IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received February 21, 2022, accepted March 28, 2022, date of publication April 4, 2022, date of current version April 11, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3164669

Multi-Layer Perceptron Training Optimization
Using Nature Inspired Computing

ALI AL BATAINEH"1, (Member, IEEE), DEVINDER KAUR“2, (Life Senior Member, IEEE),
AND SEYED MOHAMMAD J. JALALI3, (Member, IEEE)

! Department of Electrical and Computer Engineering, Norwich University, Northfield, VT 05663, USA
2Department of Electrical Engineering and Computer Science, The University of Toledo, Toledo, OH 43606, USA
3Institute for Intelligent Systems Research and Innovation, Deakin University, Burwood, VIC 3125, Australia

Corresponding author: Ali Al Bataineh (aalbatai @norwich.edu)

This work was supported in part by Norwich University, and in part by The University of Toledo.

ABSTRACT Although the multi-layer perceptron (MLP) neural networks provide a lot of flexibility
and have proven useful and reliable in a wide range of classification and regression problems, they still
have limitations. One of the most common is associated with the optimization algorithm used to train
them. The most commonly used training method is stochastic gradient descent with backpropagation (or
backpropagation for short) because it is mathematically tractable (given that the activation functions are
differentiable). However, backpropagation is not guaranteed to find the globally optimal set of weights and
biases. As a result, the MLP is often incapable of obtaining a desirable solution to the problem. Clonal
selection algorithms (CSA) are optimization procedures that effectively explore a complex and large space
to find values near the global optimum. Consequently, CSA can be used to solve the problem of training
MLP networks. This paper presents a novel implementation of CSA for training MLP architectures to solve
real-world problems such as breast cancer diagnosis, active sonar target classification, wheat classification,
and flower classification. The CSA is used to find the optimal weights and biases that will significantly
increase the classification accuracy of the MLP. The performance of our proposed approach is compared
with other popular training methods: genetic algorithm (GA), ant colony optimization (ACO), particle swarm
optimization (PSO), Harris hawks optimization (HHO), moth-flame optimization (MFO), flower pollination
algorithm (FPA), and backpropagation (BP). The comparison is benchmarked using five classification
datasets: Iris Flower, Sonar, Wheat Seeds, Breast Cancer Wisconsin, and Haberman’s Survival. Comparative
study results illustrate the improvements in MLP performance gained by using CSA over other training
methods, and hence it can be considered a competitive approach to training MLP networks when solving
real-world applications in various disciplines.

INDEX TERMS Breast cancer, clonal selection algorithm, multi-layer perceptron, nature inspired

computing, neural networks, optimization, sonar target classification.

I. INTRODUCTION

The development of fast, reliable and inexpensive computing
power has transformed the optimization field over the
last decades [1]. Optimization refers to the process or
methodology of making something (such as a system, design
or decision) as ideal, functional, or efficient as possible.
In mathematical terms, it refers to either maximization or
minimization of an objective function relative to a given
set, often representing a range of all possible choices in

The associate editor coordinating the review of this manuscript and

approving it for publication was Wei Jiang

VOLUME 10, 2022

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

a particular situation [2]. The objective function allows a
comparison of the different options to determine which
might be the “best” [3]. Almost every problem in science
and engineering can be formulated as an optimization
problem. Some problems can be dealt with and solved by
classical optimization techniques; however, most problems
are either unmanageable or too costly in terms of time
and other resources to be solved using traditional meth-
ods [4]. Fortunately, these hard problems can be solved
by modeling inspiration from nature. Nature has been a
great source of inspiration for the development of new
computing technologies that are flexible, robust, and scalable

36963

https://orcid.org/0000-0003-4576-2781
https://orcid.org/0000-0003-0567-8585
https://orcid.org/0000-0003-3565-2001
https://orcid.org/0000-0002-3719-3710

IEEE Access

A. Al Bataineh et al.: Multi-Layer Perceptron Training Optimization Using Nature Inspired Computing

by observing how naturally occurring phenomena solve
complex problems in various environmental situations [5].
This produced groundbreaking research that led to the
development of optimization techniques like CSA, GA, PSO,
ACO, HHO, MFO, and FPA [6]-[11]. These are global
optimization techniques that can generate near-optimum or
even optimum solutions. They have numerous advantages
which have made them enormously popular; these include:

« Better at handling very large spaces where there are a

large number of parameters involved.

« Have great parallel abilities.

o Optimizes both discrete and continuous functions as

well as multi-objective problems.

