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ABSTRACT To improve the estimation accuracy of the state parameters of distributed electric vehicles,
a double inverse covariance intersection generalized fifth-order cubature Kalman filter (DICI-GFCKF) es-
timation algorithm is proposed. Based on the fifth-order cubature Kalman filter algorithm, the generalized
cubature rule is used to directly obtain the weight and cubature point of the algorithm. Then, the inverse
covariance intersection (ICI) data fusion algorithm is introduced and combined with the generalized fifth-
order CKF, and the double inverse covariance intersection-generalized fifth-order cubature Kalman filter is
derived. The algorithm is applied to estimate the state parameters of distributed electric vehicles. Finally, the
simulation and the vehicle experiment show that the algorithm not only improves the estimation accuracy
and stability but also reduces the influence of the system model nonlinearity on the algorithm, and has good
effectiveness and robustness.

INDEX TERMS Electric vehicles, state parameter estimation, generalized cubature rule, ICI data fusion,
fifth-order CKF.

I. INTRODUCTION
The electric vehicle sector has developed exponentially in
China in the last few years as one of the most essential strate-
gies for achieving energy transition. As a very important part
of electrical vehicles, the driving force and braking force of
the motor are independently governable, with a high control
accuracy and a quick response speed [1]–[3]. The main devel-
opment trend in intelligent vehicle power transmission is
the distributed electric drive. Additionally, precisely gaining
vehicle driving state parameters is the foundation for smart
vehicles to make accurate control and decisions. Because of
the cost and the technological constraints, a reliable and stable
algorithm for estimating a vehicle’s sideslip angle, yaw rate,
and other difficult-to-gain state characteristics is needed.

Accurate estimates of vehicle driving state parameters have
always been a common issue for researchers. The unscented
Kalman filter (UKF) [4]–[7] and the extended Kalman filter
(EKF) [8]–[10] are now the most popular algorithms for
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estimating vehicle state parameters, while some researchers
also employ the cubature Kalman filter (CKF) [11], [12] and
the particle filter (PF) [13], [14]. H. Heidfeld et al., consid-
ering the uncertainty of the tire model, used the unscented
Kalman filter to estimate the sideslip angle and the tire param-
eters [15]. J. Xianjian et al. observed the vehicle speed, the
sideslip angle, and the vehicle inertia coefficient through the
unscentedKalman filter [16]. T. Kim et al. proposed amethod
combining LIDAR and the extended Kalman filter, which
improved the accuracy of the distance measurement, and
reduced the error of the algorithm [17]. W. Shaoyuan et al.
used singular value decomposition to improve the cubature
Kalman filter and estimated the lateral velocity, the longitudi-
nal velocity, and the sideslip angle [18]. Katriniok et al. used
the extended Kalman filter to dynamically observe vehicle
longitudinal and lateral velocities, as well as the yaw rate,
and proved that the filter had such good estimation accu-
racy through real vehicle experiments [19]. S. Strano et al.
proposed a constrained untraced Kalman filter (CUKF) to
estimate the sideslip angle by considering the state constraints
of the unscented Kalman filter in the estimation process [20].
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The UKF has strong estimating capabilities for nonlinear
systems, but it is prone to losing accuracy and collapsing the
algorithm when dealing with high-dimensional matrices.

The EKF is a reliable way to estimate a vehicle’s sideslip
angles. To linearize the system, the method must execute
the Jacobian matrix derivation of the state equation. As a
result, the extent of the computation is vast for nonlinear
systems, and the error is larger. A genetic algorithm improves
the PF, and the particle shortage problem is overcome. The
calculated value outperforms the UKF and the UPF-derived
values in an experimental comparison. This approach gener-
ates a large number of particles, consumes computer memory,
slows down computation, and results in poor real-time perfor-
mance. Arasaratnm and Haykin proposed a cubature Kalman
filter (CKF) algorithm based on the cubature rule [21]. Com-
pared with UKF and EKF, the CKF obtains higher accuracy
by integrating the spherical and radial surfaces, respectively,
by using the spherical-radial cubature rule. However, the
third-order CKF is not sufficiently accurate in many filtering
problems. To obtain the state parameters of the vehicle more
accurately, a higher-order CKF is needed to improve its per-
formance. However, the complex structure of the spherical-
radial integral used in the third-order CKF makes it difficult
to derive a higher-order CKF. Therefore, this paper proposes
a high-order CKF algorithm that uses the properties of a fully
symmetric numerical integral equation to solve the weight
and cubature points of the cubature equation, and then con-
structs the CKF algorithm of different orders.

