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ABSTRACT The challenge of automatically repairing bugs in programs to reduce debugging expenses
and increase program quality is known as automated program repair. To overcome this issue, test-suite-
based repair techniques use a specified test suite as an oracle and alter the input faulty program to pass the
full test suite. GenProg is a well-known example of this kind of repair, in which genetic programming is
used to reorder the statements already present in the faulty program. However, recent practical experiments
suggest that GenProg’s performance, notably for Java, is not sufficient. Improved program dependability
necessitates the use of automatic program repair techniques. Template-based program repair techniques
have recently been combined with search-based techniques to solve program issues automatically. Although
intriguing, it has two fundamental drawbacks: Its search space often lacks the correct solution, and the
technique disregards program expertise, such as precise code language. Compared with the template-based
program repair approach, existing neural-machine-translation-based approaches are not limited by these
constraints due to their ability to learn and generate new solutions. We propose an approach that combines a
search-based automatic program repair technique with a neural-machine-translation-based approach. More
specifically, we use both redundancy assumption and sequence-to-sequence learning of correct patches
as the source for potential fix statements that feed into a multiobjective evolutionary search algorithm
to find test-suite-adequate patches. In this work, a novel framework called ARJANMT is introduced for
automatically repairing Java programs. Two sets of controlled experiments are conducted on 410 bugs from
two benchmarks to investigate the repairability and correctness of our proposed framework. A comparison
between state-of-the-art automatic program repair frameworks is made. The experimental results indicate
that combining those two types of repair techniques (search-based and neural-machine-translation-based)
produces better results or fixes bugs that they previously were unable to fix individually.

INDEX TERMS Search-based software engineering, automatic program Repair, multi-objective optimiza-
tion, genetic programming, neural machine translation.

I. INTRODUCTION
Software bugs damage the quality of the product and seri-
ously hinder the user experience [1], [2]. Manual debug-
ging is complex and time-consuming. Automatic program
repair (APR) is a technique to debug a faulty program auto-
matically. It is the process of finding complete workable
solutions to software bugs without the help of humans [3],
making APR techniques quite useful and critical [4]. Search-
based APR is based mainly on redundancy assumption

The associate editor coordinating the review of this manuscript and
approving it for publication was Jian Guo.

and the evolutionary search algorithm to generate candidate
patches. Neural machine translation (NMT), a commonly
used technique for natural language processing (NLP) tasks,
has recently been used to create adequate patches from buggy
source code [4]–[6]. Due to redundancy assumptions, search-
based APR tools such as GenProg and ARJA cannot build
a patch when the repair ingredients are not present in the
program’s source code. This problem is considerably more
prevalent in small projects. However, NMT models in bug-
fixing tasks have a problem in precisely representing the
context, and owing to the variety of errors and fixes, a single
NMTmodel utilizing the ‘‘optimal’’ control parameter would
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struggle to generalize on the APR problem. Moreover, many
NMT-based repairing approaches often repair single-location
errors and can create only single-point repairs, not multiloca-
tion repairs. Additionally, NMT-based repair approaches such
as SequenceR do not take into account operations such as
insertion or deletion, which are generally taken into account
by search-based APR approaches [4]. Consequently, the two
techniques of search-based APR and NMT-based APR may
be complementary.

Therefore, to improve the low recall rate, low accu-
racy, and low efficiency present in the existing APR tech-
niques, an improved automated patch-generation tool for
Java programs is proposed in this paper that is based on
the multiobjective genetic programming and sequence-to-
sequence learning for adequate patch-finding. NMT-based
repair approaches are utilized to expand the search space
of potential patches for search-based APR. Moreover, our
framework is built on ARJA, and the sequence-to-sequence
model that we employed in our research to enhance the search
space of candidate patches is based on SequenceR. This paper
makes the following contributions:
• We leverage both redundancy assumption and sequence-
to-sequence learning for creating candidate fix state-
ments that feed into a multiobjective evolutionary search
method to identify test-suite-adequate patches.