« Do not need any derived knowledge that might not be

available for many real-world problems.

« Faster and more effective than classical approaches and

provide not just one good solution but many of them.

Training neural network architectures such as MLP can
be formulated as optimization problems; hence, they can be
solved by some optimization methods. Stochastic gradient
descent (SGD) is a popular optimization algorithm that is
often adopted to train neural network models since it is
flexible and mathematically tractable. SGD uses backprop-
agation to calculate the gradients for each parameter (i.e,
weight, bias) so that new values for the variables can be
computed [12]. However, the SGD learning algorithm might
converge to a set of sub-optimal weights and biases from
which it cannot escape. As a result, the MLP model is often
incapable of finding a desirable solution to a problem at
hand. Additionally, the algorithm requires the activation and
loss functions to be differentiable in order to calculate the
gradients. Generally speaking, it is not a simple task to find an
optimum solution or even sub-optimum solutions. The good
part is that it is possible to solve these optimization problems
by drawing inspiration from nature to produce near-optimal
solutions [13].

Several nature-inspired algorithms have been proposed
in the literature to train MLP systems, with promising
results [14]-[22]. GA methods have been widely used to
solve a variety of optimization problems, including the
training of the MLP. An early and successful approach is
described in [23]. The authors proposed using GA to find
a near-optimal set of weights of MLPs in a relatively short
time. They ran a number of experiments using data from
a sonar image classification problem. Their experimental
results showed the GA is better than SGD for training MLP
models. Similar works that used GA to train MLP models
for various classification and regression tasks are reported
in [24]-[28]. PSO algorithm has also been used successfully
used to train neural networks. One of the first applications
of the PSO algorithm was to train MLPs, which involved
finding appropriate weights for MLPs [29]. Other remarkable
works that use the PSO algorithm to train neural networks
are described in [30]-[32]. ACO has also shown promising
results for training MLP models [33], [34]. Recnetly, artificial
immune system (AIS) methods have been applied to train

36964

MLP mdeols due to their ability to balance the search space
exploration and exploitation [35]-[39]. HHO [40], MFO [41],
and FPA [42] have also been used to find the weights and
biases of MLP models and have proven to be very competitive
in terms of achieving high classification accuracy.

Differential Evolution [43], Artificial Bee Colony [44],
Grey Wolf optimizer [45], Lightning Search Algorithm [46],
Multi-Verse Optimizer [47], and Whale Optimization Algo-
rithm [48] are also other popular nature-inspired algorithms
that have been used to train MLPs and have shown
good performance. Hybrid systems, which combine two
algorithms, have also been proposed to train MLP models
effectively. In [49], the authors presented a hybrid model that
combines GA and gradient descent backpropagation, where
GA is utilized to initialize and optimize the weight parameters
of the MLP model to classify medical data. In [50], the
authors introduced a hybrid model that combines PSO and
Gravitational Search Algorithm to train MLPs (or FFNN5) to
investigate the effectiveness of these algorithms in avoiding
local minima. Other proposed hybrid models for training
MLPs are described in [51]-[53].

This research focuses on utilizing the CSA [54], to train
MLP models, to improve their performance for solving classi-
fication tasks. CSA are metaheuristic optimization algorithms
inspired by theoretical and experimental immunology to
solve computational problems from optimization, mathemat-
ics, and engineering. It belongs to the board field of AIS. AIS
encompass any system or computational tool that extracts
ideas and metaphors from the biological immune system to
solve problems [55], [56]. As opposed to swarm intelligence
and evolutionary algorithms that emerged from one main cen-
tral idea and developed into several branches and variations,
AIS was proposed considering various features, processes,
and immune system models [57]. The idea was first proposed
by Farmer and team in 1986 [58], with some important
work on Bersini and Varela’s immune networks in 1990 [59].
Many variants, such as the CSA, negative selection algorithm,
immune networks, and others, have been implemented over
the last few decades. CSA is very encouraging, and it has
demonstrated efficient performance in the optimization and
pattern recognition domains. [60]. CSA can estimate known
solutions and simulate the adaptive immunity behavior in
complex systems. It searches the solution space by creating a
population of candidate solutions called antibodies. It then
evaluates each antibody’s affinity (fitness) and matches it
against the affinity of the potential solution called an antigen.
Those antibodies with higher affinity than the antigen affinity
will then be selected, and a number of clones are created
from each antibody proportional to the respective affinity.
The clones then undergo a hypermutation process, inversely
proportional to corresponding affinities. This hypermutation
process is called affinity maturation. Finally, depending on
the mutate clones affinities, re-selection is performed to select
the optimal mutate clone, which evolves and becomes the
main antigen for the next generation, and the same process is
repeated several times until the desired solution is obtained.