In summary, the above problem of the lack of accuracy in
estimating the driving state parameters of distributed elec-
tric vehicles is addressed. In this paper, a nonlinear vehicle
dynamics model is established, and a discrete mathematical
model for the estimation algorithm is obtained. Using the
generalized cubature rule and the ICI data fusion algorithm,
a generalized fifth-order CKF algorithm with double ICI
fusion is proposed to estimate the state parameters of the
distributed drive electric vehicles. To prove the effectiveness
of the proposed algorithm, joint simulation and actual vehicle
experiments are carried out in the MATLAB/Simulink and
Carsim software. The results show that the estimation algo-
rithm proposed in this paper has high accuracy.

This paper is organized as follows: Section 2 presents the
system model, which includes the 3-degree-of-freedom vehi-
cle dynamics model and the lateral force estimation model.
The local fusion algorithm and the DICI-GFCKF algorithm
are described in Section 3 and Section 4. Section 5 presents
the simulation analysis, and the real vehicle experiment is
presented in Section 6. The concluding remarks are presented
in Section 7.

II. NONLINEAR VEHICLE DYNAMICS MODEL
A. THREE-DEGREES OF FREEDOM VEHICLE DYNAMICS
MODEL
A nonlinear 3-DOF vehicle model is built to make it easier to
predict the vehicle state, as shown in Figure 1 [22], [23].

FIGURE 1. Vehicle dynamics model.

The equilibrium equation of vehicle dynamics is as
follows:

ax =
1
m
[(Fxfl + Fxfr ) cos δ − (Fyfl + Fyfr ) sin δ

+Fxrl + Fxrr ] (1)

ay =
1
m
[(Fxfl + Fxfr ) sin δ + (Fyfl + Fyfr ) cos δ

+Fyrl + Fyrr ] (2)

Izγ̇ = [(Fxfr − Fxfl) cos δ + (Fyfl − Fyfr ) sin δ]
tf
2

+[(Fxfl + Fxfr ) sin δ

+(Fyfr + Fyfl) cos δ]a+ (Fxrr

−Fxrl)
tf
2
− (Fyrr + Fyrl)b (3)

where γ is the yaw rate, β is the sideslip angle, δ is the front
wheel angle, m is the mass of the vehicle, Iz is the moment
of inertia about the z-axis, the tires’ longitudinal and lateral
forces are Fxij and Fyij, the front and rear wheel treads are tf
and tr , and the distances between the center of the centroid
position and the front and rear axles are a and b.

B. LATERAL FORCE ESTIMATION MODEL
The distributed drive electric vehicle is the subject of this
study. The four-wheel longitudinal force may be calculated
directly using the driving torque and the motor speed as
follows [24]–[26]:

F̂xij = (Tij − Jωij)/R (4)

where J denotes the four-wheel moment of inertia, Tij denotes
the four-wheel driving torque, ωij denotes the four-wheel
wheel speed, and R denotes the wheel radius.

Using the magic tire model to calculate the lateral force,
the formula is as follows:

F̂yij = D sin[C arctan{BX − E(BX − arctan(BX ))}]

X = x + Sh (5)

This equation is very adaptable to a static vehicle system.
However when the vehicle speed or tires’ sideslip angle varies
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due to the changing road conditions, the lateral force com-
puted by the magic formula is too inaccurate. As a result, the
relaxation model is used in this article to estimate the wheel
lateral force, which is indicated in the equation as follows
[27]:

Ḟyij =

√
v2x + (vxβ)2

σij
(Fyij − F̂yij) (6)

where σij is the relaxation factor, Sh is the horizontal displace-
ment, B is the rigidity factor, C is the shape factor, D is the
peak factor, and E is the curvature factor.
The vertical load of the wheels is related to each element

in the equation above. The change in the tire force is caused
by a change in the vertical load of the wheel and the sideslip
angle of the tire. Therefore, the normal forces and the sideslip
angle of the tire must be calculated as follows:

Fzfl,r = m(g
b

2(a+ b)
− ax

hg
2(a+ b)

∓ ay
hgb

tf (a+ b)
)

Fzrl,r = m(g
a

2(a+ b)
+ ax

hg
2(a+ b)

∓ ay
hga

tr (a+ b)
) (7)

αfl,r = δ − arctan(
vy + aγ

vx ∓
tf
2 γ

)

αrl,r = − arctan(
vy − bγ

vx ∓
tr
2 γ

) (8)

where γ is the yaw rate, Fzij is the tire’s normal force, hg is
the center of the mass height, and αij is the sideslip angle of
the tire.

C. STATE SPACE REPRESENTATION
To calculate the yaw rate, the sideslip angle, and the longi-
tudinal speed, according to (1-3), the state equation and the
measurement equation are established as follows:{

ẋa(t) = fa(xa(t),ua(t))+ wa(t)
za(t) = ha(xa(t),ua(t))+ va(t)

(9)

where the state variable xa(t) = (γ , β, vx)T = (xa1, xa2,
xa3)T ; the measured variable za(t) = (ay) = (za1); and the
input variable ua(t) = (δ, ax)T = (ua1, ua2)T . The function
fa can be expressed as follows:

fa =


k1a2 + k2b2

Izxa3
xa1 +

k1a− k2b
Iz

xa2 −
k1a
Iz
ua1

k1a− k2b− mx2a3
mx2a3

xa1 +
k1 + k2
mvx

xa2 −
k1
mvx

ua1

xa1xa2xa3 + ua2


(10)

The function ha can be expressed as follows:

ha =
ak1 − bk2
mxa3

xa1 +
k1 + k2
m

xa2 −
k1
m
ua1 (11)

The state equation and the measurement equation of the
wheel lateral force can be established according to (4-8) as

follows: {
ẋb(t) = fb(xb(t),ub(t))+ wb(t)
zb(t) = hb(xb(t),ub(t))+ vb(t)

(12)

where the state variable xb(t) = (Fyfl , Fyfr , Fyrl , Fyrr )T =
(xb1, xb2, xb3, xb4)T ; the measured variable zb(t) =

(ax , ay)T = (zb1, zb2)T ; and the input variable ub(t) = (δ, vx ,
β, Fxfl , Fxfr , Fxrl , Fxrr )T = (ub1, ub2, ub3, ub4, ub5, ub6, ub7)T .
The function fb can be expressed as follows:

fb =



ub2
√
1+ u2b3
σij

(xb1 − F̂yfl)

ub2
√
1+ u2b3
σij

(xb2 − F̂yfr )

ub2
√
1+ u2b3
σij

(xb3 − F̂yrl)

ub2
√
1+ u2b3
σij

(xb4 − F̂yrr )


(13)

The function hb can be expressed as follows: (14), as shown
at the bottom of the next page.

III. LOCAL FUSION ALGORITHM
For the local fusion problem of a vehicle’s multisensor sys-
tem, its cross-covariance matrix is often difficult to obtain,
but the CI algorithm provides a good solution to data fusion
in the case of unknown cross-covariance.

The CI fusion algorithm is as follows:
For j = 1, . . . n vehicle-mounted multisensor systems,

the local estimate x̂j and the corresponding error covariance
matrix Pj are known. The CI fusion algorithm is as follows:

x̂CI = PCI
n∑
j=1

ωjP−1j x̂j

P−1CI =
n∑
j=1

ωjP−1j

n∑
j=1

ωj = 1 (15)

The minimization parameter ωj is determined by the equa-
tion as follows:

min trPCI = min
ω∈[0,1]

tr

[
n∑
j=1

ωjP−1j ]−1

 (16)