• We design and implement a framework that combines
the key concepts of ARJA and SequenceR into a unified
repair framework, allowing testers to benefit from the
capabilities of each component.

• We conduct a controlled experiment on 410 bugs from
two benchmarks to investigate the repairability and cor-
rectness of our proposed framework. State-of-the-art
APR frameworks are compared, and the benefits of
combining search-based repair and NMT-based repair
are also explored.

Moreover, this study is the first to combine the concepts
of search-based repair and NMT-based repair into a uni-
fied repair framework, allowing testers to benefit from their
respective component characteristics. The proposed APR
approach is integrated into the RepairThemAll framework
developed by [3], which automates and simplifies the exe-
cution of repair tools on various benchmarks.

The following sections of the paper are arranged as fol-
lows: Section 2 introduces the preliminaries of the study.
Section 3 presents the proposed approach and tools for the
automated repair of Java programs. The experimental design
and result analysis are explained in Section 4 and 5. Finally,
the paper is concluded, and directions for future research are
provided in Section 6.

II. PRELIMINARIES
APR attempts to patch program errors based on a specifi-
cation [7]. When a test suite is utilized as the specification,
the paradigm is known as test-suite-based repair. At least one
negative (i.e., first failing) test, as well as several positive
(i.e., initially successful) tests, should be included in the test

suite to define expected program behavior. A problem is
deemed fixed or repaired in test-suite-based repair if a created
patch allows the entire test suite to pass, which is called a test-
adequate patch, also known as a plausible patch. Evolutionary
computation-based repair is a popular category of test-suite-
based repair techniques [8]. These methods discover a search
space that may include accurate patches and then explore an
optimization technique with a predefined fitness evaluation
function [7].

A. SEARCH-BASED AUTOMATIC PROGRAM REPAIR
Search-based APR is a test-suite-based Generate and Vali-
date APR approach. The foundations of search-based APR
are (a) redundancy assumption, which entails that the com-
ponents for a repair are already present somewhere in the
current program and (b) the evolutionary search for a suitable
patch, followed by generation and validation of the candi-
date patch [3]. Search-based APR approaches are crucial for
enabling comprehensive automated diagnostic of software
programs. They generate the program patch based on the
provided faulty program and test suite to fix the program
error [3]. Some recent state-of-the-art search-based APR
techniques are discussed below.

1) GENPROG
GenProg [9] is a tool that automatically generates repairs
for real-world bugs in off-the-shelf, legacy programs using
existing unit tests. A repair is a patch that includes one
or more code modifications that, when applied to software,
allow it to pass a series of tests, which generally contain
both functional passing tests and tests encapsulating bugs.
During the use ofGenProg, no explicit requirements, program
annotations, or other coding practices are necessary. GenProg
takes a program with errors and a set of test cases as input.
It can be used on the entire program or just one class at a
time. Using genetic programming, it searches for a program
variation that accomplishes its tasks but is not susceptible to
the defect. Genetic programming is a form of random search
based on how organisms evolve over time [9]. It searches and
generates modifications from an abstract syntax tree that may
patch an error in the underlying program and creates new pro-
gram variants using mutation and crossover. Each program
variation is evaluated by a user-defined fitness function. Input
test cases are used to evaluate the fitness, and individuals with
high fitness are picked for further evolution. The process of
GenProg ends when a variant passes all given test cases or the
termination condition, such as time and iterations, is met [9].
However, as stated by [7], GenProg applies only genetic
operators to high-granularity modifications, and its crossover
does not generate additional edits. In addition, the main issue
with genetic programming so far has been the amount of data
to search through to identify the right program. This issue is
also permanent in GenProg.