VOLUME 10, 2022

A. Al Bataineh et al.: Multi-Layer Perceptron Training Optimization Using Nature Inspired Computing

IEEE Access

This paper proposes an effective CSA-based method for
training MLP architectures to solve difficult real-world
problems in a variety of domains, including breast cancer
detection, active sonar target classification, wheat classi-
fication, and flower classification. The following are the
contributions of the study:

1) We develop an encoding scheme for MLP weights and
biases that enables efficient implementation of various
mutation types.

2) We evaluate our proposed methodology on five
real-world benchmark classification datasets with vary-
ing levels of difficulty.

3) We compared our method to six well-known nature-
inspired methods and found that it produced better
results.

The paper is structured as follows. Section II delves into the
details of the clonal selection theory, focusing particularly
on those elements abstracted and implemented in the CSA
method. Section III provides an overview of the CSA method,
explaining in detail the powerful features and main opera-
tors of the proposed algorithm with examples. Section IV
discusses MLP models and how they learn using gradient
descent backpropagation. The complete implementation of
the proposed CSA-based method for training MLP systems is
explained in Section V. Experimental design and a discussion
of the presented results are presented in Sections VI and
VII, respectively. Finally, conclusions and future work are
presented in Sections VIII and IX, respectively.

Il. CLONAL SELECTION THEORY

The key advances within the AIS centered on three main
immunological theories: clonal selection, negative selection
and immune networks. AIS researchers have focused mostly
on the biological immune system’s learning and memory
processes inherent in the clonal selection and immune
networks and the negative selection principle to generate
detectors that can classify changes in self. This research’s
main focus is the CSA, a novel implementation of AIS
inspired by the clonal selection theory. The clonal selection
theory is an immunology theory that explains the basic
features of the adaptive immune system, particularly a theory
to describe the diversity of antibodies used to protect the
organism against foreign attacks. [61].

An antibody itself is a a compound produced by B
lymphoid cells that has the ability to neutralise a specific
molecule. Each B lymphocyte produces special or unique
antibodies of a specific type. When first proposed, the theory
was controversial and competed with another paradigm
named template theory. Currently, the clonal selection theory
is marked as fact, taking into account the vast amount
of experimental evidence [62]. The clonal selection theory
specifies that an organism has a a set of individually unique
antibodies that can recognize all antigens with a specific
degree of specificity. Whenever an antibody’s primary
antibody is recognised, a cell is stimulated to molecularly
connect towards the proliferate, antigen, and start producing

VOLUME 10, 2022

2% YANNA

@ 0.0 0 0 @ ¢
FIN AN /N ZIN wemer 42

FIGURE 1. Clonal selection process, taken from [65].

further molecules with much the same antibody [63]. During
in the cell proliferation phase, genetic mutations take place
inside the replica of cell lines that enhance the match as well
as predilection only with antigen. The above means allowing
the cells’ potential to adhere towards the antigen to help to
strengthen both with antigen exposure. This antigen-driven
sampling of reproduction cell lines can be viewed as a
Darwinian perfect example in which the fittest cell lines (best
candidate with antigens) have been picked to stay alive, and
gene mutation can provide cell diversity [64]. Figure 1 gives
an overall picture of the clonal selection process.

It depicts B lymphocyte cells that specifically bind
antigens only at upper edge. Following that, the B cell
multiplies (mitoses) and generates a large number of B
lymphoblasts, which differentiate into plasma cells producing
memory cells or immunoglobulin.In an effective immune
response, plasma cells produce a large number of antibodies
to a specific antigen, which results in the removal of the
antigen. Memory cells are known to remain within the
original host and support a quick supplementary response
if a specific immune resurfaces. This is the phenomenon
of the acquired immunity. Another distinguishing feature of
acquired immunity is how the system develops the ability to
differentiate between self and non-self. This capacity is called
tolerance and explains the failure of the system to launch
an immune response against a specific antigen, such as self-
antigens [66].This ability develops prior to the organism’s
birth, while the immune system itself originates. This ability
to not produce antibodies against one’s own cells can be

36965

IEEE Access

A. Al Bataineh et al.: Multi-Layer Perceptron Training Optimization Using Nature Inspired Computing

acquired for foreign antigens given to the organism before
birth. This tolerance, however, cannot be maintained if the
antigen is not permanently present in the organism, which
means that the system may forget unused knowledge [67].

