero observations account for a large
proportion of all statistics.

FIGURE 4. Comparison of Lindley distribution and NB distribution. Fitting the tunnel crash frequency distribution when different parameters are chosen
for the Lindley distribution and NB distribution. (a) Lindley parameter θ is 0.5, 1, 1.5, respectively, and the parameters of NB distribution are λ = 0, 0.5, 1,
respectively, the parameter ϕ is 0.75. (b) Lindley parameter θ is 0.5, 1, 1.5, respectively, and the parameters of NB distribution are λ = 0, 0.5, 1,
respectively, the parameter ϕ is 0.45.

where θi,t,k is the Lindley parameter, and xi,t,k is the influ-
encing factor of tunnel segment i in relation to the severity k
at time t .
Figure 4 displays that both the NB distribution and Lindley

distribution can fit the crash frequency. The figure changes
the parameters of different distributions and initially find a
distribution shape that is more closely to crash frequency,
as shown in Figure 4, when the Lindley parameters θ are
approximately 1 and 1.5 respectively, the Lindley distribu-
tion is similar to the distribution of SI crash frequency and
KSI crash frequency, respectively. When the parameters of

NB distribution (λ and ϕ) are 0 and 0.45, respectively, the
NB distribution can fit the SI crash frequency well. When
the λ and ϕ are 0 and 0.75, respectively, the NB distribution
is close to the KSI crash frequency. Both the NB distribu-
tion and Lindley distribution can fit the zero observations
of crash frequency, but it seems that the NB distribution
tends to under-estimate observations with a count. From these
preliminary comparisons, we speculate that Lindley distri-
bution may have advantages in fitting crash frequency dis-
tribution. Therefore we suspect that the Lindley distribution
may provide a new perspective on solving the excess zero
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observations. Inspired by this, introducing the Lindley param-
eter θi,t,k to construct the bivariate random parameters NB
Lindley(BRPNB-L) model, the BRPNB-L model is a combi-
nation of the BRPNB model and Lindley distribution, and it
can be expressed as a combination of the negative binomial
distribution, Bernoulli distribution, and gamma distribution,
combined with the random parameter method, and assuming
that the frequency of crashes of different injury severity levels
follows the negative binomial distribution which the mean
value is λi,t,k and the discrete parameters is ϕk , the probability
density function is as follows.

p
(
Yi,t,k = yi,t,k

)
=
0
[
ϕk + yi,t,k

]
0 (ϕk) yi,t,k !

(
ϕk

ϕk + θi,t,k

)ϕk ( θi,t,k

ϕk + θi,t,k

)yi,t,k
(7)

where θi,t,k is the Lindley parameter, which is calculated as
follows:

θi,t,k = λi,t,kψi,t,k (8)

ψi,t,k ∼ Gamma (1+ γk , χk) (9)

γk ∼ Bernoulli (1/ (1+ χk)) (10)

D. BIVARIATE RANDOM PARAMETERS SPATIAL NEGATIVE
BINOMIAL-LINDLEY MODEL
The BRPNB-L model takes into account unobserved hetero-
geneity and wants to improve the fit goodness to the excess
zero observations. However, as the divided freeway tunnel
segments are interconnected, certain unobserved factors may
have similar safety impacts on adjacent sections, i.e. there
are spatial effects, and the BRPNB-L model ignores spatial
effects between adjacent section units and also ignores the
spatial effects in the same section with different correlation of
spatial effects between crash frequencies with different injury
severity [12]. To address this issue, a spatial correction term
with a (Multivariate conditional autoregressive prior, MCAR)
prior φi,k can be added to the link function:

λi,t,k = α0F
α1
it EXP

(
βi,t,kXi,t,k + εi,t,k + φi,k

)
(11)

The adjacency structure is an essential component of the
MCAR prior [50]. This study uses a 0-1 adjacency matrix.
Specifically, the adjacency weights ωij between segments i
and j is 1 when tunnel segment i and tunnel segment j share a
common boundary, and otherwise ωij = 0. Based on the 0-1
adjacency matrix, the MCAR prior can be expressed as:

8i ∼ N2 (8i, �s/ni),

8i =

(
φi,1
φi,2

)
,

8l =

(
φl,1

φl,2

)
,

�s =

[
δs1,1 δs1,2
δs2,1 δs2,2

]
(12)

where ni is the number of sections adjacent to tunnel
section i,φl,k = 6i6=jφj,kωij/ni, �s is the variance matrix

of spatial correlations, where the main diagonal elements
represent the variance of the spatial effects of slight injury,
severe and fatal injury crashes, respectively. The remaining
elements represent the covariance of the spatial effects of
crashes between the two different severity levels.

