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ABSTRACT Recently, interest in ultrawideband (UWB)-based localization systems has increased in various
application fields. However, since UWB anchors are usually fixed, they work only within the limited range
that UWB measurement signals can reach. To address this issue, a swarm flight system with movable UWB
anchors is developed. One ground station controls multiple unmanned aerial vehicles (UAVs), each of which
is equipped with a UWB anchor and real-time kinematic global positioning system (RTK-GPS) capabilities,
and collects the precise (centimeter-level) positions of the UWB anchor UAVs through RTK-GPS. In this
way, the constraints of existing UWB systems can be alleviated by changing the UWB anchor positions in
real time as desired by the user. In addition, this paper proposes a novel localization algorithm using only
time-of-flight (TOF) measurements from UWB signals, heading information from an attitude and heading
reference system (AHRS), and altitude information from a barometer. The results of UAV flight tests show
that the proposed algorithm provides better localization performance than existing algorithms.

INDEX TERMS Interacting multiple model, Kalman filter, localization, swarm flight system, ultrawideband
(UWB), unmanned aerial vehicle (UAV).

I. INTRODUCTION
In recent years, quadrotor unmanned aerial vehicles (UAVs)
have been frequently used in applications related to the Inter-
net of Things [1] or to supplant human efforts in hazardous
environments such as disaster sites [2], [3]. As a result, the
problem of accurate and reliable quadrotor localization, as an
essential requirement for successful mission performance,
has received great attention [4]–[6]. The Global Positioning
System (GPS) is one of the most representative technologies
for location estimation [7]. Indeed, GPS has been widely
used for long-termmonitoring in aircraft landing systems [8].
However, the location estimation performance of GPS has
been found to be unreliable in some closed and isolated envi-
ronments, such as urban canyons and indoor spaces [7], [9].

As one possible way to overcome this, radio frequency
identification (RFID) technology has been developed to mea-
sure distances based on the received signal strength indicator
(RSSI) [10]. However, since RFID tags are not precision
sensors, the accuracy of RFID-based localization is generally
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insufficient. As another alternative, a motion capture sys-
tem (MCS) is a system that captures objects in space by
means of multiple high-speed cameras to obtain their relative
positions and poses [11]. When used for positioning, MCSs
such as VICON [12] and OptiTrack [13] are accurate to the
level of a few millimeters, but their complex layouts and
difficult calibration procedures make MCSs difficult to use
in some large coverage areas.

To resolve this problem, simultaneous localization and
mapping (SLAM) approaches such as oriented FAST and
rotated BRIEF (ORB)-SLAM [14], semidirect visual odome-
try (SVO) [15], and direct sparse odometry (DSO) [16] using
image sensors have been actively investigated in recent years.
However, the cameras typically used for SLAM rely on rich
lighting and environmental textures, whereas most outdoor
environments are not textured, which reduces the reliability
and accuracy of localization. Additionally, the usability of
such image sensors decreases under extreme levels of sun-
light due to phenomena such as illuminance variation or fog.
In general, camera-based image sensors are greatly affected
by the lighting environment. For example, it is difficult to
obtain good image data in the dark, and a camera alsomay not
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FIGURE 1. Examples from a swarm flight demonstration developed by the Korea Aerospace Research Institute.

FIGURE 2. Photograph of the UAV system.

work properly if the environment is too bright or if reflected
light impinges directly on the camera.

As another approach, recent developments in inexpensive
ultrawideband (UWB) transceivers have enabled high-
precision time-of-arrival (TOA) or time-of-flight (TOF) mea-
surements in wireless communications [17]. Low-power
UWB communication is a communication standard in which
wireless impulses can be continuously transmitted and
received to achieve precise localization and tracking at a level
of several centimeters over a short distance [18]. The fre-
quency band used is 3.1–10.6GHz, and the operating distance
is approximately tens of meters. When UWB communication
is utilized as a localization technique, it offers high position
resolution because a pulse with a very narrow width is used
as a signal. In addition, there is little interference with or
influence on existing communication systems because it uses
a low transmission power with a low noise level.