Ill. CLONAL SELECTION ALGORITHM

A. OVERVIEW

The CSA is a global optimization method inspired by
the principles of the clonal selection theory of acquired
immunity. CSA has shown high performance in diverse, chal-
lenging optimization problems over traditional optimization
techniques [68], [69]. The algorithm takes inspiration from
the following elements of the clonal selection theory:

o Immune system produces multiple antibodies to combat
invaded antigen/pathogen.

« Filter the antibodies produced based on affinity. Affinity
is the degree of recognition between an antibody and
an antigen. The higher the affinity, the better the
recognition.

« Antibodies with higher affinity are cloned.

« The clone set of duplicate antibodies is then subjected
to affinity maturation (mutation) process to match the
antigen better.

In the CSA algorithm, an antigen represents the problem to
optimize, and the algorithm generates a set of candidate solu-
tions (antibodies) to solve the problem [70]. The quality of the
candidate solutions is evaluated based on the affinity (better
matched with antigen). The process of exploring feasible
solutions is the means of immune cells identifying antigens
and launching immune responses in the immune system [71].
CSA is comparable to GA; it typically develops solutions
by repeating bio-operators such as cloning, mutation, and
selection cycle to a population of candidate solutions and
remains the best solutions. These operators help increase
diversity and provide a means for potentially escaping local
optima [72].

B. ALGORITHM
The following gives an overview of the steps of the CSA
algorithm [64].

1) Initialize an antigen (potential solution) randomly.

2) In response to the initial antigen, a random population
of candidate solutions (antibodies) with the same
format is created to fight the antigen.

3) The affinity (fitness) score is measured for each
antibody.

4) Select the antibodies that have affinity higher than the
antigen.

5) Clone the selected antibodies to produce more like
them. Depending on the designer’s choice, number of
clones can be fixed for all antibodies or proportion to
their affinity (rank-based).

6) Mutate each antibody randomly to enhance diversity
further and implement a means for potentially escaping
local optima. In other words, an attempt to discover

36966

Initialize antigen
Initialize antibodies
v
Calculate affinity

v

Select n antibodies Clone

J

J

Mutate

best

J.

Calculate affinity

Repluce antigen with the

L

Select best one

J

Stopping NO
condition?

; Yes

Optimal solution

|\1 End |

FIGURE 2. Flow chart diagram describing stages of CSA algorithm.

even more desirable candidates. Here, the mutation rate
is inversely proportional to the affinity.

7) Affinity is measured for every mutated antibody; select
the best and kills off the rest.

8) Replace the initial antigen with the best antibody and
repeat the process until stopping criteria is reached,
such as optimal solution has been found or the
maximum number of iterations has been achieved.

Figure 2 provides a complementing diagram of the

workflow phases of the CSA method.

1) ANTIGEN INITIALIZATION

When solving an optimization problem, i.e., optimizing a
function’s variables, an antigen is a potential solution based
on which the final optimum solution is evaluated. This
potential solution will help select those antibodies in each
generation whose affinity (fitness) are better than the anti-
gen’s affinity. First, a random antigen is created, representing
the function’s possible parameters over a specific range.
There are as many antigen genes as the number of the function
parameters, which their optimal value needs to be found to
minimize or maximize the function. In other words, each
gene represents a parameter value. For further explanation,
let’s assume that a function has six parameters, and the task
is to find their optimal values, which will best minimize
the objective function. In this case, the antigen can then be

VOLUME 10, 2022

A. Al Bataineh et al.: Multi-Layer Perceptron Training Optimization Using Nature Inspired Computing

IEEE Access

x k) &g £y &y L

253 057 0.07 =247 3.00 -033

FIGURE 3. A randomly generated antigen in decimal form, representing
the weights and bias values of a neural network model.

Antibod}'l‘ 141 ‘ -291 ‘ -298 ‘ 0.28 ‘ S8 ‘ -133 ‘

Antibody 2

287 ‘ 147 ‘ -344 ‘ -0.34 ‘ 1.12 ‘ 239 ‘

Antibody 3

0.51 ‘ -132 ‘ -0.77 ‘ 146 ‘ 1.93 ‘ 3.01 ‘

Annbocl_\'-l‘ 073 ‘ 1.56 ‘ 111 ‘ 321 ‘ -245 ‘ 1.87 ‘

Antbody 3

-0.68 ‘ 0.54 ‘ 209 ‘ 139 ‘ -0.65 ‘ 292 ‘

FIGURE 4. A random population of 5 candidate solutions (antibodies).

represented as a decimal vector containing six parameter
values. These values are first initialized randomly in the
predefined range (say in the range [-3.5, 3.5]), as shown in
Figure 3.

