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ABSTRACT The randomwalk process on network data is a widely-used approach for network representation
learning. However, we argue that the sampling of node sequences and the subsampling for the Skip-gram’s
contexts have two drawbacks. One is less possible to precisely find the most correlated context nodes for
every central node with only uniform graph search. The other is not easily controlled due to the expensive
cost of hyperparameter tuning. Such two drawbacks lead to higher training cost and lower accuracy due to
abundant and irrelevant samples. To solve these problems, we compute the adaptive probability of random
walk based on Personalized PageRank (PPR), and propose an Adaptive SKip-gram (ASK) model without
using complicated sampling process and negative sampling. We utilize k-most important neighbors for
positive samples selection, and attach their corresponding PPR probability into the objective function.
Based on benchmark datasets with three citation networks and three social networks, we demonstrate
the improvement of our ASK model for network representation learning in tasks of link prediction, node
classification, and embedding visualization. The results achieve more effective performance and efficient
learning time.

INDEX TERMS Network embedding, random walk, personalized pagerank, context co-occurrence, repre-
sentation learning, node classification, link prediction, visualization.

I. INTRODUCTION
Network data is getting much attention due to modern issues
like social media analytics, disease infection, and knowledge
database. Graph representation learning (GRL) [1] is an
essential task to distill latent features from network data.
While a network consists of a collection of links between
nodes in a non-Euclidean space, the common purpose of
GRL is to convert the highly complex network structure to a
low-dimensional and explicit vector for each node, which is
termed node embedding. Eventually, the embedding vectors
can be used for downstream network analysis tasks, such as
link prediction [2], node classification [3], and community
detection [4]. Furthermore, network embedding can offer
more information to solve real-world problems. In the rec-
ommender systems with user attributes and their interac-
tions with items, to learn essential features, GNN-SoR [5]
generates the embeddings based on social influence and user

The associate editor coordinating the review of this manuscript and

approving it for publication was Le Hoang Son .

preference, and leverages them with items’ content for pro-
ducing recommendation outcomes based on matrix factor-
ization. Besides, SIoT-SR [6] constructs the recommender
system in the context of Internet-of-Things. By collecting
and learning from multiple feedback of different items, and
SIoT-SR can generate embeddings of users and items for
effective recommendation. A generative network embedding
model Graph-GAN [7] can be utilized for rumor event detec-
tion. Graph-GAN models posts’ content via network embed-
ding, and adopts adversarial learning to improve the utility of
the derived embeddings.

To represent nodes in the context of network structure,
the typical approaches can be divided into matrix-based,
edge-based, and random walk-based. While the matrix-based
approach like network matrix factorization (NetMF) [8],
is costly in terms of computational efficiency. The edge-based
model like the proximity preservation method LINE [9] is
shallow resulting in less efficacy. The random walk-based
methods, such as DeepWalk [10], extract correlated neigh-
bors of the target by random walk, and utilize neural network
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learning to generate node embeddings. However, the ran-
dom walk-based methods require sampling abundant paths
to approximate the degree of correlation among nodes, and
would be influenced by several hand-crafted hyperparame-
ters [10]–[12]. Besides, the hyperparameters optimization is
an expensive task corresponding to the model quality, and a
larger number of hyperparameters make the model configu-
ration space more complex [13], [14]. That is, we argue that
a random walk-based sampling-based method is easily influ-
enced by random noise and has high cost of hyperparameter
tuning, such as the number of walks per node, walk length,
and context size. These factors lead to the requirement of
more learning samples, tedious hyperparameter tuning, and
most importantly, the selection of irrelevant context nodes
for every central node. In this work, we aim to revisit the
Skip-gram model with the concept of the random walk, and
show a simplified implementation based on PPR can effec-
tively replace the original random walk with performance
improvement on downstream tasks.

It is because that the truncated context with the fixed
length is not capable to depict the topological correlation
(e.g., proximity) between the central node and each context
node. Besides, the sampling frequency distribution of nodes
occurring in the target’s context would be less precise as the
number of the samples is not enough. If we try to sample
more samples to improve accuracy, we have to create the
additional cost during training model. Therefore, we need a
more precise mechanism to select representative neighbors
for every node. This would be achieved by the estimation of
adaptive probability in the random walk process, along with
some incorporation into the Skip-gram model.

To deal with the aforementioned issues, we leverage Per-
sonalized PageRank [15] (PPR) that represents the conver-
gent probability from a root (central node) to any other nodes
along a randomly sampled path. PPR can be considered as a
re-arrangement of the random walk without given any sam-
pling steps [16]. Therefore, we can consider such a probabil-
ity as the degree of correlation between two nodes as well as
the exact node frequency in sampled node sequences. To be
specific, by combining the PPR probability and the random
walk process, we can derive the adaptive random walk proba-
bility indicating the structural correlation between two nodes
so that we can accordingly select the most significant context
nodes for every central node. Eventually, by incorporating
PPR into Skip-gram model, we develop the Adaptive SKip-
gram (ASK) model.