However, the CI fusion algorithm has strong limitations,
and the fusion results obtained by this algorithm are con-
servative. Reference [28] proposed the inverse covariance
intersection (ICI) fusion algorithm, which not only inherits
the advantages of the CI fusion algorithm but also greatly
reduces its conservatism and improves the fusion accuracy,
which is an improvement of the CI fusion algorithm.
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The ICI fusion algorithm is written as follows:

x̂ICI =
n∑
j=1

Ljx̂j (17)

where the gains L1. . .Ln are as follows:

Lj = PICI (P−1j − ωj(
n∑
j=1

ωjP j)−1) j = 1, · · · , n (18)

The ICI fusion error variance matrix is as follows:

PICI = (
n∑
j=1

P−1j −(
n∑
j=1

ωjP j)−1)−1 (19)

The minimization parameter ωj is determined by the equa-
tion as follows:

min trPICI = min
ω∈[0,1]

tr

[
n∑
j=1

P−1j −(
n∑
j=1

ωjP j)−1]−1


n∑
j=1

ωj = 1 (20)

This paper combines the ICI fusion algorithm with the
Kalman filter algorithm to obtain the double inverse covari-
ance intersection-generalized fifth-order cubature Kalman
filter. This algorithm avoids the estimation error caused by
the unknown mutual covariance matrix between the sensors.
The traditional error covariance matrix (Pk ) is updated by the
ICI fused error covariance matrix (PICI ). Errors in the update
process of the Kalman filter algorithm are reduced, and the
accuracy and the robustness of the filter are improved.

IV. THE DICI-GFCKF ALGORITHM
The state equation and the observation equation of the vehicle
filter are established as follows:{

x(k + 1) = f (x(k),u(k))+ w(k)
z(k + 1) = h(x(k + 1),u(k + 1))+ v(k + 1)

(21)

where x(k) ∈ Rn is the system state, u(k) ∈ Rm and z(k+1) ∈
Rp represent the control input and the measurement vector
at discrete time k + 1. f (.) represents the system function
and h denotes the measurement function. w(k) and v(k + 1)
denote the process and the measurement noise with a known
covariance, w(k) ∼ N (0,Q) and v(k + 1) ∼ N (0,R).

A. GENERALIZED CUBATURE RULE
The fifth-order CKF is first processed using the generalized
cubature rule, and then the ICI algorithm is merged into it to
increase the accuracy of the vehicle state estimate. Finally, the
DICI-GFCKF (double inverse covariance intersection gener-
alized fifth-order cubature Kalman filter) is constructed.

The equation for the generalized cubature rule is as fol-
lows [29]–[31]:

I (f ) =
∫
Rn
f (x)N (x; x̂,P)

= W̃0f [0]+ W̃1

2n∑
i=1

f [τ ]+ W̃1,1

2n(n−1)∑
i=1

f [τ, τ ], n > 1

(22)

where W̃0, W̃1, W̃1,1 are the weights of f [0], f [τ ], and f [τ ,
τ ], which satisfy the following equation as follows:

I0
I2
I4
I2,2

 =

W̃0 + 2nW̃1 + 2n(n− 1)W̃1,1

2υ2W̃1 + 4(n− 1)υ2W̃1,1

2υ4W̃1 + 4(n− 1)υ4W̃1,1

4υ4W̃1,1

 (23)

The solution to (23) is as follows:

I0 =
∫
Rn

exp(−xT x)dx =
√
πn

I2 =
∫
Rn

exp(−xT x)dx =
√
πn/2

I4 =
∫
Rn
x41 exp(−x

T x)dx = 3
√
πn/4

I2,2 =
∫
Rn
x21x

2
2 exp(−x

T x)dx =
√
πn/4

(24)

The unique solution to (24) is as follows:

τ =

√
3
2

W̃0 = [1− (7− n)n/18]/
√
πn

W̃1 = (4− n)
√
πn/18, W̃2 =

√
πn/36 (25)

Substituting the solution into (22) is as follows:

I (f ) =
∫
Rn
f (x)N (x; x̂,P)

= (1−
(7− n)n

18
)f ([0])+

4− n
18

2n∑
i=1

f ([
√
3]i)