2) ANTIBODIES INITIALIZATION

Similarly to how the human body generates several antibodies
to combat an antigen, antibodies are generated as candidate
solutions to combat an antigen in the CSA algorithm [73].
Antibodies and antigens have the same format. Figure 4
depicts a randomly generated population of antibodies
(candidate solutions) in response to the antigen.

3) AFFINITY CALCULATION

Following the generation of the initial population of antibod-
ies, the affinity (fitness value) of each antibody is calculated
using a fitness function. The antibody evaluation is a crucial
part of the CSA because antibodies are selected for cloning
and mutation based on their fitness. The fitness function
changes based on the problem being solved, and it must
quantitatively measure how fit a particular solution. For
instance, the fitness function can be defined by the reciprocal
of the error, where the error is the absolute difference between
the predicted value and the true value. The higher the fitness
value, the better the antibody. In CSA, affinity calculation
is performed repeatedly, and thus it should be sufficiently
fast to compute. A slow computation of the affinity can
negatively affect a CSA and make it exceptionally slow.
Table 1 below shows the fitness values of all candidate
solutions (antibodies) and the potential solution (antigen).
Antibody?2 has the highest fitness value, whereas Antibody4
has the lowest one.

4) SELECTION
We select a number of antibodies n with a higher fitness value
than the antigen based on the previously calculated fitness

VOLUME 10, 2022

TABLE 1. Fitness of the antigen and the antibodies.

Antigen/Antibodies Fitness value
Antigen 0.13
Antibody 1 0.11
Antibody2 0.25
Antibody3 0.16
Antibody4 0.08
Antibody5 0.18

TABLE 2. Number of clones created from each selected antibody.

Selected antibodies Fitness value #Clones

Antibody?2 0.25 N = round (1:29) = 50
Antibody5 0.18 N = round (%) =25
Antibody3 0.16 N, = round (%) =17

value. As shown in Table 1, antibodies 2, 3, and 5 are more
fit than the antigen and will thus be used for cloning and
mutation. Antibodies that are less fit than the antigen will be
eliminated from the population.

5) CLONING

Cloning is the process of producing multiple copies of the
n antibodies chosen in the preceding step. Using a rank-
based measure, the number of clones generated for each of
the selected antibodies is proportional to their affinity. This
is accomplished by first sorting the chosen antibodies in
ascending order of affinity. The ordered list is then iterated,
and the number of clones generated for each antibody is
calculated as shown below [54]:

N, = round ('B :N> (1)

1

In Eq. (1), N, is number of clones generated for a provided
antibody, B is a clonal factor, N is the population size, i
is the antibody current rank where i € [1,n], and round
(.) is an operator that rounds towards the nearest integer.
Table 2 shows the number of clones generated from each of
the selected antibodies, assuming the population size (N =
50) and B = 1. The highest affinity Antibody2 (i = 1)
will produce 50 clones, while the second highest affinity
Antibody5 (i = 2) produces 25 clones, and finally Antibody3
(i = 3) will produces 17.

In some CSA implementations, the affinity proportionate
cloning is not implemented, meaning that the number of
clones created from each of the selected antibodies is the
same. This implies that each antibody will be viewed locally
and have the same clone size regardless of its affinity
(fitness).

6) MUTATION
By randomly altering genes in a given antibody, mutation
introduces diversity into a population. Mutation is a key

36967

IEEE Access

A. Al Bataineh et al.: Multi-Layer Perceptron Training Optimization Using Nature Inspired Computing

component of the CSA, allowing for global optimization
while avoiding local optimization. In CSA, the mutation is
inversely proportional to an antibody’s affinity. To put it
another way, the higher the affinity, the lower the mutation,
and vice versa. This is referred to as affinity maturation. The
following method can be used to implement the mutation
rate [74]:

1
o = —exp(—f) (2)
P

In Eq. (2), « is the rate of mutation, p is a decay controller,
and f is the affinity of the antibody normalized in [0,1]. Given
L as the length of the clone, then the number of genes to be
mutated Ny can be calculated as follow [75]:

Ny =[L x a] 3

There are many mutation operators that can be used
depending on how antibodies are encoded. Here we list
widely used mutation operators for real-valued encoded
antibodies (i.e., weights and/or bias). This is not an exhaustive
listing, and the CSA designer may find a combination of
these methods or a problem-specific mutation operator more
useful.

o Uniform mutation: This mutation operator replaces the

value of the selected gene from the given antibody with
a uniform random value selected between the upper and
lower bounds specified by the user for that gene.