E. BIVARIATE RANDOM PARAMETERS SPATIAL-
TEMPORAL NEGATIVE BINOMIAL-LINDLEY MODEL
Due to the time-varying characteristics of data such as traffic
conditions and road surface conditions, there are interactions
between such time-varying variables and unobserved factors
during the data collection period. Some of the unobserved
factors do not change over time, leading to a certain correla-
tion between the number of crashes on the same road section
i at different periods, and ignoring this correlation will lead
to bias in parameter estimation and thus to wrong inferences.
At the same time, there is an interaction between spatial and
temporal correlation, i.e., the spatial effect may change over
time, and the temporal effect may vary with road section.
To account for the spatio-temporal correlation, a spatial term,
a temporal term, and a spatio-temporal interaction term are
added to the link function of the SP-BRPNB-L model. The
link function can be expressed as follows.

λi,t,k

= α0F
α1
it EXP

(
βi,t,kXi,t,k + εi,t,k + φi,k + τt

(
αk + ζi,k

))
(13)

where τt represents the temporal scalar parameter over
period t , αk is the scalar parameter of the linear time trend
of different severities for all tunnel segments, and ζi,k is the
spatial component of the spatio-temporal interaction, obeying
the MCAR prior.

8i ∼ N2 (8l, �s/ni),

8i =

(
φi,1
φi,2

)
,

8l =

(
φl,1

φl,2

)
,

�s =

[
δs1,1 δs1,2
δs2,1 δs2,2

]
(14)

F. DESCRIPTION OF THE GOODNESS-OF-FIT INDICATOR
The criteria, Deviation Information Criterion(DIC), Mean
Absolute Deviance (MAD), and Mean Square Prediction
Error(MSPE), are often used to evaluate the goodness of
fit of Bayesian models. The DIC is a hierarchical combi-
nation of the AIC (Akaike Information Criterion) and BIC
(Bayesian Information Criterion), which is a combined mea-
sure of model complexity and fit and reflects the estimation
efficiency and accuracy of the model.

DIC = D̄+ PD (15)

D̄ is the posterior mean-variance, reflecting the fit of the
model, and PD is the number of valid parameters, reflect-
ing the complexity of the model. In general, the smaller
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the DIC of a model, the better its performance, and a DIC
difference of 5 indicates significant differences between
models [51].

The MAD and MSPE reflect the degree of deviation of
the fitted crash frequency of the model from the actual crash
frequency. To assess the goodness of fit of the model for crash
frequencies at different severity levels, MAD andMSPEwere
calculated for different severity levels [49].

MADk =
1

3× 217

i=217∑
i=1

3∑
t=1

∣∣Yi,t,k − λi,t,k ∣∣ (16)

MSPEk =
1

3× 217

i=217∑
i=1

3∑
t=1

(
Yi,t,k − λi,t,k

)2 (17)

G. EVALUATION INDICATORS FOR SAFETY EFFECTS
To understand the effect of observed factors on the crash
frequency of different severity levels, the range of variation
of crash frequency expected for a unit period increase in the
independent variable was calculated [46], i.e., The Incidence
Rate Ratio (IRR). Also, from the IRR value can be indirectly
seen that significant risk factors are linearly or non-linearly
correlated with crash frequency. When the IRR value is close
to 1, the risk factors are linearly correlated with crash fre-
quency; conversely, they are non-linearly correlated.

IRRm =
E
(
Yitk | X̃i,t,k,Li,Vi,t,k , xm + 1

)
E
(
Yitk | X̃i,t,k ,Li,Vi,t,k , xm

)
= exp (βm) (18)

where X̃i,t,k denotes the influence of factors other than xm for
crashes with a period of t and severity k on segment i, βm is
the regression coefficient of the exposure variable xm and the
IRR value of the exposure variable represents the value of the
change in crash frequency corresponding to a 1% shift in
the exposure variable, with the equation:

IRRe =
E
(
Yi,t,k | Xi,t,k, 1.01 Xe

)
E
(
Yi,t,k | Xi,t,k ,Xe

) = 1.01βe (19)

βe is the regression coefficient of Xe.