We summarize the contributions of this work as follows.
• First, we simplify the complex random walk process by
the probability of personalized PageRank. The hyper-
parameters of the original random walk in Skip-gram
model can be combined as one.

• Second, technically, we improve the Skip-gram model
via the estimated probability by proposed Adaptive
SKip-gram model, which emphasizes and exploits the
correlation between nodes. Our model would precisely
learn the correlation, and does not require the negative

sampling that could lead to misleading embeddings and
increase computational cost.

• Third, the experiments conducted on three citation net-
works and three social networks in GRL tasks exhibit the
improvement of our Adaptive SKip-gram (ASK) model
in link prediction, node classification, and embedding
visualization. We also suggest an approximated version
of the Adaptive Skip-gram model that can be used to
achieve efficient but similar performance in the limited
environment.

II. RELATED WORK
In this section, we discuss the existing random walk-
based method for the graph representation learning. First,
DeepWalk [10] adopts the random walk mechanism and
the Skip-gram model to efficiently learn node embed-
dings. The main idea comes from the language model in
word2vec [17]. Based on the random surfer that walks
through highly correlated local neighbors surrounded by
each target node, and Skip-gram model is able to truncate
a context with inter-correlated words and updates node
embeddings. node2vec [18] presents a biased random walk
controlled by the hyperparameters of depth-first and breadth-
first search. GENE [19] considers the group labels from
the random walk’s neighbors to preserve more informa-
tion in node embeddings. DDRW [20] jointly optimizes the
classification objective and the objective of random-walk-
based embedding entities for better node classification.Walk-
lets [21] discusses multi-scale meanings in the real world
graph and proposes subsampling process to skip the random
walk path for extracting the embedding for specific scales.
Besides, Struct2Vec [22] constructs the multilayers graph for
different hierarchical levels and follows node2vec to learn
the representation for each layer. DRRW [23] analyzes the
convergence of random path and proposes an exploration
score to guide the path toward less-visited nodes for better
distribution learning.

Extended studies further aim at learning node embed-
dings in attributed networks, in which ANRL [24],
RWR-GAE [25], andARWR-GE [26] are randomwalk-based
approaches that also incorporate the Skip-gram model as a
component for the graph structure preservation. On the other
hand, some methods such as DANE [27], GraphRNA [28],
and wGCN [29] utilize the random walk to extract the graph
structure and help the representation learning via random path
and co-currency. In short, one research direction of GRL is
incorporating the Skip-grammodel with randomwalk, which
is widely validated as being useful.

While the random walk mechanism takes high sam-
pling cost and has imprecise estimation of node’s context,
PPR can precisely depict graph diffusion without any specific
sampling process. Some graph applications like [30] employ
graph neural network with PPR to improve information prop-
agation for node classification. Lasagne [31] utilizes PPR
to find important neighbors in the large-scale community,
and C_PPR [32] is designed for community detection by
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PPR measurement of node proximity globally. However, few
studies properly apply PPR to the Skip-gram model.

III. METHODOLOGY
A. PERSONALIZED PAGERANK
Given a network G = (V ,A), where V is the node set with
n nodes (|V | = n), A is the adjacency matrix. A personalized
PageRank [15] (PPR) value can be seen as the probability
from a certain root r to another node v via a randomwalk-like
process. The probability updating equation of personalized
PageRank is given by

π (n)
r = (1− α)Hπ (n−1)

r + αer , (1)

where π (n)
r is the probability vector from the root r to each

node at n-th step, H = D−1A is the normalized adjacency
matrix based on A and the degree matrix D.
In addition, α ∈ [0, 1] is the restart probability, and

er is the one-hot encoding vector for the root. After some
reformulation, the PPR matrix5 can be described as

5 = α(I − (1− α)H )−1, (2)

where 5ij means the probability of going to the node j from
the root i. Note that we will use ‘‘root,’’ ‘‘central node’’ and
‘‘target’’ interchangeably throughout this work.

B. ADAPTIVE SKIP-GRAM MODEL
Typical network representation learning methods with the
Skip-gram model and random walk, such as node2vec [18]
and DeepWalk [10], have three common phases. It contains
sampling node sequences by random walk, generating con-
texts, and the Skip-gram model. The second is composing
contexts of every node by setting central nodes and neigh-
boring nodes from left to right in the derived node sequences.
The third is applying the Skip-gram model. We argue such a
process cannot precisely extract significant contexts for each
node. It is because the random walk is not personally per-
formed to generate the contexts for a central node. That said,
the contexts, sampled via random walk, may be correlated
with the central node. To be more specific, for nodes with
high proximity scores to each other in a densely-connected
community, they may not be each other’s context. Repeated
independent sampling via random walk from any nodes lead
to such kind of outcome.