+
1
36

2n(n−1)∑
i=1

f ([
√
3,
√
3]i) (26)

The cubature points and the weights of the GFCKF algo-
rithm can be obtained by (26) as follows:

ξi =


[0]ii = 1
[
√
3]ii = 2, · · · , 2n+ 1

[
√
3,
√
3]ii = 2(n+ 2), · · · , 2n2 + 1

Wi =


1− (7− n)n/18, i = 1
(4− n)/18, i = 2, · · · , 2n+ 1
1/36, i = 2(n+ 2), · · · , 2n2 + 1

(27)

hb =
[
[(ub4 + ub5) cos ub1 − (xb1 + xb2) sin ub1 + ub6 + ub7]/m
[(ub4 + ub5) sin ub1 + (xb1 + xb2) cos ub1 + xb3 + xb4]/m

]
(14)
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B. DICI-GFCKF
The weights and the cubature points of the DICI-GFCKF
algorithm are calculated according to the generalized cuba-
ture rule, and the algorithm steps are as follows [32], [33]:

1) TIME UPDATE CALCULATION
¬ Set initial values (Pj k , Sj k and Wi) and calculate the

cubature points as follows:

xjk,i = x̂jk + Sjkξ i i = 1, · · · , 2n2 + 1 (28)

where Sjk is the matrix obtained from the Cholesky decom-
position of Pj k , as follows:

P jk = SjkSTjk j = 1, 2, · · · , n

 Obtain propagated cubature points as follows:

xjk+1/k,i = f (xjk,i,ujk ) (29)

® Calculate the value of the state prediction as follows:

x̂jk+1/k =
2n2+1∑
i=1

Wixjk+1/k,i (30)

¯ Update the covariance matrix as follows:

P jk+1/k

=

2n2+1∑
i=1

Wi(xjk+1/k,i − x̂jk+1/k )(xjk+1/k,i−x̂j k+1/k )T + Qjk

(31)

2) ICI PRIMARY FUSION
¬ Calculate the prior covariance square root of the system

as follows:

PICIk+1/k = (
n∑
j=1

P−1j k+1/k − (
n∑
j=1

ωjP j k+1/k )−1)−1 (32)

 Calculate gains L1 . . . Ln as follows:

Lj = PICIk+1/k (P
−1
jk+1/k − ωj(

n∑
j=1

ωjP j k+1/k )−1) (33)

® Calculate the state prediction value of the system as
follows:

x̂ICIk+1/k =

n∑
j=1

Ljx̂jk+1/k (34)

3) MEASURING UPDATE
¬ Calculate the new cubature points as follows:

xjk+1/k,i = PICIk+1/kξ i + x̂
ICI
k+1/k i = 1, · · · , 2n2 + 1 (35)

 Based on the measured factors, create new cubature
points as follows:

yjk+1,i = h(xjk+1/k,i,ujk ) (36)

® The measurement’s predicted value is as follows:

ẑjk+1 =
2n2+1∑
i=1

Wiyjk+1,i (37)

¯ Apply the cross-covariance and innovation covariance as
follows:

Pxzjk+1/k =
2n2+1∑
i=1

Wi(xjk+1/k,i − x̂j k+1/k )(yjk+1,i − ẑjk+1)
T

Pzzjk+1 =
2n2+1∑
i=1

Wi(yjk+1,i − ẑjk+1)(yjk+1,i − ẑjk+1)
T
+ Rjk

(38)

° Obtain the filter gain matrix as follows:

K jk+1 = Pxzjk+1/k (P
zz
jk+1)

−1 (39)

± Perform the state estimate as follows:

x̂jk+1 = x̂ICIk+1/k + K jk+1(zjk+1 − ẑjk+1) (40)

² Calculate the error covariance matrix as follows:

P jk+1 = P jk+1/k − K jk+1(Pxzjk+1)
T (41)

4) ICI SECONDARY FUSION
¬ Calculate the posterior covariance square root of the

system as follows:

PICIk+1 = (
n∑
j=1

P−1j k+1 − (
n∑
j=1

ωjP j k+1)−1)−1 (42)

 Update the gain algorithm as follows:

Lj = PICIk+1(P
−1
jk+1 − ωj(

n∑
j=1

ωjP j k+1)−1) (43)

® Filter the output value as follows:

x̂ICIk+1 =

n∑
j=1

Ljx̂jk+1 (44)

Combined with the derived discrete state space equation,
the estimation of the vehicle state parameters can be com-
pleted with the given initial values. Figure 2 shows a flow
chart of the DICI-GFCKF algorithm.