2) ARJA
ARJA [8] is a Java program repair system that employs
multiobjective evolutionary search and a variety of methods
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for reducing search space. It takes a faulty program and a
JUnit test suite with at least one failed test as inputs. The
remaining tests are passing tests. The programs correspond-
ing to these tests are run as expected, and these tests are used
as a baseline for specifying how the program should behave.
A fault-localization method with the given input is used to
seek the likely buggy statement for evolutionary search [8].
Coverage analysis is performed to maintain a record of every
statement that each JUnit test visits. The source of the replace-
ments or insertion ingredient statements for each likely buggy
statement is selected from the seed statements generated by
the coverage analysis, the current variable and method scope
taking into consideration. The evolutionary search begins
after the operations on likely buggy statement, such as delete,
replace, and insert, are defined. More specifically, a multi-
objective evolutionary search method is used to evolve the
patches based on the representation of Genetic programming
to keep the test failure rate and patch size as low as pos-
sible [8]. A rule-based search-space-reduction method with
a set of criteria is used. A feasible fix is generated when a
nondominated solution with a failure rate of 0 is obtained.

3) ARJA-E
ARJA-e [7] is an improved version of ARJA. It includes
several new features and combines redundancy assumption,
repair templates, lower-granularity patches, antipatterns, and
patch size minimization into a single repair framework.
ARJA-e searches for smaller patches using a non-dominated
sorting genetic algorithm II (NSGA-II) within a reduced
search space given by both redundancy assumption and repair
templates. It employs the antipatterns to assign possible oper-
ation types for each potential buggy statement [7]. ARJA-e
inputs a program with at least one failed test and a JUnit test
suite. Fault localization, test-screening, redundant assump-
tion, repair-template utilization, operation-type setting, and
multiobjective evolutionary patch-generation are some of the
primary stages involved in ARJA-e [7].

Automated generate-and-validate APR techniques typi-
cally rely on hard-coded rules, fixing only the errors that fit
specific patch patterns [6]. Finding these rules requires much
time and effort, and adapting them to different computer
languages is difficult [6]. NMT-based APR approaches have
been developed to address these challenges.

B. NEURAL-MACHINE-TRANSLATION-BASED APR
APR approaches based on neural machine translation (NMT)
offer two significant benefits. First, NMT models learn intri-
cate correlations between input and output processes that
are difficult to deduce manually. NMT models may be able
to reveal complicated links between buggy and clean codes
that manual repair patterns cannot. Second, whereas actual
generate and validate methods frequently use hard-coded fix
templates that are specific to the scripting language, NMT-
based repair methods can be reprogramed for a variety of
languages and applications without having to create the fix
patterns from scratch, which saves a significant length of time

for developers. However, those approaches have two signifi-
cant limitations [5]. Their search area frequently lacks a feasi-
ble solution, and their approach ignores program knowledge,
such as precise code syntax. The results of applying NMT to
program repair have been encouraging. A few recent NMT-
based APR tools are discussed below.

1) SEQUENCER
SequenceR [4] is an APR framework that employs a
sequence-to-sequence model that tries to fix bugs by mak-
ing one-line fixes (i.e., the bug can be fixed by replacing a
single buggy line with a single fixed line). The encoder and
decoder with attention and copymechanisms of the sequence-
to-sequence network are recurrent neural networks (RNN)
with long short-term memory (LSTM) gates [10], which are
used to transform the abstract buggy context of a bug to the
corresponding fixed code.Moreover, backpropagation is used
to train the sequence-to-sequence model on a set of data.

2) COCONUT
CoCoNuT [6] is an APR framework that combines a novel
context-aware NMT architecture and convolutional neu-
ral networks (CNNs). Using two separate encoders, each
context-aware model records different information of the
repair operation and their context, one for faulty lines and
one for the context. Unlike SequenceR, CoCoNuT uses a
CNN [11] instead of an RNN due to its capability of stacking
layers for extracting hierarchical features and source code
modeling for different statements and functions (multiple
granularity levels). It can learn several repair strategies that
can be used to correct a variety of faults while overcoming
the limitations of conventional NMT methods by mixing
these models [6]. It inputs a buggy statement and its context
information. The data is tokenized before being supplied to
the models. Each model then generates a list of patches for
validation against the given test suite [6].