We aim at exploiting the probability values derived from
personalized PageRank to generate the contexts of every
node. Since PPR values reflect the proximity degree from a
root node to any other nodes in the network, we propose to
leverage PPR for generating more representative contexts so
that the Skip-grammodel can be constructed to produce better
node embeddings. We will generate representative contexts
by selecting top-k neighbors that possess the highest proxim-
ity values to the root/central node. In addition, we also want
to simplify the process by allowing only one hyperparameter,
rather than three typical hyperparameters, including context
size, number of walks, and length of walk. The context size

(i.e., number of contexts ) can be regarded as the demand of
the number of contexts to explain the central node. It should
be proportional to the density and size of the central node’s
neighborhood. Hence, we make the parameter k play a role
representing the maximum needed context size for learning a
central node’s embedding.

To estimate k , we need to figure out the occurrence
frequency of every node in all random walk generated
sequences. Because the derivation of PPR is according to the
iteration of the node transition probability Eq. (1), the results
for n iterations can represent the probabilities of the n-th node
that we would sample from the given root. Thus, the PPR
values derived from the casewhere n achieves the infinite, and
PPR can also be considered as the probability of sampling a
node of any generated infinite-length sequence from the root.
The summation of the scaled probability from all nodes to
any node j can be simply regarded as the node frequency in
all sequences, given by

f j =
n∑
i=1

(5ij)/n. (3)

Given the average context size ae as a hyperparameter used
to obtain k , the total number of contexts for all nodes would
be ae × n. Then the expected context size for each node can
be derived as a vector:

ae × n× f j = ae
n∑
i=1

(5ij). (4)

We choose k to be the maximum expected context size for
each node, given by

maxj(ae
n∑
i=1

5ij). (5)

The next step is to attach the subsampling mechanism into the
derivation of k . The subsampling in the original Skip-gram
model utilizes the discarding probability [11]

1− (t0(f w)
−1
+
√
t0(f w)

−0.5), (6)

where t0 is a chosen threshold (typically 10−5), and f w is
frequency vector of each word in all sentences.

Based on the node frequency in Eq. 3, the subsampling
probability would be

psub = t0(f j)
−1
+
√
t0(f j)

−0.5, (7)

which smooths the sampling probability of highly-frequent
nodes. As a result, the maximum expected context size with
subsampling is given by

k = maxj(aef j � psub), (8)

where � is Hadamard product. Such selection of k-most
significant context nodes, along with PPR, simplifies the
context generation and its hyperparameters.

We incorporate the Skip-gram model with the derived
expected context size:

aef c � psub. (9)
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Consider the target node t and its k-most significant con-
text nodes, we reconstruct the Skip-gram model to model
the importance of each of its neighbors through PPR. The
objective function is given by:∑

c∈context(t)

log(σ (vTt vc)), (10)

for a pair of target t and its context node set context(t), where
vt is the embedding for node t , and σ is the logit function.
We replace original context nodes with nodes possessing k
highest values in the subsampling PPR value matrix, given by

{5sub}t∗ = {aeDiag(f c � psub)5}t∗, (11)

where Diag(v) is a diagonal matrix with diagonal entries
equal to a vector v. In other words, the values in PPRmatrix is
used in the objective function to point out which are signifi-
cant neighbors. In short, our model is learned by k context
nodes of each central node. The proposed PPR-enhanced
objective not only emphasizes the importance of context
nodes without additional cost, but alleviates the problem of
choosing irrelevant neighbors as contexts. Hence, less corre-
lated nodes in terms of proximity could be pushed away from
one another in the learned embedding space. To some extent,
such an effect is originally generated through negative sam-
pling, and as a by-product in our model. Therefore, we choose
not to perform negative sampling in our model.

C. AN APPROXIMATED APPROACH FOR PPR
Since the derivation of PPR matrix requires O(n3) time com-
plexity, our Adaptive SKip-gram model may be less efficient
when the network is large scale. Hence, we aim to provide
an efficient alternative for the estimation of PPR matrix.
Consider the inverse part of PPR matrix:

(I − (1− α)H)−1 = P−1. (12)

The normalized matrix with bounded row sum:∑
j

(1− α)H ij < 1, (13)

satisfies ||(1−α)H|| < 1. Therefore, P can be approximated
by the convergent sum of Neumann series:

lim
m→∞

m∑
i

((1− α)H)i. (14)

Given a small m, the complexity of the approximated
PPR matrix would be decreased a lot due to the spar-
sity of H . Besides, ((1 − α)H)i can be regarded as the
i-order proximity. Therefore, the approximated PPR matrix
with a small m is capable to cover most of information for
modeling.