V. SIMULATION ANALYSIS
To verify the estimation accuracy of the DICI-GFCKF algo-
rithm, the GFCKF and the CKF are used as the comparison
objects in this paper. By building a vehicle dynamic model on
the Simulink and on the Carsim cosimulation platform, the
state parameters of the vehicle are estimated in double-shift
line, and the serpentine conditions to verify the superiority of
the algorithm proposed in this paper.

The vehicle’s partial parameters in the Carsim are as fol-
lows: the inertia moment about the Z-axis is Iz = 2765 kg
∗m2; the vehicle’s mass is m = 1845 kg; the front wheel
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FIGURE 2. Flow chart of the DICI-GFCKF algorithm.

tread is tf = 1.416 m; the rear wheel tread is tr = 1.375 m;
the distance between the front axle and the centroid position’s
center is a = 1.402 m; the distance between the centroid
position’s center and the back axle is b = 1.546 m; the wheel
radius is R = 0.359 m; and the height of the center of the
mass is hg = 0.590 m.

In this paper, a dual-sensor system is used in the simulation
to verify the effectiveness of the proposed algorithm. The
following are the error covariance matrix, the process noise
covariance matrix, and the measurement noise covariance
matrix as follows:



Pk1 = diag
([

0.12, 0.12, 0.12, 1, 1, 1, 1
])

Pk2 = diag ([0.1, 0.1, 0.1, 10, 10, 10, 10])

Q1 = diag
([

0.012, 0.012, 0.0012, 1, 1, 1, 1
])

Q2 = diag
([

0.012, 0.012, 0.012, 10, 10, 10, 10
])

R1 = 0.5 ∗ diag ([1, 1, 1])
R2 = diag ([1, 1, 1])

(45)

The root mean square error (RMSE) is used for quanti-
tative analysis to compare and assess the simulation results

intuitively as follows:

RMSE(x) =

√√√√1
n

n∑
t=1

(x(t)− x̂(t))2 (46)

where the actual value is x(t) and the estimated value is x̂(t).

A. DOUBLE-SHIFT LINE CONDITION
With a speed of 80 km/h and a road adhesion coefficient of
0.85, the simulation experiment is run. The observer’s sample
time is 0.01 s. The four wheels’ yaw rate, the sideslip angle,
the longitudinal velocity, and the lateral force are estimated.
The simulation results, the evaluation indices and the compu-
tation cost are shown in Figures 3-4 and in Tables 1-2.

The partial enlargement of Figure 3(a) shows that the value
obtained with the DICI-GFCKF algorithm is closer to the
actual value, and the RMSE index is better than the that of the
GFCKF and the CKF by 43.04% and 65.50%, respectively.
Figure 3 (b) shows that both algorithms have different degrees
of divergence, and the reason for this may be that the tires
enter the nonlinear area when the vehicle is cornering at high
speed. The lateral stiffness of tires will change nonlinearly
with the change in the vehicle’s driving state. However, the
tire lateral stiffness in the filter is the lateral stiffness of the
vehicle during steady driving; therefore, there are somemodel
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FIGURE 3. Vehicle state parameter estimation: (a) the yaw rate; (b) the
sideslip angle; and (c) the longitudinal speed.