3) CURE
CURE [5] is an APR tool that uses subword tokenization to
minimize the search space to increase the number of precise
repairs. It also adapts an effective search technique to better
identify and rank correct patches. Similar to SequenceR,
CURE is also divided into three stages: training, inference,
and validation. A large number of codes collected from open-
source Java applications are used to pretrain the generative
pretrained transformer (GPT) programming language model
for CURE to learn human-written source code. Then, CURE
fine-tunes the programming language model for the APR
task. In addition, CURE develops a novel code-aware search
approach that prioritizes plausible patches and patches close
in length to the faulty code to find more correct fixes [5].

In this study, the benefits of combining both search-based
repair and NMT-based repair are explored.

III. PROPOSED APPROACH
Existing APR approaches have a low recall rate, low
accuracy, and low efficiency in generating plausible and
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correct patches. Moreover, they often rely on hard-coded
rules and fix only the faults that fit special patch patterns.
To address these issues using EvoSuite and SequenceR as
the base implementation, this paper presents an improved
APR framework for Java programs that integrates the NMT
technique into search-based APR. More specifically, it uti-
lizes both redundancy assumption and sequence-to-sequence
learning of correct patches as the source for possible fix
statements that feed into a multiobjective evolutionary search
algorithm to find test-suite-adequate patches. The benefit of
combining the two APR approaches (search-based and NMT-
based) is that the search-based patch generator will not be
limited by the existing search space and hard-coded rules, and
the trained sequence-to-sequence model will create possible
repair ingredients and add to the candidate patch search space
for the multiobjective evolutionary search to build test-suite
adequate patches.

The following are the research questions addressed in this
study:
RQ 1. Is it beneficial to exploit the search-based repair and

NMT-based repair or combine them?
RQ 2. How effective is ARJANMT compared to state-of-

the-art repair systems on benchmarks of bugs?
RQ 3. What is the overall correctness of the patches gen-

erated by ARJANMT compared to human-written
patches, and other APR tools?

RQ 4. Does ARJANMT behave similarly across different
benchmarks (Defect4J and Bears)?

To demonstrate the benefits of exploiting both redundancy
assumption and sequence-to-sequence learning of bugs,
we compared ARJA with SequenceR; Figure 1 shows the
comparison results. In terms of test-suite-adequate patches,
ARJA can fix five bugs that cannot be fixed by SequenceR,
and SequenceR can fix six bugs that cannot be fixed by
ARJA. Moreover, given that ARJA and SequenceR present
suitable performance complementarity, we conclude that an
APR approach that leverages the complementary strengths of
the search-based technique and the NMT-based technique is
worth exploring.

It is noteworthy that to answer RQ1, we tested those tools
on only 47 bugs from the Defect4j benchmark in this analysis
because SequenceR requires preprocessed data to function
and SequenceR provides data for part of defects in Defect4j.
However, this is not a major concern for our assessment,
as the subjects of the bugs are still diverse, controlled, and
from a well-known benchmark.

Figure 2 provides an overview of the proposed APR frame-
work, ARJANMT. The right block represents the search-
based APR module, and the left block represents the NMT
module. ARJANMT inputs a buggy program and a set of
JUnit tests to start. Its primary goal is to make changes to the
program so that all tests pass. It goes through the following
main steps. A fault-localization method with a given input
is used to find the potentially faulty statements and scope of
those statements, In the search-based APR module, coverage
analysis is used to identify the source of the replacement and

FIGURE 1. Venn diagram of repaired bugs: ARJA versus sequenceR.

insertion code from seed statements (statements that are vis-
ited by any JUnit test). Moreover, the potentially faulty lines
and seed lines are parsed into the potentially faulty statements
and seed statements respectively by the AST parser.