In addition, an inertial measurement unit (IMU) is a stan-
dard sensor for estimating the state of a UAV, with the
advantages of high accuracy, a fast update frequency and a
small size [19]. However, an IMU estimates its own position
through integration, resulting in continuous error accumu-
lation due to the time-varying bias. Therefore, the fusion
of UWB and IMU sensor signals using a Kalman filter is
widely used because the UWB contribution limits the integral
divergence due to the IMU bias and enables accurate location
estimation [20].

However, UWB–IMU sensor fusion faces the following
two issues. First, the disadvantage of using UWB technology
is that since the UWB measurement range is limited, the
UWBcoverage area is also limited depending on the locations
of the UWB anchors. Specifically, since a UWB anchor is
usually fixed, it operates only in a limited range, and theUWB
measurement signal will not reach areas beyond that range.
Second, since the Kalman-filter-based fusion of UWB and
IMU signals involves asynchronous signals, the synchroniza-
tion process is complicated, and complex parameters for the
noise characteristics of the accelerometer and gyroscope are
required.

To resolve the above two issues, this paper proposes a
system with movable UWB anchors. In the proposed system,
a single ground station controls several UAVs, each equipped
with a UWB anchor and real-time kinematic (RTK)-GPS
capabilities, and collects the precise (centimeter-level) posi-
tions of the UWB-anchor-equipped UAVs through RTK-GPS
measurements. Thus, the UWB coverage area can be freely
adjusted by controlling multiple UAVs equipped with UWB
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FIGURE 3. Deployment diagram of the proposed movable UWB system.

anchors from the single ground control station (GCS). Addi-
tionally, instead of using the acceleration and angular rates
from IMUs, we propose an algorithm to improve the UAV
location estimation performance by using only the heading
information from an attitude and heading reference system
(AHRS). This method is much simpler and easier to apply,
making it very effective as an independent method that does
not depend on a specific UAV model.

In this paper, interacting multiple model (IMM) filtering
is applied to accurately estimate the positions of UAVs exe-
cuting various flight maneuvers. The main contribution of
this paper is to propose a novel IMM filtering method that
uses heading information from an AHRS and altitude infor-
mation from a barometer, which results in better localization
performance without significantly increasing the computa-
tional complexity. The validity of the algorithm has been
verified through outdoor flight tests with various trajectories,
and a quantitative algorithm performance analysis has been
performed.

The rest of the paper is organized as follows. The proposed
movable UWB anchor system based on a swarm of UAVs
is presented in Section II. As preliminaries, the definitions
of the system and measurement models are presented in
Section III. The proposed constrained IMM filtering method
is summarized in Section IV. Section V briefly describes the
experimental setup and results. In Section VI, conclusions are
addressed.

II. PROPOSED MOVABLE UWB ANCHOR SYSTEM BASED
ON A SWARM OF UAVS
UWB localization systems have been widely used in various
applications [21]–[24]. However, the UWB range that can be
covered is limited by the locations of the UWB anchors. Since
the UWB anchors are usually fixed, they operate only in a
limited range, and theUWBmeasurement signal cannot reach
areas beyond that range. In addition, fixed UWB anchors can-
not measure the distance to a UWB tag if there are obstacles
within the measurement range [25]. That is, existing UWB

localization systems cannot be used for moving tags that
are out of range. The proposed movable UWB localization
system solves the limited coverage problem by moving the
locations of the UWB anchors, which are mounted on UAVs.
Therefore, the proposed system can be used to locate objects
equipped with UWB tags.