IV. RESULTS AND DISCUSSION
A. PLATFORM AND PARAMETERS SETTING BASED ON
THE BAYESIAN MODEL
With the advancement of computing methods, Bayesian
inference has become more widespread. As there is no need
for Bayesian inference to use the closed likelihood function,
thereby reducing the complexity of the model parameters
estimation, its application is becoming more popular [52].
All candidate models used in this paper were programmed,
parameters estimated, and evaluated in OPENBUGS. This
software was simulated using MCMC (Markov Chain Monte
Carlo), which is currently widely represented by the algo-
rithms of Gibbs sampling and Metropolis-Hastings [14].

The prior distribution of parameters is required for
Bayesian estimation, and non-informative prior distributions

are usually specified when the prior information is insuffi-
cient. In this study, the diffusion prior distribution N

(
0, 104

)
was used as the prior average of random parameters βk,m(m =
1, 2, . . . , 20; k = 1, 2) and scalar parameters (k = 1, 2),
and the diffusion gamma distribution (0.001, 0.001) was used
as the prior average of random parameters. The Wishart
distribution (W(P,r)) was set as the prior of 6−1, �−1s and
�−1a , where, P is the proportional matrix; r is the degree
of freedom. A chain of 500,000 simulation iterations was
constructed for each model, and the first 450,000 iterations
were excluded as aging. The convergence of MCMC was
evaluated according to the Gelman-Rubin statistics in open-
bugs. According to research [12], a parameter is defined as
random if the Bayesian estimated standard deviation of the
parameter is significantly different from zero, otherwise, it is
estimated as a fixed parameter.

B. MODEL COMPARISON
The regression coefficients and goodness of fit indicators
estimated by the candidate models in this paper are shown in
Table 5. First, comparing the estimation results of the BRPNB
model and BFPNB model, it can be seen that the BRPNB
model has lower DIC, MAD, and MSPE values than the
BFPNB model, indicating the goodness of fit of the BRPNB
model is better, Showing that the proposed model introduced
random parameters to consider the unobserved heterogeneity
can primarily improve the performance of fitting crash data
of different injury severity levels.

Secondly, according to the comparison results between
the bivariate random parameters NB Lindley model and the
bivariate random parameters NB model, regardless of the
severity of the crash data set, the former has lower DIC,
MAD, and MSPE values than the latter, indicating that the
BRPNB-L model is more suitable for tunnel crash data sets
with excess zero observations, thus obtaining better good-
ness of fit. At the same time, the Lindley parameter in the
BRPNB-L model is significant (2.187) at 95% Bayesian
credibility level, which also reflects the effect of Lindley
distribution. This result is consistent with the research result
of Tang Feng [20]. Both results support the idea that Lindley
distribution can improve the model’s ability to fit excess zero
observations.

Thirdly, this study discusses the unobserved heterogeneity
and spatio-temporal interaction by comparing the three mod-
els of BRPNB-L, SP-BRPNB-L, and ST-BRPNB-L. Accord-
ing to Table 5, the DIC value (3158), MAD value (SI: 0.31;
KSI: 0.24), and MSPE value (SI: 0.21; KSI: 0.13) for SI and
KSI crashes in the SP-BRPNB-L model are all lower than
the DIC value (3611), MAD value (SI: 0.42; KSI: 0.30), and
MSPE value (SI: 0.33; KSI: 0.20) in the BRPNB-L model,
indicating the former is more suitable for the crash data set
than the latter.

The spatial effects of SI and KSI crash frequency are sig-
nificant at the 95% Bayesian credibility level, 4.19 and 2.69,
respectively. Previous research has shown that [44], [53],
[54], considering spatial effects can significantly improve the
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fit of the model. At the same time, the correlation between
the spatial effects of different severity for crashes is relatively
high (ρs = 0.96), indicating the necessity of using MCAR
prior for bivariate spatial modeling. The strong correlation
between spatial effects may be attributed to the spatial aggre-
gation of factors such as terrain and socio-economics and
are shared by crashes of different severity at the same time.
After considering the spatial correlation, the non-structural
heterogeneity between SI and KSI crashes was reduced by
18% and 9.22%, respectively. Literature [22], [55] found that
part of the unobserved heterogeneity in the bivariate model is
derived from the same unobserved heterogeneity in adjacent
tunnel segments or the influence of spatial effects.