IV. EXPERIMENTS
A. EXPERIMENT SETTINGS
We conduct experiments to evaluate the effectiveness of
our Adaptive SKip-gram model for network representation

learning. Three citation networks, including Cora, Citeseer,
and Pubmed,1 are employed. These three citation networks
contain the relationships of paper citations as edges, and
they are benchmark ones that are widely utilized to eval-
uate the quality of network embedding models [24]–[27],
[29]. In addition, three social networks of Twitch users [33]
from different countries with mutual follower-followee inter-
actions as edges, including Twitch-EN, Twitch-RU, and
Twitch-PT,2 are also considered. The dataset sizes in
(#nodes, #edges, #density) are (2708, 5278, 0.0014),
(3312, 4460, 0.0008), (19717, 44327, 0.0002), (7126, 35324,
0.0014), (4385, 37304, 0.0039), (1912, 31299, 0.0171) for
Cora, Citeseer, Pubmed, Twitch-EN, Twitch-RU, and Twitch-
PT, respectively. We randomly choose 70%, 10%, and 20%
edges as the training, validation, and testing sets. We select
the best model according to the performance of the validation
set. We also ensure the network is connected. The tasks
include link prediction, node classification, and embedding
visualization. These tasks follow the typical procedure of
accessing the quality of node embeddings [8]–[10], [31].
We do perform the experiments on both node-level and
path-level tasks. Node classification is the node-level task
that examines whether network features can be encoded to
distinguish nodes with labels from one another, while link
prediction is the path-level task that exhibits whether the net-
work structure can be reflected by the derived node embed-
dings. We adopt the commonly-used classification evaluation
metrics. Specifically, the Area Under the Curve (AUC) score3

is used for link prediction. Micro-F1 and Macro-F1 scores4

are employed for node label classification. The higher score
means better performance. Besides, embedding visualization
can display how nodes with same labels are grouped together
in the embedding space.We expect nodeswith different labels
are well separated from each other.

We compare the performance for the original SKip-
gram model (SK) with biased random walk [18], the
graph first- and second-order proximities preserving method,
LINE [9], our Adaptive SKip-gram model (ASK), and
PPR-Approximated Adaptive SKip-grammodel (AASK(m)),
where the order m of the Neumann series is given by three
different sizes {5, 10, 20}.

The dimensionality of the node embedding vector is set 128
for all methods, and all models are trained by Adam opti-
mizer with a learning rate = 0.001. For the setting of SK,
we set length window size = 5, the number of repeating
walks = 1, and the walk length = 80 for random walk pro-
cess. The number of negative samples is 20 for Cora and Cite-
seer and 5 for Pubmed, these settings follow the tuned values
obtained from the original word2vec work [11]. For the set-
tings of ASK and AASK, we set the default expected average
context size ae = 25, and the restart probability of PPR is set

1Three citation datasets are available via https://linqs.soe.ucsc.edu/data
2Three social datasets are available via https://graphmining.ai/datasets/
3https://en.wikipedia.org/wiki/Receiver_operating_characteristic
4https://en.wikipedia.org/wiki/F-score
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TABLE 1. AUC scores and time cost (seconds) for link prediction. (Cora, Citeseer and Pubmed).

TABLE 2. AUC scores and time cost (seconds) for link prediction. (Twitch-EN, Twitch-RU, and Twitch-PT).

FIGURE 1. Convergence Analysis of SK and ASK.

TABLE 3. #(Positive pair) and the detailed time cost for link prediction. (Cora, Citeseer and Pubmed).

as α = 0.05 for Cora and Citeseer and 0.07 for Pubmed.
After obtaining the node embeddings, we use Hadamard
product to derive the embedding vectors of node pairs. Then,
we utilize logistic regression as the classifier and the area
under the ROC curve (i.e., AUC score) as the evaluation
metric.

B. RESULTS
The results on link prediction are shown in Table 1, Table 2,
Table 3 and Table 4 for six datasets (three citation networks
and three social networks). Table 1 and Table 2 further exhibit
both AUC scores and time cost in seconds. Table 3 and
Table 4 present the number of training pairs without negative
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TABLE 4. #(Positive pair) and the detailed time cost for link prediction. (Twitch-EN, Twitch-RU, and Twitch-PT).

FIGURE 2. Results of node classification for SK, ASK, and LINE.

samples, and the detailed time in processing time (PT) and
training time (TT). PT is the time cost of randomwalk process
or PPR computation, and TT records the time from the first
epoch to the epoch where the loss is convergent.