« Boundary mutation: This operator replaces the value
of the selected gene from the given antibody with either
upper or lower bound randomly.

o Gaussian mutation: This mutation operator is more
efficient in converging than the previously mentioned
operators. It adds a random value from a Gaussian
distribution to the selected gene of an antibody. If the
new new gene value falls outside of the user-specified
range for that gene, then this new value is clipped.

7) AFFINITY CALCULATION AND STOPPING CRITERION
Following mutation, each clone is evaluated based on its
affinity, and the best one is chosen as the antigen for the
next generation. The process is repeated several times until
the algorithm reaches the maximum number of generations
and/or the best fitness value in the population does not
improve after a certain number of generations.

IV. MULTI-LAYER PERCEPTRON

A MLP is a type of feed-forward neural network (FFNN)
containing one or more hidden layers, where each layer
has one or more neurons [76]. It is an extension of the
perceptron network and is perhaps the most widely used
neural network model. MLP with a single hidden layer is
termed a shallow neural network; with a sufficient number
of hidden neurons, a single hidden layer MLP can provide a
universal approximation for almost any problem with tabular
data. When MLP contains more than one hidden layer, it is
called a deep neural network. Adding more hidden layers

36968

-
=
=

=

=
=
=

e

=
]

aaAe | nduy

Hidden layer

FIGURE 5. Multi-layer perceptron.

may yield little benefit. However, it is computationally more
expensive as the number of trainable parameters increases
and is more prone to overfitting [77]. An MLP with one
hidden layer is shown in Figure 5. It consists of three layers
of nodes: an input layer, a hidden layer and an output layer.
The data are only transferred in a forward direction from
the input nodes, through the hidden nodes and to the output
nodes. Except for the input nodes, each node is a neuron
that includes a bias neuron and performs some computations
using a non-linear activation function [78].

A. INPUT LAYER

The input layer is responsible for getting the inputs from
an external source such as a CSV file. It requires one input
node per variable (or feature). For example, the famous Iris
Flower classification dataset contains four features (sepal-
length, sepal-width, petal-length, and petal-width); hence,
four nodes are in the input layer. In case two features out of
four were only selected, then the input layer will include only
two nodes.

B. HIDDEN LAYERS

The hidden layers are what making ANNSs superior to
other machine learning algorithms. The hidden layers are
intermediate layers of neurons between the input and
output layers. They detect and learn features by performing
non-linear transformations of the inputs entered into the MLP.
There is no precise general rule for selecting the number
of neurons in a hidden layer; it is highly dependent on
the problem. Therefore, programmers can use methodical
experimentation to determine what works best for their
particular dataset.

C. OUTPUT LAYER

The output layer is the final layer. It is responsible for
producing the final output of the network. The number of
neurons depends on the task format. For instance, in a binary
classification problem (spam/ham), we use a single output
neuron with sigmoid activation. However, in a multi-class
classification problem, the number of neurons is usually equal
to the number of classes/categories (e.g., three neurons for the
three classes in the Iris Flower dataset). In this case, a softmax
activation function is used to ensure the final probabilities
sum to 1.

VOLUME 10, 2022

A. Al Bataineh et al.: Multi-Layer Perceptron Training Optimization Using Nature Inspired Computing

IEEE Access

by by

-
— & N
€] = 2 |o(a) Lt | 2 '-'f(zz);-'—"a2 ¥
% /
A " Predicted output

Input layer | Hidden layer

FIGURE 6. Simplified multi-layer perceptron.

D. BACKPROPAGATION

Backpropagation is a widely used algorithm to effectively
train neural networks through a technique called chain rule.
Backpropagation was first introduced in 1969 by Bryson
and Ho [79] but was neglected due to its demanding
computations. In 1986, the backpropagation learning method
was rediscovered by Rumelhart et al. [80]. They described
various neural networks where backpropagation works much
faster than previous learning methods, making it desirable to
apply neural networks to solve problems that had previously
been unsolvable [81]. Currently, backpropagation algorithm
is the workhorse of learning in ANNS, and a major component
in modern deep learning models. [82].