After incorporating temporal correlation and spatio-
temporal interaction into discussion, the DIC value (=3014)
and MAD values (SI=0.29, KSI=0.23) are lower than those
of the SP-BRPNB-L model (DIC=3158, MAD-SI=0.31,
MAD-KSI=0.24). The MSPE values of both models are
equal in SI crashes, and the spatio-temporal model in
KSI crashes appears to be smaller. It is evident that the
spatio-temporal model significantly improves the goodness
of fit compared to the spatial model. It can be seen from
the results of the ST-BRPNB-L model that the scalar param-
eters of the linear time trend for the frequency of crashes
with two severities are significant, indicating that there is a
non-negligible temporal correlation in the data set. The scalar
parameters indicate that the frequency of SI crashes, but that
of SCI crashes will increase over time. The temporal correla-
tion between SI and KSI crashes can be further demonstrated
by the estimates of δa(1, 1) and δa(2, 1). Pa is estimated to
be 0.99, indicating the strong spatial-temporal correlation
among the frequency of crashes of different severity. This
shows that the lack of factors has an impact on the safety of
the tunnel. These factors are the same on the adjacent tunnel
segments and are dependent on temporal changes. In addition,
SI and KSI crashes may share the same spatial-temporal
conditions.

In summary, the ST-BRPNB-L model has lower DIC,
MAD, and MSPE values than BRPNB, BRPNB-L, and SP-
BRPNB-L models when fitting SI and KSI crash data, indi-
cating that the ST-BRPNB-L model is the optimal model.

C. ANALYSIS OF PARAMETERS ESTIMATION RESULTS
The Bayesian estimation results of the regression parameters
of the candidate models are shown in Table 6. This section
is based on the optimal model ST-BRPNB-L to analyze the
parameters estimation results. Table 6 shows that, in the ST-
BRPNB-L model, the length of the road segments, AADT,
whether the road segment contains a tunnel entrance, a tunnel
exit, is an ascending or a descending road segment, the pro-
portions of class 3 vehicles and class 5 vehicles are positively
correlated with the frequency of KSI crashes at the level of
95%, and distance between tunnels, curvature, PCI and SRI
are negatively correlated with the frequency of KSI crashes
at the level of 95%. While for the frequency of SI crashes,
it is not significantly correlated with the proportion of

type 3 vehicles and PCI, but is significantly positively cor-
related with the logarithm of tunnel segment length, the loga-
rithm of AADT, whether the tunnel segment contains a tunnel
entrance, a tunnel exit, is an ascending or a descending road
segment, and the proportion of class 5 vehicles at the sta-
tistical level of 95%, significantly negatively correlated with
the curvature at the level of 95%, and the distance between
tunnels and SRI at a statistical level of 90%. The estimation
results showed that, for SI crashes, the regression parameters
for whether the road segment contains a tunnel entrance or
is a descending road segment and for class 5 vehicles are all
random parameters. For KSI crashes, the regression param-
eters for whether the road segment is a downhill section,
the proportion of class 5 vehicles, and SRI are all random
parameters. The standard deviations of these variables are
significant at the 95% Bayesian credibility level, as shown in
Table 7. A larger standard deviation of the regression param-
eters indicates more significant fluctuations of parameters
estimation values for random variables among samples. This
indicates that this variable and other variables have strong
correlations and are significantly heterogeneous [12]. The
order of standard deviation for each random parameter of SI
crashes is as follows: tunnel entrance (0.742) > steep ascend-
ing road segment (0.448) > proportion of class 5 vehicle
(0.245). For a KSI crash, the order of standard deviation for
each random parameter is as follows: steep descending road
segment (0.539) > proportion of class 5 vehicle (0.197) > SRI
(0.109). The influence of the above random variables on the
frequency of crashes of different severity will be explained in
detail in the following section.

D. ANALYSIS ON THE SAFETY EFFECT OF SIGNIFICANT
RISK FACTORS
Similarly, the parameters estimation results of the optimal
model ST-BRPNB-L are explained in Figure 5, Table 6,
Table 7, and Table 8. As shown in Table 8 and Figure 6, the
IRR values are used to discuss the impact of significant risk
factors on SI and KSI crashes.