For link prediction on citation networks, as exhibited in
Table 1, the results show both ASK and AASK with higher
m lead to better performance on AUC scores than SK and
LINE. We think it is because our ASK can consider PPR
to select representative contexts while SK and LINE cannot
precisely capture the neighborhood information. Regarding
the AASK, the time cost would increase dramatically and
surpass ASK because the iteration matrix is getting non-
sparse. It suggests that AASK with m = 5 or 10 can be

more appropriate than ASK when there is some requirement
on run time. For link prediction on social networks, Table 2
shows that ASK leads to higher scores and lower training
cost than the competingmethods. Though the social networks
contain highly-dense user connections, ASK and AASK with
m = 20 can detect and exploit the most crucial substructure to
learn node embeddings. Moreover, we can find that ASK has
better training efficiency (i.e., lower time cost) than AASK
due to that the latter requires heavier matrix computation
in non-sparse network structures. The social networks with
high structure density also prohibit LINE from learning well.
SK employs the same size of sampled randomwalk paths, but
it is hard to capture enough information
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TABLE 5. Total time cost in seconds, and the detailed time cost for node classification.

In Table 3 and Table 4, it clearly demonstrates that ran-
dom walk in ASK can efficiently find crucial structural con-
texts for nodes, especially for larger networks (i.e., PT on
Pubmed). Such results imply that the performance of the
random-walk sampling model is highly dependent on the
number of repetitive sampling. That is, we find that SK
requires higher time cost to sample and learn as the network
gets dense. Besides, it also affects the time cost of the fol-
lowing training steps. Instead, ASK utilizes top-k selecting
and the PPR probability weighting in the objective so that the
learning volume of each epoch can be reduced.

C. CONVERGENCE ANALYSIS FOR SK AND ASK
We analyze the convergence of SK and ASK. We also dis-
cuss the disadvantages of SK that our ASK can overcome.
In Figure 1, the testingAUC scores for link prediction onCora
data, and the loss of ASK and SK are displayed in (a) and (b),
respectively. The vertical lines in the figures indicate the
timestamps of the epoch of SK at 25.3 (sec) and 50.4 (sec)
as the beginning of the 2-nd epoch and the 3-rd epoch.
In Figure 1a, we can clearly observe that the AUC score
increases over time. However, the convergence time of ASK
is less than one epoch of SK but SK would not start growing
until the 2-nd epoch. We think that SK needs to balance the
effect between the positive loss and negative one, as first
shown in Figure 1b. In the 1-st epoch, the model makes the
negative loss decrease, but the positive loss is retained at the
same level, and then focuses on reducing the positive loss in
the next epochs. In other words, since the correlated nodes
are still far away from each other, the accuracy would not
be raised at the beginning. Though negative sampling help
estrange the non-correlated nodes, it still has a trade-off in
delaying the training efficiency. Our ASK utilizes a more
precise selection of positive samples, and therefore avoiding
the undesired effect of negative sampling.

D. LABEL CLASSIFICATION OF SK AND ASK
We also conduct the node label classification task for SK,
ASK and LINE. The number of labels for Cora, Citeseer
and Pubmed are 7, 6 and 4, respectively. We first learn node
embeddings from the network, and then employ a one-vs-rest
logistic regression classifier with L2 regularization on ran-
domly select training and testing samples. The percentage of
the training set is varied from 10% to 90%. We utilize Micro-
F1 and Macro-F1 as the evaluation metrics. Higher scores
indicate better performance. For the experiments conducted
for the task of node classification, as shown in Figure 2,
the proposed ASK has significant performance improvement
over LINE. We think LINE cannot produce higher scores

FIGURE 3. Visualizing embeddings of each method for Cora data.

because they cannot effectively explore and exploit the neigh-
boring substructure surrounded by each node to learn node
embeddings. Besides, according to the scores are shown in
Figure 2, ASK has a slight improvement in accuracy for
small networks, and the performance of ASK and SK on
Pubmed are close 5 because the sampling distributions for
larger networks would be more well-approximating.

Besides, we summarize the time cost of ASK and SK in
Table 5. It can also be apparently found that the run time
of our ASK is significantly less than SK. Such results again
prove the efficiency of ASK. In detail, during the training,
the time cost of ASK and SK are dropped. We think that
classification is the uncomplicated version of link prediction,
which only needs to model the correlation between nodes and
rare labels. Therefore, the model can recognize the labels by
learning the shallow structure. Especially, our PPR scores can
offer more significant candidates, so the time cost is clearly
decreased.