In the NMT module, the information of the bugs that can
be fixed by replacing a single buggy line with a single fixed
line is passed into the NMT module. The already trained
NMT model on datasets contains buggy and repaired code
then performs the buggy context abstraction. This process
organizes the fault-localization data (e.g., buggy classes,
methods, and lines) into a concise representation for the deep
learning model but still has enough information about the
bug’s context to help predict how to fix it. The representation
is then fed to a sequence-to-sequence model that has been
trained to make the patch inference. Multiple single lines of
code representing the bug’s possible one-line patches can be
generated by the patch inference. The generated code then
enters the search-based APR module and becomes part of the
potential fix ingredients, which are to be manipulated by the
genetic programming.

The information obtained from both modules is passed into
a genetic search algorithm with predefined operations, such
as insertion, replacement, or deletion. The initial population
can be seen as a collection of preliminary solutions of the
search process. It is generated by mutated assertions with
high suspicious values given by the fault localization. The
crossover operator is then used to converge to globally opti-
mal solutions for bug repair while quickly exploring the entire
search space. To create candidate patches, we employed
the learning model from SequenceR to provide additional
fix ingredients for the multiobjective search-based repair
strategy.
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FIGURE 2. Overview of the proposed automated program repair framework (ARJANMT).

Algorithm 1 Invoke SequenceR
Input: Single-point fault-localization data produced by Ochiai
Output: Fault location with ingredient statements data
Initialize: Sequence-to-sequence model location L1, patch

output location L2
Obtain source file location of fault L3 and fault line number N
Create a thread. Call SequenceR to run the shall script, passing
through L1, L2, L3, N
Obtain all patch files generated by SequenceR through L2
getStatement method of SequencerPatchConvertor class is called
to extract candidate component statements (ingredients) from all
patch files
Add the extracted candidate ingredients to the candidate ingre-
dients set of the faulty point
End

Algorithm 1 shows the procedure of invoking SequenceR.
It takes a single fault-localization data produced by Ochiai
and outputs the candidate ingredients set of the faulty point.

Algorithm 2 demonstrates the procedure for converting
SequenceR’s unverified patches to potential fix ingredients

Algorithm 2 SequencerPatchConvertor
Input: Patch file directory, fault line number
Output: Candidate ingredients (statements) set
Input: Obtain all patch files in the directory.

The number is M
for i = 1 to M do

Select a patch file in the set
Generates an abstract syntax tree for the patch file
S = {s1, s2, . . . , sn}
for j = 1 to n do

Obtain the node of the abstract syntax tree sj
if the start line number of sjsj is the same as the fault line
number then
Store node sj into the candidate patch set
End If
End For

End For

used by multiobjective evolutionary search to find test-suite-
adequate patches. The inputs are the patch file directory and
the bug line number, and the output is a set of sentences.
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IV. EXPERIMENT DESIGN
The experimental evaluation included a selection of bench-
marks of bugs, as well as APR tools, and the bugs were
repaired with these tools. The data was then gathered by
running the selected repair tools on selected bugs, and the
results were compared between the repair tools. The tool
proposed in this paper is called ARJANMT. We performed
the test on the following three high-performance worksta-
tions to ensure the results’ fairness, trustworthiness, and
dependability:
• Workstation 1 - Operating system: Linux Ubuntu, CPU:
Intel i9, GPU: RTX 3090, RAM: 64GB

• Workstation 2 - Operating system: Linux Ubuntu, CPU:
Intel i9, GPU: RTX 3070, RAM: 64GB

• Workstation 3 - Operating system: Linux Ubuntu, CPU:
Intel i9, GPU: RTX 3070, RAM: 64GB