1) EXPLANATION OF RANDOM PARAMETERS
The parameters estimation results show that the descend-
ing gradient indicator and proportion of the five classes of
vehicles have a heterogeneous effect on the frequency of
SI and KSI crashes. While the tunnel exit variable has a
heterogeneous effect on the frequency of SI crashes, SRI
only has a heterogeneous effect on the frequency of KSI
crashes. The regression parameters for road segment length
and AADT have a heterogeneous effect on the frequency of
crashes of different severity only. The regression parameters
of the logarithms of road segment length and AADT are
significantly positive at the Bayesian credibility level of 95%.
The regression parameters indicate that road segment length
and AADT have a significant fixed effect on the frequency
of crashes of different severity. Despite the same sign of
the remaining essential factors, the coefficients in relation to
both crashes of different injury severity levels are different.
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TABLE 5. Estimation results and goodness of fit indexes of the candidate models in this paper.

TABLE 6. Estimation results of the regression coefficients in the bivariate random parameters spatio-temporal NB-L model.

Therefore, it is necessary to model the frequency of crashes
with different injury severity levels to quantify different
impacts of influencing factors on different injury severity
levels.

In the SI crash analysis, the regression parameters of the
steep downgrade indicator were estimated to obey a nor-
mal distribution with a mean value of 0.228 and a variance
of 0.448, as shown in Figure 5(a), which indicates that,
in 69.46% of the observed road segments, the frequency of
SI crashes will increase as the descending gradient increases,
while in the remaining 30.54% observed road segments, the

frequency of SI crashes will decrease as the descending
gradient increases. In the KSI crash analysis, the regression
parameters of the steep downgrade indicator were estimated
to obey a normal distribution with amean value of 0.429 and a
variance of 0.539, as shown in Figure 5(b). This indicates that,
in 78.70% of the observations, the frequency of KSI crashes
will increase as the descending gradient increases, and for
the remaining 21.30% road segments, the frequency of KSI
crashes will decrease as the descending gradient increases.
These findings are consistent with studies [12], [22], and
also in line with engineering experience, that is, on steep
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TABLE 7. Estimated standard deviations of the random parameters in bivariate random parametersspatio-temporal NB-L model.

FIGURE 5. Distributions of the random parameters in the ST-BRPNB-L model. (a),(b) represent the random parameter distributions of steep downgrade
indicator at SI and KSI severity level, respectively, (c),(d) represent the random parameter distributions of the proportion of class 5 vehicles at SI and KSI
severity level, respectively,(e) respects the random parameter distributions of tunnel entrance indicator at SI severity level, and (f) respects the random
parameter distributions of SRI at KSI severity level.

TABLE 8. IRR values of each significant variable in the bivariate random
parameters spatio-temporal NB-L model.

descending road sections, with the increasing of vertical
gradient, the probability of a crash which caused by brake
failure due to frequent braking will increase. At the same
time, the IRR value shows that the tunnel segment with a
descending gradient greater than 2% is 25.6% and 53.6%

higher than the remaining road segments with SI and KSI
crashes.

In the SI crash analysis, the regression parameters for
the proportion of class 5 vehicles were estimated to obey a
normal distribution with a mean value of 0.072 and a variance
of 0.245, as shown in Figure 5(c). This shows that, in 61.56%
of the observations, the frequency of SI crashes will increase
as the proportion of class 5 vehicles increases, and in the
remaining 38.44% observations, the frequency of SI crashes
will decrease as the proportion of class 5 vehicles increases.
In the KSI crash analysis, the regression parameters for the
proportion of class 5 vehicle were estimated to obey a normal
distribution with a mean value of 0.084 and a variance of
0.197, as shown in Figure 5(d). The results showed that,
in 66.51% of the observations, the frequency of SI crashes
would increase as the proportion of class 5 vehicles increases,
and in the remaining 33.49% observations, the frequency of
KSI crashes will decrease as the proportion of class 5 vehi-
cles increases. According to the research results of [14],
the proportion of class 5 vehicles is related to the driver’s
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FIGURE 6. The estimated parameters and IRR values of significant variables based on the SP-MRPNB-L models. (a) represents the estimated parameters
of significant variables at the SI crash severity level. (b) represents the IRR values of significant variables at the SI crash severity level. (c) represents the
estimated parameters of significant variables at the KSI crash severity level. (d) represents the IRR values of significant variables at the KSI crash severity
level.