The proposed movable UWB system consists of the mov-
able USB anchor nodes, tag (rover), and GCS subsystem as
shown in Fig. 3. The rover uses only a small UWB tag to com-
municate with the movable UWB anchor node. Thus, in the
proposed system, anything with a UWB tag can act as a rover.
For the movable UWB anchor nodes, the proposed system
utilizes UAVs equipped with RTK-GPS sensors. RTK-GPS
sensors can realize position estimation at the centimeter level.
RTK-GPS was used only as a ground truth for performance
evaluation of the proposed algorithm. The anchor node is
divided into the flight control computer and the mission
computer

For the flight control computer, a PX4 is used, which
is based on open-source software running on the NuttX
real-time operating system. When the measurement data
received from the barometer and IMU sensor driver are
acquired together with the RTK-GPS, the position and atti-
tude are estimated through an estimator based on the extended
Kalman filter [7]. Once the position and attitude of the UAV
are estimated, the UAV is controlled by adjusting the RPM
of the motor through the PWM command in the flight control
computer. The PX4 client component transmits the estimation
information including sensor data to the mission computer
via UART. The mission computer collects data received from
UWB sensors and PX4 client components. The PX4 agent
transmits the data to the GCS via ROS2 messages. ROS2
is a distributed middleware system running on the Linux
operating system.

The GCS is also operated based on ROS2. The data
sync collector of GCS receives flight and UWB data from
the UWB anchor nodes and synchronizes the anchor data
using GPS time information. Once the synchronized data are
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received, the position of the target UWB tag is estimated
using the proposed constrained IMM estimator.

To develop the proposed movable UWB localization
system, we update the swarm flight system by adding a
mission board, including a mission computer and UWB sen-
sors, as shown in Fig. 2. The UAV platform is designed to
replace the currently employed mission board and uses a gen-
eral quad-copter frame equipped with an open-source PX4
system [27], an IMU (an LSM303D integrated accelerom-
eter/magnetometer and L3GD20 gyroscope), a barometer
(MS5611, TE Connectivity), and an RTK-GPS receiver
(Piksi, Swift Navigation). The mission board includes an
NVIDIA Jetson nano computer to run the Robot Operating
System version 2 (ROS2) and the UWB sensors (EVK-1000,
Decawave).

The proposed system can control multiple UAVs simul-
taneously to find the location of a UWB tag. Recently,
the Korea Aerospace Research Institute (KARI) devel-
oped a swarming flight system that can operate with an
arbitrary number of UAVs [26]. This system was used
in a drone show in which multiple UAVs were pre-
cisely controlled using RTK-GPS, as shown in Fig. 1. For
a detailed flight video, please visit the following URL:
https://www.youtube.com/watch?v=TgCKhgIjWW8.

III. PRELIMINARY DEFINITIONS
A. CONSTANT VELOCITY MODEL
The constant velocity (CV) model is defined as follows [28]:

xk+1 =


1 0 0 Ts 0 0
0 1 0 0 Ts 0
0 0 1 0 0 Ts
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 xk

TABLE 1. Specifications of the UAV system.

+



1
2
Ts2 0 0

0
1
2
Ts2 0

0 0
1
2
Ts2

Ts 0 0
0 Ts 0
0 0 Ts


wk,CV (1)

where Ts denotes the sampling time interval and the state of
the UAV is defined as xk = [xk yk zk ẋk ẏk żk ]T . The first
three state variables (xk , yk , zk ) are the x, y, and z positions,
and the last three state variables (ẋk , ẏk , żk ) are the x, y,
and z velocities. wk,CV is a zero-mean Gaussian white noise
term with a covariance matrix Qk,CV to cover unexpected
acceleration.

B. COORDINATED TURN MODEL
The state of the target in the coordinated turn (CT) model is
defined as xk = [xk yk zk ẋk ẏk żk �k ]T , including the
turning rate �k . The CT model is expressed as (2), shown
at the bottom of the page [29], where wk,CT is zero-mean
Gaussian white noise with covariance matrix Qk,CT.