E. EMBEDDING VISUALIZATION
To present the properties of node embeddings generated by
different models, i.e., to exhibit whether similar nodes are
close in the embedding space, we employ t-SNE [34] to

5The differences |ASK-SK| between the results of ASK and SK are smaller
than 0.005 from label percentage 0.1 to 0.9 for Macro and Micro, and
therefore their lines are almost overlapping.
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visualize node embeddings using the Cora dataset. t-SNE can
reduce the embedding vector of each node to two dimen-
sions, and generate the corresponding visualization plot of the
embedding space. The results are shown in Figure 3, in which
each node is colored based on its labels. It can be found that
both ASK and SK have more compact and well-separated
clusters than LINE, with respect to labels. By looking into the
details, ASK canwell separate nodeswith different labels into
various groups, which explains its outstanding performance
on both node classification and link prediction. It is worth-
while noticing that ASK learns to separate dissimilar nodes
from each other without applying negative sampling, which
has been adopted by SK and brings heavier computational
cost as shown in Table 1 and Table 2.

V. CONCLUSION AND DISCUSSION
In this paper, we design a more efficient and effective
Skip-gram model ASK that requires no random walk for
network representation learning. ASK overcomes the prob-
lems of the cost of hyperparameter decision and imprecise
learning for the Skip-gram model with random walk. Since
the hyperparameters, such as the number of walks, and walk
length, increase the training complexity, we derive the adap-
tive probability based on PPR, which is equivalent to the
random walk process, to avoid the inefficient sampling pro-
cess. Then, the Adaptive SKip-gram model via the estimated
probability of k-most significant nodes would precisely make
the highly-correlated nodes close, and therefore the objective
function can quickly achieve the convergence without neg-
ative sampling and even have better performance. We also
consider an approximated method as a light version of Adap-
tive SKip-grammodel using a smallm, which has an efficient
performance when the running environment is limited. The
proposed Adaptive SKip-gram model can be seamlessly used
for random walk Skip-gram based network representation
learning models, such as node2vec and DeepWalk so that the
efficiency and the effectiveness can get boosted.

According to the derivation and the experiments, we can
depict three novel insights obtained by this work. First,
we create the connection between neighborhood sampling
and node correlation estimation based on PPR. We accord-
ingly develop the ASK model, which demonstrates that PPR
derivation can generate high-quality node embeddings for
different downstream tasks. Second, the original skip-gram
model cannot adaptively arrange and utilize the node correla-
tion in the process of embedding learning, and thus it requires
negative sampling to distinguish the differences between
nodes. Our experimental results show negative sampling is
not necessary, and a proper design of adaptive context dis-
covery mechanism with PPR can simultaneously boost the
performance and reduce the computational cost. Third, some
potential redundant sampling and biased estimation used by
SK and LINE can mislead the embedding quality, which
further affects not only performance but also time cost.

We discuss the strength and weakness of the pro-
posed ASK in the following. The strength of this work

is three-fold. (1) ASK reduces the number of tuning hyper-
parameters, which facilitates the training of network embed-
dings. (2) ASK requires no negative sampling for precise
embedding learning and low computational cost, compar-
ing with the original Skip-gram model that needs negative
sampling. (3) With a light neural network structure, ASK
still outperforms Skip-gram models across two tasks (node
classification and link prediction) and six datasets (citation
and social graphs). The major limitation of our ASK model
lies in its shallow model architecture. ASK is designed to
preserve few-hop neighborhood. However, deeper implicit
correlation between neighbors and even between local clus-
ters cannot be encoded by ASK. In addition, currently ASK
is devised for preserving graph structure in node embeddings,
rather than modeling node attributes. One needs to come
up with attribute-aware random walk [35] so that ASK can
receive adaptive neighbors for generating node embeddings
in attributed graphs.

Finally, we summarize three-folds future directions to
improve work. First, we aim to exploit these insights and
to adaptively find key neighbors for end-to-end node rep-
resentation learning in graphs, i.e., extending the adaptive
neighborhood to the realm of graph neural networks. Second,
while both ASK and SK focus on learning node embed-
dings in simple graphs, it is worthwhile to incorporate node
attributes into adaptive neighborhood sampling and represen-
tation learning. Third, we believe the idea of our proposed
PPR-based adaptive mechanism can be used to not only sim-
ple graphs, but also bipartite graphs. By exploiting to generate
collaborative neighbors in user-item bipartite graphs, we will
examine to construct a recommender systemwithout negative
sampling.

REFERENCES
[1] W. L. Hamilton, ‘‘Graph representation learning,’’ Synth. Lect. Artif. Intell.

Mach. Learn., vol. 14, no. 3, pp. 1–159, 2020.
[2] N. N. Daud, S. H. A. Hamid, M. Saadoon, F. Sahran, and N. B. Anuar,

‘‘Applications of link prediction in social networks: A review,’’ J. Netw.
Comput. Appl., vol. 166, Sep. 2020, Art. no. 102716.

[3] S. Bhagat, G. Cormode, and S. Muthukrishnan, ‘‘Node classification
in social networks,’’ in Social Network Data Analytics. Boston, MA,
USA: Springer, 2011, pp. 115–148.