age, pavement conditions, and the traffic environment, which
jointly affect the frequency of crashes. Therefore, the pro-
portion of class 5 vehicles as a random variable is mainly
attributed to pavement conditions of each tunnel and drivers’
driving habits. Some research [15], [56] believed that, as the
proportion of class 5 vehicles increases, the frequency of
highway crashes would see a significant decrease. As for the
main reason, heavy-duty vehicle drivers are more skillful in
driving and are more familiar with the established routes.
In addition, the driving duration of heavy-duty vehicle drivers
is strictly regulated in China. So, the proportion of class
5 vehicles is negatively correlated with the frequency of
crashes. However, the above research is based on open roads
on highways, and tunnel sections have more enclosed space.
As the proportion of class 5 vehicles increases, 1) The driving

speed in the tunnel is slower, which increases the possibility
of lane change and overtaking by vehicles behind; 2) The
width of the lateral field of view in the tunnel is narrower,
and heavy-duty vehicle drivers will have a much stronger
sense of oppression. The lateral position of the vehicle will
be frequently adjusted to maintain its spacing from the tunnel
wall, which will cause inference to adjacent lanes. 3) Heavy-
duty vehicles may limit the field of view of small vehicles
nearby, thereby adding the possibility of collisions between
different vehicles. Research [12], [14] supported the ideas
in this paper. Meanwhile, the IRR value for the proportion
of class 5 vehicles (1.075 and 1.088 for SI and KSI acci-
dents) indicated that the proportion of class 5 vehicles in the
traffic volume is positively correlated with the incidence of
traffic crashes of different severity. In particular, when the
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proportion of class 5 vehicles increases by 1%, the fre-
quency of slight injury crashes will increase by 7.5%
(=1.075-1), and the frequency of KSI crashes will increase
by 8.8% (=1.088-1).

For SI crashes, the regression parameters of the tunnel
entrance were estimated to obey a normal distribution with
a mean value of 0.304 and a variance of 0.742, as shown in
Figure 5(e). This showed that, in 65.90% of the observations,
the segment with a tunnel entrance has a higher frequency
of SI crashes, and in the remaining 34.10% observations, the
segment with a tunnel entrance has a lower frequency of SI
crashes. According to study [14], this random variable and
the physiological conditions of the driver are correlated with
each other. It is difficult formost drivers to adapt to the rapidly
changing lighting conditions, and the violent psychological
fluctuations and operating errors of the driver may lead to
an increase in the frequency of crashes. In addition, the IRR
values of the tunnel entrance index (1.355 and 1.510 for SI
and KSI crashes) indicate that the frequency of SI and KSI
crashes on the road segment with a tunnel entrance is 35.5%
and 51%higher than that of other road segments, respectively.

The regression parameters of SRI were estimated to obey
a normal distribution with a mean value of -0.021 and a
variance of 0.109, as shown in Figure 5(f). This showed
that, in 42.36% of the observations, the frequency of KSI
crashes would increase as the SRI increases, and in the
remaining 57.64%observations, the frequency of KSI crashes
will decrease as the SRI increases. Also, the IRR value of SRI
(0.968 and 0.979 for SI and KSI crashes) showed that SRI is
negatively correlated with the incidence of traffic crashes of
different severity. In particular, the frequency of SI crashes
will decrease by 3.2% (=0.968-1), and that of KSI crashes
will reduce by 2.1% (=0.979-1) when SRI increases by 1%.