There were a total of 410 bugs (buggy programs) included
in our experiment, including the following categories of bugs
from Defects4J and Bears: chart (26 bugs), math (106 bugs),
time (27 bugs), traccar-traccar (42 bugs), spring-projects-
spring-data-commons (15 bugs), opentracing-contrib-java-p
(1 bug), julianps-modelmapper-module-vavr (1 bug),
dungba88-libra (1 bug), danfickle-openhtmltopdf (1 bug),
apache-incubator-dubbo (5 bugs), albfernandez-GDS-PMD-
Security-Rules (1 bug), SzFMV2018-Tavasz-AutomatedCar
(2 bugs), 2018swecapstone-h2ms (3 bugs), Activiti-
Activiti (1 bug), Activiti-activiti-cloud-app-service (1 bug),
AxonFramework-AxonFramework (1 bug), Blazebit-blaze-
persistence (1 bug), CSU-CS414-WareWolves-cs414-f18-
001-WareWolves (1 bug), CorfuDB-CorfuDB (1 bug),
DataBiosphere-consent-ontology (1 bug), DmitriiSerikov-
money-transfer-service (1 bug), EnMasseProject-enmasse
(3 bugs), FasterXML-jackson-databind (26 bugs),
FasterXML-jackson-dataformats-binary (1 bug), FasterXML-
jackson-dataformats-text (1 bug), HubSpot-Baragon (1 bug),
INRIA-spoon (62 bugs), OpenFeign-feign (1 bug),
SonarOpenCommunity-sonar-cxx (1 bug), SpoonLabs-
gumtree-spoon-ast-diff (1 bug), aicis-fresco (5 bugs),
apache-incubator-servicecomb-java-chassis (2 bugs),
apache-incubator-tamaya (1 bug), apache-jackrabbit-oak
(1 bug), apereo-java-cas-client (1 bug), aws-aws-encryption-
sdk-java (1 bug), awslabs-amazon-kinesis-client (1 bug),
brettwooldridge-HikariCP (1 bug), classgraph-classgraph
(1 bug), cpesch-RouteConverter (2 bugs), ctripcorp-apollo
(1 bug), dhis2-dhis2-core (1 bug), hexagonframework-
spring-data-ebean (1 bug), javadev-underscore-java
(1 bug), jenkinsci-ansicolor-plugin (1 bug), jgrapht-jgrapht
(1 bug), kmehrunes-valuestreams (1 bug), lettuce-io-lettuce-
core (1 bug), linkedin-pinot (1 bug), milaboratory-milib
(1 bug), molgenis-molgenis (6 bugs), openmrs-openmrs-
module-htmlformentry (1 bug), openmrs-openmrs-module-
webservices.rest (1 bug), openzipkin-zipkin (1 bug),
org-tigris-jsapar-jsapar (1 bug), paritytrading-foundation
(1 bug), pippo-java-pippo (1 bug), rafonsecad-cash-
count (2 bugs), raphw-byte-buddy (5 bugs), rkonovalov-
jsonignore (1 bug), shapesecurity-shift-java (1 bug),

smallcreep-cucumber-seeds (1 bug), societe-generale-ci-
droid-tasks-consumer (1 bug), spring-cloud-spring-cloud-
gcp (4 bugs), spring-projects-spring-data-jpa (2 bugs),
square-javapoet (1 bug), swagger-api-swagger-codegen
(2 bugs), thelastpickle-cassandra-reaper (3 bugs),
thelinmichael-spotify-web-api-java (1 bug), vert-x3-vertx-
jdbc-client (1 bug), vert-x3-vertx-web (1 bug),
vitorenesduarte-VCD-java-client (1 bug), vkostyukov-la4j
(1 bug), webfirmframework-wff (1 bug), debezium-debezium
(7 bugs).

We ran each of the tools three times on each of the bench-
mark bugs, each time on a different workstation. The issue of
whether the patches produced by a tool are correct beyond
passing the test suite has been a heated topic of discus-
sion. In our experiments, we manually checked and verified
the correctness of the patches produced by different tools.
Moreover, each produced patch was verified and validated
by three different human programmers to eliminate single-
person bias. We considered a fault to be correctly fixed if at
least one of the generated patches from each of the three runs
of a certain APR tool was recognized as correct. Hence, all
generated patches were reviewed for correctness. The results
of the trials are displayed in the table and figures below.