C. UWB MEASUREMENT MODEL
The range of the measurements z(l)k (l = 1, . . . , m),
where m denotes the number of UWB measurements, can

xk+1 =



1 0 0
sin�kTs
�k

cos�kTs − 1
�k

0 0

0 1 0
1− cos�kTs

�k

sin�kTs
�k

0 0

0 0 1 0 0 1 0
0 0 0 cos�kTs − sin�kTs 0 0
0 0 0 sin�kTs cos�kTs 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


xk

+



1
2
Ts2 0 0

0
1
2
Ts2 0

0 0
1
2
Ts2

Ts 0 0
0 Ts 0
0 0 Ts


wk,CT (2)
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be expressed as follows [30]:

zk =

z
(1)
k
...

z(m)k



=


√
(xk − x1,k )2 + (yk − y1,k )2 + (zk − z1,k )2

...√
(xk − xm,k )2 + (yk − ym,k )2 + (zk − zm,k )2


(3)

+

υ
(1)
k
...

υ
(m)
k

 (4)

where xk and yk denote the x and y positions, respectively,
of the target UWB tag at time index k; xm,k and ym,k similarly
denote the x and y positions of the m-th UWB anchor; and
υ
(m)
k is the measurement noise of the m-th UWB anchor.

D. MULTILATERATION
To estimate the initial position of theUWB tag based onUWB
TOF range measurements, the algorithm of [31] is adopted.
Based on a linear algebraic method, this algorithm has low
computational complexity and can be applied in wireless
UWB sensor networks for real-time applications.

Rearranging (3) yields [31]
1 −2x1,k −2y1,k −2z1,k
1 −2x2,k −2y2,k −2z2,k
1 −2x3,k −2y3,k −2z3,k
...

...
...

...

1 −2xm,k −2ym,k −2zm,k



x2k + y

2
k + z

2
k

xk
yk
zk



=



z(1)k − (x21,k + y
2
1,k + z

2
1,k )

z(2)k − (x22,k + y
2
2,k + z

2
2,k )

z(3)k − (x23,k + y
2
3,k + z

2
3,k )

...

z(m)k − (xm3,k + y
m
3,k + z

m
3,k )

 (5)

Equation (5) can be represented in matrix form as follows:

Ax = b (6)

The solution x̂ of (6) can be computed using the weighted
least squares method if the UWB range measurements are
uncorrelated and have different uncertainties, as follows:

x̂ = (ATW−1A)−1ATW−1b (7)

whereW denotes the covariance matrix of the random errors
for the range measurements provided by the UWB sensors.
Here, a recursive weighted least squares algorithm is imple-
mented following [31].

IV. PROPOSED CONSTRAINED IMM FILTERING METHOD
The nonlinear system model fj(·) of the j-th UAV mode and
the corresponding UWB measurement model hj(·) are as
follows [28]:

xjk+1 = fj(xjk )+ wj
k (8)

zjk = hj(xjk )+ υ
j
k (9)

where xjk ∈ Rn and zjk ∈ Rm are the state vector and mea-
surement vector, respectively, at time index k . The process
noise wj

k and measurement noise υ
j
k are uncorrelated white

Gaussian noise with zero mean, as follows:

E
[
wj
kw

j
l
T ]
= Qkδkl, E

[
υ
j
kυ

j
l
T ]
= Rkδkl

E
[
wj
kυ

j
l
T ]
= 0 (10)

The mode transition probability (MTP) from the i-th mode
to the j-th mode at consecutive times (e.g., k − 1 to k) can be
defined as

pij = P {Mk = j|Mk−1 = i} (11)

where Nr is set to 2 in this paper. The IMM filtering method
consists of the following four procedures, applied in a recur-
sive manner.

A. INTERACTION/MIXING PROCEDURE
The mixing probability µijk−1|k−1 between modes Mi and Mj
at consecutive times (e.g., k − 1 to k) can be computed
utilizing pij, as follows [29]:

µ
ij
k−1|k−1 =

1
c̄j
pijµik−1 (12)

where c̄j =
Nr∑
i=1

pijµik−1.