2) EXPLANATION OF FIXED PARAMETERS
Firstly, the length of road segment and AADT are signifi-
cantly positively correlated with the frequency of SI and KSI
crashes at the 95% Bayesian credibility level. The regression
parameters of road segment length that correspond to the
frequency of SI and KSI crashes are 1.128 and 1.174, respec-
tively, indicating that the frequency of SI and KSI crashes
in the tunnel will become higher as the length of tunnel
segments increases. The regression parameters of AADT
that correspond to the frequency of SI and KSI crashes are
1.987 and 2.679, respectively, showing that the greater the
traffic volume, the higher the frequency of crashes of different
severity in the tunnel, which is consistent with engineering
experience. Studies [14], [22], [24] also supported this view-
point. When crashes occurred on each road segment and said
segment is affected by other external factors, each tunnel
segment will have an equal probability of crashes. Therefore,
crash frequency will increase as the tunnel segment length
increases. At the same time, the IRR values of road segment
length that correspond to SI and KSI crashes are 1.011 and
1.012, respectively. This showed that, for every 1% increase
in the Log(segment length), the frequency of SI crashes

would increase by 1.1%, and that of KSI crashes by 1.2%.
Literature [31] showed that the crash frequency on an open
road would decrease as the AADT increases. The researchers
believed that the speed of the traffic would become extremely
low when there is congestion on the road, thereby avoiding
traffic crashes. And literature [22], [24], [26], [31] described
the principle of the impact of traffic volume on the crash rate,
that is, the driver is disturbed more by surrounding vehicles
when they drive on a road segment with heavy traffic volume.
Also, the enclosed environment of the tunnel segment has
aggravated the inference among traffic flow, with a higher
probability of crashes. The IRR values of AADT correspond-
ing to SI and KSI crashes are 1.020 and 1.027, respectively.
This indicated that, for every 1% increase in Log(AADT), the
frequency of SI crashes would increase by 2.0%, and that of
SCI crashes by 2.7%.

Secondly, the impact of distance between adjacent tunnels
on the frequency of crashes of different severity was dis-
cussed. The regression parameters of the distance between
adjacent tunnels for SI and KSI crashes are −0.129 and
−0.198, respectively, indicating the significant negative cor-
relation of the distance between adjacent tunnels with the
frequency of SI and KSI crashes, which is consistent with
the results of [14]. Before entering the next tunnel, the driver
has sufficient time to relive their mental state, reducing crash
frequency. Meanwhile, study [12] showed that frequently
changing lighting conditions within a short distance will
make drivers exposed to greatly different lighting condi-
tions (lighting conditions and natural lighting conditions in
tunnels). As a result, the driver will become more nervous
and feel it is difficult to adapt to the conditions, causing
an increase in crash frequency. IRR values of this indicator
that correspond to SI and KSI crashes are 0.879 and 0.820,
respectively. This indicated that for an increase in every unit
of the distance between adjacent tunnels, the frequency of
SI crashes will decrease by 12.1% and that of KSI crashes
by 18%.

A road segment that contains a tunnel entrance or exit is
significantly positively correlated with the frequency of SI
andKSI crashes at the 95%Bayesian credibility level. Among
them, the regression parameters for whether the road segment
contains tunnel entrances in SI and KSI crashes are 0.304 and
0.412, with IRR values of 1.355 and 1.510, respectively; the
regression parameters for whether the road segment contains
a tunnel exit in SI and KSI crashes are 0.143 and 0.357, with
IRR values of 1.154 and 1.429 respectively. It shows that the
frequency of SI and KSI crashes in the segment with tunnel
entrance and exit is higher than that of other tunnel segments;
and at the entrance and exit of the tunnel, the frequency of
SI crashes is 35.5% and 15.4% higher than that of other
tunnel segments; and the frequency of KSI crashes is 51.0%
and 42.9% higher than that of other tunnel segments, which
are consistent with the results of studies [12], [22]. Due to
the rapidly changing lighting conditions at the entrance and
exit of the tunnel, the driver’s vision will respond fast. The
physiological effect of the driver caused may lead to their
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improper operation and then result in traffic crashes. The
frequency of SI and KSI crashes at the entrance of the tunnel
are higher than that at the exit of the tunnel, showing high
crash frequency at the tunnel entrance and higher severity of
the crash, which is consistent with the results of [8]. This
means that when the illumination in the drivers’ field of
vision changes dramatically in a short time, there will be
temporary blindness, and they need a certain time interval
to recognize the internal situation of the tunnel, which is
commonly referred to as ‘‘the black hole effect(strong light
environment to weak light)’’ and ‘‘the white hole effect(weak
light environment to strong light)’’. Such phenomena will
seriously affect traffic safety.