[4] M. A. Javed, M. S. Younis, S. Latif, J. Qadir, and A. Baig, ‘‘Community
detection in networks: A multidisciplinary review,’’ J. Netw. Comput.
Appl., vol. 108, pp. 87–111, Apr. 2018.

[5] Z. Guo and H. Wang, ‘‘A deep graph neural network-based mechanism
for social recommendations,’’ IEEE Trans. Ind. Informat., vol. 17, no. 4,
pp. 2776–2783, Apr. 2021.

[6] Z. Guo, K. Yu, Y. Li, G. Srivastava, and J. C.-W. Lin, ‘‘Deep learning-
embedded social Internet of Things for ambiguity-aware social recom-
mendations,’’ IEEE Trans. Netw. Sci. Eng., early access, Jan. 5, 2021, doi:
10.1109/TNSE.2021.3049262.

[7] Z. Guo, K. Yu, A. Jolfaei, A. K. Bashir, A. O. Almagrabi, and N. Kumar,
‘‘A fuzzy detection system for rumors through explainable adaptive learn-
ing,’’ IEEE Trans. Fuzzy Syst., vol. 29, no. 12, pp. 3650–3664, Dec. 2021.

[8] J. Qiu, Y. Dong, H. Ma, J. Li, K. Wang, and J. Tang, ‘‘Network embedding
as matrix factorization: Unifying DeepWalk, LINE, PTE, and node2vec,’’
inProc. 11th ACM Int. Conf. Web SearchDataMining (WSDM), Feb. 2018,
pp. 459–467.

[9] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, ‘‘LINE: Large-
scale information network embedding,’’ in Proc. 24th Int. Conf. World
Wide Web, May 2015, pp. 1067–1077.

VOLUME 10, 2022 37513

http://dx.doi.org/10.1109/TNSE.2021.3049262


I.-C. Hsieh, C.-T. Li: Toward Adaptive Skip-Gram Model for Network Representation Learning

[10] B. Perozzi, R. Al-Rfou, and S. Skiena, ‘‘DeepWalk: Online learning of
social representations,’’ in Proc. 20th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, Aug. 2014, pp. 701–710.

[11] T.Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, ‘‘Distributed
representations of words and phrases and their compositionality,’’ in Proc.
Adv. Neural Inf. Process. Syst., 2013, pp. 3111–3119.

[12] S. Abu-El-Haija, B. Perozzi, R. Al-Rfou, and A. Alemi, ‘‘Watch your step:
Learning node embeddings via graph attention,’’ 2017, arXiv:1710.09599.

[13] F. Hutter, L. Kotthoff, and J. Vanschoren, Automated Machine Learning:
Methods, Systems, Challenges. Cham, Switzerland: Springer, 2019.

[14] W. Jia, C. Xiu-Yun, Z. Hao, X. Li-Dong, L. Hang, and D. Si-Hao, ‘‘Hyper-
parameter optimization for machine learning models based on Bayesian
optimization,’’ J. Electron. Sci. Technol., vol. 17, no. 1, pp. 26–40, 2019.

[15] L. Page, S. Brin, R. Motwani, and T. Winograd, ‘‘The pagerank citation
ranking: Bringing order to the web,’’ Stanford InfoLab, Stanford, CA,
USA, Tech. Rep., 1999.

[16] F. Chung andW. Zhao, ‘‘Pagerank and randomwalks on graphs,’’ in Fete of
Combinatorics and Computer Science. Berlin, Germany: Springer, 2010,
pp. 43–62.

[17] T. Mikolov, K. Chen, G. Corrado, and J. Dean, ‘‘Efficient estimation of
word representations in vector space,’’ 2013, arXiv:1301.3781.

[18] A. Grover and J. Leskovec, ‘‘node2vec: Scalable feature learning for
networks,’’ in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data
Mining, Aug. 2016, pp. 855–864.

[19] J. Chen, Q. Zhang, and X. Huang, ‘‘Incorporate group information to
enhance network embedding,’’ in Proc. 25th ACM Int. Conf. Inf. Knowl.
Manage., Oct. 2016, pp. 1901–1904.

[20] J. Li, J. Zhu, and B. Zhang, ‘‘Discriminative deep randomwalk for network
classification,’’ in Proc. 54th Annu. Meeting Assoc. Comput. Linguistics,
2016, pp. 1004–1013.

[21] B. Perozzi, V. Kulkarni, H. Chen, and S. Skiena, ‘‘Don’t walk, skip!: Online
learning of multi-scale network embeddings,’’ in Proc. IEEE/ACM Int.
Conf. Adv. Social Netw. Anal. Mining, Jul. 2017, pp. 258–265.