TABLE 1. Comparison of the RMSE indices under the double-shifted line
condition.

errors. It is also possible to ignore the suspension design and
the rolling resistance when building mathematical models.
Therefore, there is a deviation between the tire angular speed
of the Carsim software and that of the mathematical model.
Through analysis of the RMSE index, the DICI-GFCKF algo-
rithm is still 28.70% and 89.82% better than the GFCKF and
the CKF, respectively. According to Figure 3(c), the GFCKF

FIGURE 4. Tire lateral force estimation: (a) front left; (b) front right;
(c) left rear; and (d) right rear.

and the CKF diverge after 5 s, but theDICI-GFCKF algorithm
proposed in this paper still maintains a stable state. This
shows that the convergence of the DICI-GFCKF is better than
that of the GFCKF and the CKF when the system fluctuates.
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TABLE 2. Comparison of the computation cost under the double-shifted
line condition.

TABLE 3. Comparison of the RMSE indices under the serpentine
condition.

TABLE 4. Comparison of the computation cost under the serpentine
condition.

As seen from the partial enlargement of Figure 4(a-d), the
accuracy of the vehicle lateral force estimated by the DICI-
GFCKF is better than that estimated by the GFCKF and the
CKF respectively. Its RMSE evaluation indices are better
than 69.1%, 72.68%, 22.79% and 31.42% of the GFCKF and
76.88%, 75.71%, 44.16% and 47.18% of the CKF, respec-
tively. Combined with Table 1 and Table 2, the DICI-GFCKF
algorithm not only improves the estimation accuracy, but also
does not have too high computation cost. Its computation cost
is higher than 0.025s and 0.063s of the GFCKF algorithm and
the CKF algorithm.

B. THE SERPENTINR CONDITION
The speed is modified to 65 km/h, the road adhesion coef-
ficient is 0.85, and the observer and other parameters remain
unchanged to further verify the accuracy of the DICI-GFCKF
algorithm. The serpentine condition is used in the simulation
experiment, as illustrated in Figures 5-6.

Figures (5-6) show that the error between the estimated and
the actual values of both algorithms is small. Through local
enlargement, the estimated value of the DICI-GFCKF algo-
rithm is closer to the actual value than that of the GFCKF and
the CKF. Figure 5(a) and Figure 5(b) show that the estimation
accuracy of both algorithms is high. Table 3 shows that
the RMSE index of the DICI-GFCKF algorithm is smaller
than that of the GFCKF algorithm and the CKF algorithm.
In addition, the RMSE index is 36.47%, 59.92%, 72.15%,
and 84.42% better than that of the GFCKF and the CKF,

FIGURE 5. Vehicle state parameter estimation: (a) the yaw rate; (b) the
sideslip angle; and (c) the longitudinal speed.

respectively. Figure 5(c) shows that within 0∼5 s from the
beginning of the simulation, the observation results of both
algorithms are accurate. However, after 5 s, all algorithms
also have errors that continue to expand. The figure shows
that the estimation accuracy of the DICI-GFCKF algorithm
is always better than that of the GFCKF and the CKF.

An analysis of the situation in Figure 5(c) shows that
when the vehicle is driving in the curve under the serpentine
condition, the steering wheel and the front wheel angles have
a large sudden change in a short time. Lateral acceleration
and tire lateral stiffness also change. These dynamic char-
acteristics exacerbate the nonlinearity of the vehicle system
and introduce some model errors into the algorithm esti-
mation. Therefore, in Figure 5(c), the two algorithms have
different degrees of errors, which also indicates that when
nonlinear changes occur in the system, the robustness of the
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FIGURE 6. Tire lateral force estimation: (a) front left; (b) front right;
(c) left rear; and (d) right rear.

DICI-GFCKF algorithm is higher than that of theGFCKF and
the CKF.

As seen from the local enlargements of Figure 6(a-d),
in the estimation of tire lateral force under the serpentine

FIGURE 7. Distributed electric vehicle experiment platform.

TABLE 5. Comparison of the RMSE indices under the double-shifted line
condition.

conditions, the DICI-GFCKF has higher accuracy than the
GFCKF and the CKF, and its RMSE evaluation indices are
better than 40.20%, 14.41%, 30.05%, and 28.66% of the
GFCKF and 72.16%, 58.98%, 63.20% and 67.23% of the
CKF, respectively. It can be seen from Table 4 that the com-
putation cost of the DICI-GFCKF algorithm is 0.021 and
0.066 higher than that of the GFCKF algorithm and the CKF
algorithm respectively.