This research required about 5,000 hours of testing time
and human labor. Our research was not concerned with
the computational cost of running the ARJANMT tool;
instead, we were primarily concerned with the repairabil-
ity and accuracy of the patches created by our proposed
approach. We integrated our automatic repair tool into a
framework called RepairThemAll to test the effectiveness
of our approach. In RepairThemAll, there are five open-
source bug benchmarks; we employed two benchmarks in
our experiment to lessen the bias that a single assessment
might generate. We picked Defect4j and Bears because of
their complexity (they contain the most lines of code) and
their reputation in the APR community (they were often used
in measuring the efficacy of APR tools). It is noteworthy that
while Defects4J encompasses six projects, we did not take
into account projects Lang, Mockito, and Closure because
these projects frequently require more specialized tools to
repair, and they frequently produce poor results for general-
ized APR tools. More explicitly, project Lang was dropped
because it frequently encounters timeout issues. Project Clo-
sure was removed because it uses the specialized testing for-
mat rather than the typical JUnit tests. Mockito was ignored
because it is a relatively new project added to the Defects4J
benchmark [8].

To examine the effectiveness of our approach, we com-
pared our approach, ARJANMT, to the three top-performing
test-suite-based APR tools presented in the study by [3]:
Nopol, DynaMoth, and ARJA. These three tools generate
test-suite-adequate patches for the highest number of bugs.
Nopol [12] is a semantics-based tool for repairing Java
programs. It employs random values that make all failed
test cases from the program under repair pass. It gathers
these values while the program runs and incorporates them
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into a satisfiability modulo theory (SMT) formula to obtain
an expression that fits the behavior of the abovementioned
random value. Finally, Nopol converts the SMT resolution
into a source code patch when the SMT formula is sat-
isfied [3]. Similar to Nopol, DynaMoth [13] also focuses
on buggy and missing ‘‘if’’ conditions. However, instead
of generating patches using SMT, it combines variable and
method calls collected by Java Debug Interface to generate
more complex fixes [3].

V. RESULT ANALYSIS
Figure 3 shows the repairability of the repair tools in descend-
ing order by the number of generated test-suite-adequate
patches. It displays the number of unique bugs patched by
the tool in blue and the number of patched bugs that were also
patched by other repair tools in grey. The overall number of
patched bugs with the percentage over 410 bugs for each tool
is also presented.

ARJANMT generates patches for 32 bugs in total, that
is, 12.2% of all bugs, four of which are patched solely by
ARJANMT and 46 of which are patched by ARJANMT and
other tools. ARJA synthesizes patches for 47 bugs in total,
that is 11.5% of all bugs, one of which is patched exclusively
by ARJA and 46 of which are patched by ARJA and other
tools. Nopol patches 32 bugs in total, that is 7.8% of all bugs,
15 of which are patched only by Nopol and 17 of which
are patched by Nopol and other tools. DynaMoth generates
patches for 24 bugs in total, that is 5.9% of all bugs, four
of which are fixed solely by DynaMoth and 20 of which are
fixed by DynaMoth and other tools.

FIGURE 3. Repairability of the four repair tools on 358 bugs.

In terms of the number of patched bugs, we observe
that ARJANMT is the tool that patches the highest number
of overall bugs, and it is followed by ARJA, Nopol, and
DynaMoth. However, Nopol is the tool that patches the high-
est number of unique bugs, and it is followed by ARJANMT,
DynaMoth, and ARJA.

Table 1 shows the number of patched bugs overlapping
among each pair of repair tools. The number of bugs uniquely
patched by the tool is shown when the column name and line
name are the same (main diagonal). ARJANMT, for example,
has patched four bugs that are not patched by other tools, and

TABLE 1. The number of overlapped patched bugs per repair Tool.