The mixed state x̂0jk−1|k−1 and the corresponding covari-

ance P0j
k−1|k−1 of each subfilter model can be obtained from

the previous estimate x̂ik−1|k−1 as follows:

x̂0jk−1|k−1 =
Nr∑
i=1

µ
ij
k−1|k−1x̂

i
k−1|k−1

P0j
k−1|k−1 =

Nr∑
i=1

µ
ij
k−1|k−1

·

(
Pik−1|k−1 + [x̂ik−1|k−1 − x̂0jk−1|k−1]

· [x̂ik−1|k−1 − x̂0jk−1|k−1]
T

)
(13)

B. MODE-CONDITION FILTERING PROCEDURE
To compute the predicted state x̂jk|k−1 and the covariance

Pjk|k−1 of the j-th subfilter, the standard extended Kalman
filter (EKF) is implemented as follows:

x̂jk|k−1 = fj(x̂0jk−1|k−1)
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Pjk|k−1 = Fjk−1P
0j
k−1|k−1

(
Fjk−1

)T
+ 0

j
k−1Q

j
k−1

(
0
j
k−1

)T
(14)

where the Jacobian matrix for the system dynamic equation,
Fjk−1, is defined as

Fjk−1 =
∂fj

∂x

∣∣∣∣
x=x̂0jk−1|k−1

The updated state x̂jk|k and the corresponding error covari-

ance Pjk|k are computed as

x̂jk|k = x̂jk|k−1 +Kj
kν

j
k

Pjk|k = Pjk|k−1 −Kj
kS

j
k

(
Kj
k

)T
(15)

where the Kalman gain Kj
k and the innovation ν

j
k are defined

as

Kj
k = Pjk|k−1

(
Hj
k

)T (
Sjk
)−1

(16)

ν
j
k = zk − hj(x̂jk|k−1) (17)

and Sjk can be expressed as

Sjk = Hj
kP

j
k|k−1

(
Hj
k

)T
+ Rj

k (18)

where Hj
k is defined as

Hj
k =

∂hj

∂x

∣∣∣∣
x=x̂jk|k−1

C. MODE PROBABILITY UPDATE PROCEDURE
The mode probability µik is defined as

µik =
1
c
3i,k c̄i, i = 1, · · · ,Nr (19)

where

c =
Nr∑
i=1

3i,k c̄i (20)

and 3i,k is a likelihood function given by

3i,k =
1√∣∣∣2πSjk ∣∣∣ exp

(
−
1
2

(
νik

)T(
Sjk
)−1

νik

)
(21)

D. ESTIMATE AND COVARIANCE COMBINATION
PROCEDURE
The state and covariance in the IMMalgorithm can be defined
as

x̂k|k =
Nr∑
i=1

µik x̂
i
k|k

Pk|k =
Nr∑
i=1

µik

(
Pik|k + [x̂ik|k − x̂k|k ] · [x̂ik|k − x̂k|k ]T

)
(22)

E. CONSTRAINED FILTERING
The principle of the Kalman filter is to maximize the prob-
ability density function (pdf) pdf (xk |Zk ), which can be
expressed as

x̂k = argmaxxkpdf (xk |Zk ) (23)

where x̂k denotes the solution of the Kalman filter that
maximizes pdf (x̂k |Zk ). Under the assumption of a Gaussian
distribution, pdf (x̂k |Zk ) can be expressed as

pdf (xk |Zk ) =
exp

(
−

1
2 (xk − x̄k)TP−1k (xk − x̄k )

)
(2π )n/2 |Pk |1/2

(24)

Maximizing (24) is equivalent to maximizing ln pdf
(xk |Zk ), which means minimizing (xk − x̄k)T P−1k (xk − x̄k ).
If we have an additional constraint such that Dxk = d , then
the solution to this constrained optimization problem is the
constrained state estimate x̃k , which can be defined as

x̃k = argmaxxk (xk − x̄k)T P−1k (xk − x̄k )

suchthatDx̃k = d (25)

The solution to (25) can be computed by using the
Lagrange multiplier approach as follows:

L = (xk − x̄k)T P−1k (xk − x̄k )+ 2λT
(
Dx̃k − d

)
∂L
∂ x̃k
= P−1k

(
x̃k − x̄k

)
+ DTλ = 0

∂L
∂λ
= Dx̃k−d = 0 (26)

where λ denotes the n-th dimensional Lagrange multiplier.
The solution to (26) can be obtained as

λ =
(
DPkDT

)−1 (
Dx̂k − d

)
x̃k = x̂k + PkDT

(
DPkDT

)−1 (
Dx̂k − d

)
(27)

It can be deduced from (27) that the constrained state
estimate x̃k is equivalent to the unconstrained state estimate
x̂k , which is the a posteriori estimate after the measurement
update, minus a correction term.

Typically, to allow a UAV to fly autonomously, the UAV is
equipped with an AHRS that provides attitude information,
including roll, pitch and yaw. If the yaw or heading (i.e., ψk )
is available from the AHRS, then the following equation can
be obtained:

tanψk = xk/yk = xk (1)/xk (2)

= ẋk/ẏk = xk (4)/xk (5) (28)

The constraints that relate to the horizontal positions (i.e.,
xk and yk ) and velocities (i.e., ẋk and ẏk ) can be re-expressed
in matrix form as follows:

Dkxk = dk (29)

where

Dk =

[
1 −tanψk 0 0 0 0 0
0 0 0 1 −tanψk 0 0

]
(30)
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FIGURE 4. Schematic of the proposed constrained IMM filtering method using heading-aided UWB
measurements with barometer information.

Algorithm 1 The Proposed Constrained IMM Algorithm

Inputs: fjk (·), h
j
k (·), H

j
k , zk , x̂

j
k−1|k−1, P

j
k−1|k−1, µ0, pij,

n, m, Nr
1) Initialization:

1. Calculate the initial location x̂j0(1 : 3) for j = 1
and 2 using (6)

2) Interaction/Mixing:
1. Calculate µijk−1 using (12)
2. Calculate x̂0jk−1|k−1 and P

0j
k−1|k−1 using (13)

3) Subfilter Model Filtering:
for j = 1 : Nr F Nr : number of modes
Predict:

3. Calculate x̂jk|k−1 and P
j
k|k−1 using (14)

Update:
4. Calculate x̂jk|k and P

j
k|k using (15)

5. Calculate x̃k using (31)
4) Mode Probability Update:

6. Calculate µik using (19)
Subfilter Model Outputs: x̂jk|k ,P

j
k|k

5) Combination:
7. Calculate x̂k|k and Pk|k using (22)

Outputs: x̃k , Pk|k

Then, the constrained estimate x̃k can be computed from
the a posteriori estimate as follows:

x̃k = x̂k|k + PkDT
k

(
DkPkDT

k

)−1 (
Dk x̂k|k − dk

)
(31)

The proposed algorithm is summarized in Algorithm 1 and
Fig. 4. The initial position of the UAV is calculated through
the multilateration method, as described in Section III.D, and

FIGURE 5. Test environment.

is used as the initial position estimate for the subsequent
IMM filter. In the IMM filter, two models (the CV model
and the CT model) run in parallel, and the UWB range
measurement and the altitude value from the barometer are
used as measurement values for each subfilter. Then, the
proposed algorithm constructs a constraint condition based
on the heading value from the AHRS and updates the state
values in accordance with (27).

V. EXPERIMENTS AND DISCUSSION
A. FLIGHT EXPERIMENTAL ENVIRONMENT
To evaluate the effectiveness of the proposed algorithm,
a total of four UWB anchor nodes were used to estimate
the location of a UWB tag. Four UAVs equipped with UWB
anchors were used as UWB anchor nodes to widen the cov-
erage of the UWB signals, and this approach permitted better
estimation of the target drone’s altitude, as the UWB anchors
could be placed at different heights as desired. Specifically,
a UAV equipped with UWBwas used as the target tag. For the
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FIGURE 6. UAV trajectories during (a) circular and (b) triangular motions.