[22] L. F. R. Ribeiro, P. H. P. Saverese, and D. R. Figueiredo, ‘‘Struc2vec:
Learning node representations from structural identity,’’ in Proc. 23rd
ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, Aug. 2017,
pp. 385–394.

[23] W. Xiao, H. Zhao, V. W. Zheng, and Y. Song, ‘‘Vertex-reinforced random
walk for network embedding,’’ in Proc. SIAM Int. Conf. Data Mining,
2020, pp. 595–603.

[24] Z. Zhang, H. Yang, J. Bu, S. Zhou, P. Yu, J. Zhang, M. Ester, and
C. Wang, ‘‘ANRL: Attributed network representation learning via deep
neural networks,’’ in Proc. 27th Int. Joint Conf. Artif. Intell., Jul. 2018,
pp. 3155–3161.

[25] Vaibhav, P.-Y. Huang, and R. Frederking, ‘‘RWR-GAE: Random walk
regularization for graph auto encoders,’’ 2019, arXiv:1908.04003.

[26] W. Dou, W. Zhang, Z. Weng, and Z. Xia, ‘‘Graph embedding framework
based on adversarial and randomwalk regularization,’’ IEEEAccess, vol. 9,
pp. 1454–1464, 2021.

[27] H. Gao and H. Huang, ‘‘Deep attributed network embedding,’’ in Proc.
27th Int. Joint Conf. Artif. Intell., Jul. 2018, pp. 3364–3370.

[28] X. Huang, Q. Song, Y. Li, and X. Hu, ‘‘Graph recurrent networks with
attributed random walks,’’ in Proc. 25th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, Jul. 2019, pp. 732–740.

[29] X. Li, W. Wei, X. Feng, and Z. Zheng, ‘‘Representation learning of
reconstructed graphs using random walk graph convolutional network,’’
2021, arXiv:2101.00417.

[30] J. Klicpera, A. Bojchevski, and S. Günnemann, ‘‘Predict then prop-
agate: Graph neural networks meet personalized PageRank,’’ 2018,
arXiv:1810.05997.

[31] E. Faerman, F. Borutta, K. Fountoulakis, and M. W. Mahoney,
‘‘LASAGNE: Locality and structure aware graph node embedding,’’ in
Proc. IEEE/WIC/ACM Int. Conf. Web Intell. (WI), Dec. 2018, pp. 246–253.

[32] Y. Zhang, X. Xia, X. Xu, F. Yu, H. Wu, Y. Yu, and B. Wei, ‘‘Robust hier-
archical overlapping community detection with personalized pagerank,’’
IEEE Access, vol. 8, pp. 102867–102882, 2020.

[33] B. Rozemberczki, C. Allen, and R. Sarkar, ‘‘Multi-scale attributed node
embedding,’’ J. Complex Netw., vol. 9, no. 2, p. cnab014, 2021.

[34] L. van derMaaten andG.Hinton, ‘‘Visualizing data using t-SNE,’’ J.Mach.
Learn. Res., vol. 9, pp. 2579–2605, Nov. 2008.

[35] I.-C. Hsieh and C.-T. Li, ‘‘CoANE: Modeling context co-occurrence for
attributed network embedding,’’ IEEE Trans. Knowl. Data Eng., early
access, May 14, 2021, doi: 10.1109/TKDE.2021.3079498.

I-CHUNG HSIEH received the master’s degree in
science and statistical science from the National
Chung Cheng University, Chiayi, Taiwan, in 2017.
He is now a Research Assistant at Networked
Aritficial Intelligence Laboratory, National Cheng
Kung University, Tainan, Taiwan, since 2018. His
research interests include privacy protection on
graph, graph representation learning, data min-
ing, and deep learning. Graph research has been
accepted and presented at NeurIPS GRL 2019.

Recently, two papers in the graph field have been published in the IEEE
TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING.

CHENG-TE LI (Member, IEEE) received the Ph.D.
degree from the Graduate Institute of Network-
ing and Multimedia, National Taiwan University,
in 2013. He is currently an Associate Profes-
sor with the Department of Statistics, Institute of
Data Science, National Cheng Kung University
(NCKU), Tainan, Taiwan. Before joining NCKU,
he was an Assistant Research Fellow at CITI,
Academia Sinica, from 2014 to 2016. His research
interests include machine learning, deep learning,

data mining, social networks and social media analysis, recommender sys-
tems, and natural language processing. He has a number of papers published
at top conferences, including KDD, TheWebConf (WWW), ICDM, CIKM,
SIGIR, IJCAI, ACL, EMNLP, NAACL, and ACM-MM. He leads the Net-
worked Artificial Intelligence Laboratory (NetAI Lab), NCKU.

37514 VOLUME 10, 2022

http://dx.doi.org/10.1109/TKDE.2021.3079498