VI. VEHICLE EXPERIMENT
To further verify the feasibility of the DICI-GFCKF algo-
rithm, a road experiment is carried out on the distributed elec-
tric vehicle experiment platform, which is shown in Figure 7.
LiDAR is used to establish the double-shift line conditions
and the serpentine conditions on the upper computer, taking
the vehicle motion parameters collected by the IMU (inertial
measurement unit) as true values. The estimated values of the
DICI-GFCKF algorithm are compared with the actual value
to verify the validity of the algorithm.

Based on the existing actual vehicle experiment conditions,
only the longitudinal velocity, the yaw rate, and the sideslip
angle are tested in this experiment. The effectiveness of
the DICI-GFCKF algorithm in the medium- and high-speed
domains is verified in the co-simulation experiments. Con-
sidering the safety of the actual vehicle experiment, the initial
speed is set at 30 km/h on the road surface with an adhesion
coefficient of 0.8.

The actual vehicle experiment results under the double-
shift line conditions are shown in Figure 8:

The actual vehicle experiment results under the serpentine
conditions are shown in Figure 9.

To better analyze the experimental results, the root mean
square error (RMSE) index is used to process the observation
results of the two groups, as shown in Tables 5-6.
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FIGURE 8. Results of the actual vehicle experiment under the
double-shift line condition.

TABLE 6. Comparison of the RMSE indices under the serpentine
condition.

As shown in Figure 8 (a) and Figure 9 (a), the vehi-
cle speed decreases over the course of the experiment. The
DICI-GFCKF algorithm does not diverge due to the decrease
in the vehicle speed, while the GFCKF algorithm and the
CKF algorithm show a larger divergence after 5 s, as shown
in Figure 8(a). This shows that the DICI-GFCKF algorithm
has high robustness and accuracy, and their RMSEs are better
than those of the GFCKF and the CKF by 40.85%, 53.46%,
69.65%, and 78.98%.

FIGURE 9. Results of the actual vehicle experiment under the serpentine
conditions.

Figure 8 (b-c) and Figure 9 (b-c) show the situation where
the vehicle is driven at a low speed at the turning of the
double-shift line and under the serpentine conditions. The
DICI-GFCKF algorithm does not produce large errors due
to the sudden changes in the steering wheel and the front
wheel angle. However, the estimated value of the GFCKF
and the CKF have a large deviation compared with the value
from the actual vehicle experiment. The results show that the
DICI-GFCKF algorithm is better than the GFCKF algorithm
and the CKF algorithm in estimating vehicle state parameters,
and their RMSEs are 61.23%, 56.40%, 57.55%, 60.27% and
70.48%, 67.27%, 72.89%, and 68.10% better than those of
the GFCKF and the CKF.

The actual vehicle experiment results again verify that
the DICI-GFCKF algorithm proposed in this paper has high
estimation accuracy and robustness.
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VII. CONCLUSION
In this paper, a new estimation algorithm is proposed for
the traditional vehicle state parameter estimation algorithm.
The generalized cubature rule is used to improve the fifth-
order CKF, and the ICI fusion algorithm is added in the
update process to improve the estimation accuracy of the
algorithm. The robustness of the DICI-GFCKF algorithm is
verified on the MATLAB/Simulink and Carsim cosimulation
platforms.

The virtual experiments under the double-shift line con-
dition and the serpentine working condition show that the
errors between the estimated value of the DICI-GFCKF
algorithm and the reference value are small. The estimation
errors of the GFCKF and the CKF are slightly larger than
those of the DICI-GFCKF algorithm, especially at the peak
of the estimation curve. The RMSE index introduced fur-
ther shows that the estimation ability of the DICI-GFCKF
algorithm is superior to that of the GFCKF and the
CKF overall.

Through the limited experimental conditions, the actual car
experiment of the DICI-GFCKF algorithm is carried out. The
DICI-GFCKF algorithm is verified again with high accuracy
and robustness. It can adapt well to the harsh environment
of vehicle driving, and the practical application prospects are
broad.
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