As a general rule, training neural networks using back-
propagation involves two passes: forward and backward [83].
In the forward phase, we first initialize all the parameters
with small random values. Then, at each iteration, we feed
the model with a training instance, and each neuron in the
hidden and output layers determines its output in a way
similar to Rosenblatt’s perceptron except for the activation
function where a nonlinear function such as sigmoid is used
instead of a linear function (e.g., step function). Finally,
we check what the neural network predicts and compute the
error (or loss) using a certain cost function. In the backward
pass, backpropagation performs a backward pass to calculate
the gradients of the cost function with respect to all model
parameters. After finding the gradients, we use stochastic
gradient descent (SGD) optimizer to recalculate the new
values of the parameters. The same forward and backward
passes with the new updated parameters values are repeated
again for the second training instance and so on. This training
process ends when a predefined stop condition is met, i.e., the
maximum number of iterations has been reached. To derive
the backpropagation algorithm, we will consider the MLP
model shown in Figure 6 where sigmoid function (o) is used
for both hidden and output layers. For the sake of simplicity,
we assumed that each training instance contains only one
feature (x1). Accordingly, we considered only one neuron for
the hidden layer and one neuron at the output layer. First,
we start with the forward pass which involves finding the
predicted output () of the network:

71 = wix + by

a; = o(z1)

22 = wia; + b

y=a=0(2) “4)

VOLUME 10, 2022

Next, we define the cost (or loss) function, which
potentially could be any function that measures the error, such
as the squared error. One of the most common loss functions
used in classification problems is the Cross Entropy Loss.
In a binary classification problem, where number of classes
C = 2, the Cross Entropy Loss can be defined as:

=2
L(wi, wa, by, by) = — Z)’i log (1)
i=1

= —yilog (1) — (1 —y) log (1 — 1)
(5)

where it’s assumed that there are two classes: 6‘1 and é‘z.
y1 and y; are the true and the predicted score for C 1, and
y2 = 1 —yjand y» = 1 — J; are the true and the predicted
score for C;. Following that, we employ backpropagation to
compute the derivative of the network’s cost function (£) with
respect to all network parameters. This is performed by using
the chain rule recursively from the last to the first layer of the
network.

oL 0L daxy 0z

owy dar 0z Own
B,C 3,6 3612 322

8_b2 day 0z 0by

oL oL 0dap 9z da; 0z1
8W1 3a2 322 3(11 3Z1 3W1
oL aL dap 0z da; 0z

P . At it 6
0b; day 0zp day; 0dz1 b ©
Finally, we use SGD to update the network’s parameters.
oL
wp =wp —n—
1 1 ﬂawl
oL
by = by —n—m
1 1 nabl
aL
w2 =wp =N —
owa
oL
by = by —n—m 7
2 =br=ng” (7N

For the rest of this paper, the term backpropagation will be
used loosely to refer to the entire learning algorithm for the
MLP, including how the gradient is used by algorithms such
as SGD to perform learning.

V. IMPLEMENTATION OF THE PROPOSED APPROACH

This section describes MLP training for data classification
using our proposed CSA. Two prerequisites must be met in
order to use the CSA: 1) a solution representation or encoding
of the antigen; and 2) an affinity measure function to evaluate
the solutions produced during the process. Once an encoding
has been determined and an appropriate affinity measure
function has been chosen, the CSA will perform selection,
cloning, hypermutation, and re-selection based on the affinity
until stopping criteria are met. The overall procedure of MLP
training using our CSA-based method is depicted in Figure 7.

36969

IEEE Access

A. Al Bataineh et al.: Multi-Layer Perceptron Training Optimization Using Nature Inspired Computing

Initialize antigen
(w and b)

v

. Initialize .;a ntibodies
(w and b)

v
Calculate affinity
v

Select m antibodies

v
Clone
v
Mutate
v
Calculate affinity
2

Replace antigen

Input layer

Hidden layer

Output layer

Select best

!

b
éopping\\
\C{)ndilion'?

Yes

Optimal solution

Affinity score

FIGURE 7. The procedure of the MLP training process with CSA based algorithm.

kit

b'- '/ \J *
s '
T _!4' -

Y

Ty |

Ag = {wy, wy, w3, wy, by, by, w5, we, by }

FIGURE 8. Encoding the weights and biases of MLP network in an antigen
(Ag)-

The following subsections V-A through V-H describe the
complete procedure.