In the analysis for SI and KSI crashes, the regression
parameters of curvature were estimated to be -0.048 and
-0.029, respectively, indicating the negative correlation of
curvature with the frequency of SI and KSI crashes. The
results of this study are consistent with the conclusions of [24]
and are opposite to the conclusions of [12], [25]. The reason
lies in the fact that the selection of the design indicator values
for freeways in China, especially freeway tunnel sections,
is relatively conservative. The actual design geometry values
are usually much higher than the value of design indicators,
and the indicator selection is generally reasonable. Such crash
is generally caused by the decrease in the driver’s alert-
ness due to the excessively high alignment index. Therefore,
an appropriate increase in curvature of a turn improves tun-
nel traffic safety. The IRR values corresponding to SI and
KSI crashes are 0.953 and 0.971, respectively. This indicates
that, for every 1% increase in curvature, the frequency of SI
crashes in the tunnel segment decreases by 4.7%, and that of
KSI decreases by 2.9%.

The proportion of class 3 vehicles is significantly posi-
tively correlated with the frequency of KSI crashes at the
95% Bayesian credibility level, with a regression parameter
of 0.059 and IRR value of 1.061. This indicates that, for
every 1% increase in the proportion of class 3 vehicles, the
frequency of KSI crashes increases by 6.1%.

PCI has a significant effect on KSI crashes and is nega-
tively correlated with the frequency of KSI crashes, with a
regression parameter of -0.010. The results of this study are
consistent with those of [12], [14]. That is, a better pavement
condition indicates a lower frequency of crashes on the tunnel
segment. The IRR value is 0.990, indicating that for every
1% increase in PCI indicator, the frequency of KSI crashes
decreases by 1%.

V. CONCLUSION
A bivariate spatio-temporal analysis method was adopted in
this study. The frequency of crashes in the tunnel section
was classified by severity levels in combination with the
mixed distribution method that considers the excess zero
observations and the random parameters method. In addition,
a bivariate random parameters negative binominal Lindley
model that considers the spatio-temporal effects was estab-
lished, aiming to explore the influence of tunnel design

characteristics, traffic conditions, pavement conditions, and
other factors by crashes of different injury severity levels
on freeway tunnels in China. In order to demonstrate the
superiority of the ST-BRPNB-L model, this model was com-
pared with the BFPNB(widely used by researchers), BRPNB,
BRPNB-L, and SP-BRPNB-L models. The results showed
that the ST-BRPNB-L model reduces the estimation bias
caused by excessive zero observations through the introduc-
tion of the Lindley distribution; introducing the independent
spatial effect (specified by MCAR prior), temporal effect
(specified by linear temporal trend), and spatio-temporal
effect (formed by the product of the temporal trend and the
prior of spatial term and MCAR) reduce estimation bias
caused by spatio-temporal correlation. At the same time,
through the structured heterogeneity, it can be found that
the correlation coefficients between different injury severity
levels are small. This indicates that, after the spatio-temporal
parameters are considered, the unobserved heterogeneity of
the model will be small, and the spatio-temporal effect and its
interaction will be an essential part of structured heterogene-
ity. Thus, the ST-BRPNB-Lmodel has the best goodness of fit
among all models. According to the ST-BRPNB-L estimation
results, the length of the road segment, AADT, whether the
road segment has an entrance, an exit, is an ascending road
segment or a descending road segment, proportion of class
3 vehicles, and proportion of class 5 vehicles are significantly
positively correlated with the frequency of KSI crashes at
the 95% level. The distance between tunnels, curvature, PCI,
and SRI values are negatively correlated with the frequency
of KSI crashes at the level of 95%. The frequency of SI
crashes are not significantly correlated with the proportion of
class 3 vehicles and PCI, significantly positively correlated
with the road segment length, AADT, a tunnel segment with
an entrance or an exit, is an ascending road segment or a
descending road segment, and proportion of class 5 vehi-
cles at the statistical level of 95%, significantly negatively
correlated with curvature at the 95% level, and significantly
negatively correlated with the distance between tunnels and
SRI at the statistical level of 90%. It can be known from
the IRR values that the distance between two tunnels, tunnel
entrance/exit, and whether the ascending/descending road
segment have a more substantial influence on the frequency
of crashes of different injury severity levels. The results of this
study allow a better understanding of the influence of tunnel
design characteristics, traffic characteristics, and pavement
conditions on the frequency of crashes of different severity in
freeway tunnels and provide suggestions for safety measures
of tunnel sections.
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