14 bugs that are patched by ARJANMT are also patched by
Nopol. ARJA has a 90% overlap with ARJANMT but only
a 44%–63% overlap with the other tools. In contrast, Nopol
has a 63% overlap with DynaMoth but only a 28%–30%
overlap with the other tools. These results indicate that the
repair tools that are implemented in similar patch-generating
frameworks exhibit significant overlap.

The term ‘‘plausible fixing’’ or ‘‘test-adequate fixing’’
refers to a tool’s ability to generate a plausible or test-
adequate patch for the given program that passes all unit tests.
‘‘Correct fixing’’ means that such a generated plausible patch
must be semantically equal or identical to the human-written
patch.

The Venn diagrams in Figure 4 answer RQ2. They depict
the intersection of patched bugs. Figure 4(a) shows the test-
adequate fixings while Figure 4(b) shows the correct fixings
among ARJANMT, Nopol, ARJA, and DynaMoth. The vast
majority of bugs that ARJA successfully fixes can also be
fixed by ARJANMT. ARJANMT absorbs basic principles
from ARJA, implying that the inclusion is quite successful,
allowing ARJANMT to inherit almost all of ARJA’s repairing
powers.

Compared to ARJA and DynaMoth, Nopol shows better
complementarity to ARJANMT in terms of test-adequate
patches. For example, Nopol can patch 22 bugs that cannot be
patched by ARJANMT. However, in terms of correct fixing,
neither Nopol nor DynaMoth exhibits a complementarity
effect to ARJANMT. Thus, we conclude that simply com-
bining semantics-based Nopol with ARJANMT might not
further enhance the performance of ARJANMT.

To answer RQ3andRQ4, Table 2 shows the repairability
of ARJANMT, Nopol, DynaMoth, and ARJA and declares
a patch correct if it is semantically equal or identical to the
human-written patch. It is worth noting that Table 2 shows
only the projects that have at least one bug patched by at
least one APR tool. As shown in Table 2, in terms of the
total number of patched bugs, ARJANMT surpasses all other
tools. In particular, ARJANMT can generate test-adequate
patches for 6.4%more bugs than ARJA can, 56.3%more than
Nopol can, and 108.3% more than DynaMoth can. In terms
of the bugs correctly patched, ARJANMT and ARJA have
the same number of correct patches, higher than those of
Nopol and DynaMoth. Moreover, as shown in the table, four
repair tools all overfit Defects4J; that is, the overall number
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TABLE 2. Comparison in terms of the number of bugs fixed and correctly fixed (plausible or correct).

FIGURE 4. Venn diagram of repaired bugs.

of patches generated by all tools is much higher for bugs in
Defects4J compared to Bears. However, the repairability of
search-based APRs still outperforms that of semantics-based
Nopol and DynaMoth for bugs in Bears.

VI. CONCLUSION
Automated program repair is the desired approach for soft-
ware development. In this paper, we designed and imple-
mented an automated program repair framework called
ARJANMT, which utilizes both redundancy assumption and
sequence-to-sequence learning of correct patches as the
ingredients for the possible fix statements that feed into
an NSGA-II algorithm to find test-suite-adequate patches.
The results of the experiment indicate that it is beneficial
to combine both the search-based repair technique and the

NMT-based repair technique due to their complementary
effects and that ARJANMT surpasses ARJA, Nopol, and
DynaMoth by 6.4%, 56.3%, and 108.3% respectively in terms
of the total number of patched bugs. In terms of bugs correctly
patched by tools, ARJANMT and ARJA have the same,
highest number of correct patches compared to Nopol and
DynaMoth. Moreover, search-based APR has the potential
to overcome the overfitting issue exhibited in the new APR
benchmarks. The directions for future research can be three-
fold. The searchability of the multiobjective evolutionary
algorithms and the repairability of the NMT model can be
improved. In addition, template-based APR techniques can
also be combined with ARJANMT to improve the perfor-
mance of the tool.
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