FIGURE 7. CDFs of multilateration, the EKF, and the proposed algorithm during (a) circular and (b) triangular motions.

experiment, as shown in Fig. 5, the four UAVs equipped with
UWB anchors were moved to the desired UWB anchor node
locations and hovered at approximately 5 m ± 2 m, while
the UAV equipped with the target UWB tag flew within the
measurable range of the UWB anchor nodes.

For accurate performance evaluation, flight tests were per-
formed with two flight trajectories, circular and triangular,
as shown in Fig. 6. As shown in this figure, the UWB flight
tests were performed within the range that the UWB anchor
nodes could measure. In the figure, the true value is a value
measured with RTK-GPS technology, which is used as the
ground-truth value for the subsequent quantitative perfor-
mance evaluation.

Flight data were stored for approximately 390 and
120 seconds for the triangular and circular motions, respec-
tively, and the sampling interval Ts was 0.1s. The approx-
imate average velocity of the UAV was 2m/s. In these

experiments, Qk was set to diag([1, 1, 1, 0.5, 0.5, 0.5]) and
diag([1, 1, 1, 0.5, 0.5, 0.5, 1]) for the CV and CT models,
respectively, and Rk was set to 0.45 · I4, where I4 denotes
the 4 × 4 identity matrix. The initial mode probabilities and
MTP of the proposed constrained IMM filter were set to

µ0 =
[
0.85 0.15

]
, pij =

[
0.8 0.2
0.2 0.8

]
.

B. EXPERIMENTAL ANALYSIS
To investigate its superiority, the proposed algorithm was
compared with the multilateration [31] and EKF approaches
using the CV model. The cumulative distribution func-
tions (CDFs) of multilateration [31], EKF, and the proposed
algorithm are shown in Fig. 7. As shown in this figure, the
proposed algorithm demonstrated better localization perfor-
mance in both experiments. In the case of circular flight,
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FIGURE 8. Mode probabilities of the proposed algorithm during (a) circular and (b) triangular motions.

FIGURE 9. Error distribution of UWB range measurements for four UWB
anchors.

multilateration performed better than EKF, but in the case of
triangular flight, the opposite result was obtained.

Fig. 7 illustrates the subfilter modes (CV and CT) of the
proposed IMM algorithm for the x- and y-axis positions of
the UAV over time. As shown in this figure, when trajectory
curvature occurs, the mode value of the CT model increases,
while the mode value of the CV model decreases. In contrast,
in the case of a trajectory segment with constant-velocity
linear motion, the CV mode value is generally larger than the
CT mode value.

The proposed IMM algorithm assumes that the UWB sen-
sor noise follows a Gaussian distribution with an average
value of 0. To verify the validity of this assumption, the error
distribution of the UWB measurement values was analyzed
and compared with a Gaussian distribution. As shown in the
corresponding figure, it was confirmed that for each of the
four sensors, the noise approximated a Gaussian distribution.
Based on this error distribution analysis, the measured noise

covariance Rk was selected, and the proposed algorithm was
executed.

VI. CONCLUSION
In this paper, we propose a system that allows the UWB range
coverage to be freely modified by a single GCS controlling
multiple UAVs equipped with UWB anchors. In addition, the
heading information from an AHRS and UWB measurement
values are combined to improve the localization accuracy
compared to existing algorithms by means of a constrained
IMM filter. This algorithm is easy and convenient to apply
and requires only a small amount of calculation because
only the heading information from the AHRS is required
regardless of the type of UAV. Therefore, this system enables
accurate location estimation while using UAVs to modify the
UWB coverage area in an environment where GPS signal
acquisition is difficult.

However, the IMM filter-based UWB positioning system
has a delay due to the nature of the soft handoff algorithm
that interacts between the subfilters of the IMM. As a future
work, we will utilize deep learning-based mode estimation to
reduce the interaction delay between sub-filters.
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