A. ANTIGEN ENCODING

To use the CSA to find the optimal set of weights and
biases for MLP networks, we must first represent the problem
domain as an antigen. Here, we want to find an optimal
set of weights and biases for the MLP model shown in
Figure 8. Initial weights and biases in the MLP network are
chosen randomly within some range, i.e., [-3, 3]. The weights
and biases can be represented by a 1D vector in which a
decimal number corresponds to a particular weight or bias.

36970

Ab |02 | 12 2 30 | 22 03 07

-14 ‘ -05

Aby_y | 24 11 0.9 0.6 13 | 12 | 18 0.4 29

Aby ‘ 02 ‘ 0.1 | 06 | 08 | 24 | 16 | 13 ‘ 26 ‘ 07 |

FIGURE 9. A random population of MLP networks with different weights
and biases.

In total, there are 6 weights and 3 biases in Figure 8. Since an
antigen is a collection of genes, a set of weights and biases
can be represented by a 9-gene antigen, where each gene
corresponds to a single weight or bias.

B. ANTIBODIES

Antibodies (Ap) are created in response to the initial antigen
initialized above. In simple terms, a random population
of N antibodies (N number of MLP networks with dif-
ferent weights and biases) is created, as illustrated in
Figure 9.

VOLUME 10, 2022

A. Al Bataineh et al.: Multi-Layer Perceptron Training Optimization Using Nature Inspired Computing

IEEE Access

C. AFFINITY EVALUATION

The affinity of each generated antibody is evaluated accord-
ing to the predetermined affinity function. This means
training the MLP model with the training samples using
the set of weights and biases determined by the antibody
genes and then seeing how well it performs at classifying
the test dataset. Since we are solving classification tasks,
test classification accuracy can be used as the affinty
function, which needs to be optimized or maximized. Test
classification accuracy is defined as the ratio between the
correctly classified samples and the total number of samples
in the test dataset. The higher the accuracy, the higher the
affinity.

D. SELECTION

Antibodies with higher affinity than the antigen are chosen to
proceed to the cloning and hypermutation stages. Antibodies
that have a lower affinity for the antigen will be eliminated
from the population. This is a good approach for shortening
the algorithm’s execution time.

E. CLONING

In our proposed implementation, proportionate affinity
cloning is not implemented. This means that, regardless of
their affinity values, all selected antibodies will have the same
clone size.

F. MUTATION

The Gaussian mutation is used on the cloned antibodies in
this study. Gaussian mutation works well for real-value genes,
as each weight and bias is encoded as a real value. Gaussian
mutation makes small random changes in the antibodies in
the population. It adds a random value from a Gaussian
distribution to the chosen genes. For the CSA, the mutation is
inversely proportional to the affinity of an antibody. Meaning,
the higher the affinity, the fewer genes will be mutated or
altered. This is known as affinity maturation. The goal is
to preserve high-affinity antibodies without disturbing them
while improving the affinity of low-affinity antibodies. When
using Gaussian, there is a chance that some gene values will
fall outside the specified range we set. Our implementation
performs clipping on all genes after mutation to have all the
gene values within the allowed range. Figure 10 depicts a
mutation example.

G. AFFINITY EVALUATION OF THE MUTATED CLONES

The affinity of each mutated clone is calculated. The mutated
clone with the highest affinity is selected, and the rest are
eliminated.

H. STOPPING CRITERION

The selected clone replaces the original antigen and becomes
the antigen for the next generation. The process is repeated
from V-B until a criterion, such as a certain number of
generations, is met.

VOLUME 10, 2022

Original MLP Mutated MLP

|—u.2|12‘27|3.u‘722‘4.4‘4.5‘03‘07‘ ‘702‘12‘27‘30|722‘0.8|1.7‘03‘D7‘

FIGURE 10. Mutation operation in CSA for MLP weights and biases
optimization.

VI. EXPERIMENT DESIGN

A. DATASETS

1) IRIS FLOWER DATASET

The Iris Flower dataset is a multi-class (3-class) classification
problem introduced by Ronald Aylmer Fisher [84]. It is
considered the ‘“hello world” dataset in machine learning
and statistics. The dataset consists of 50 samples each for the
three flower species, viz., Iris Setosa, Iris Versicolor, and Iris
Virginica. It consists of 4 features measured in cm, namely,
sepal length, sepal width, petal length, and petal width. The
problem is to identify any iris flower category based on its
four input characteristics of sepal length, sepal width, petal
length, and petal width [85], [86].

2) SONAR DATASET

The Sonar dataset is a binary (2-class) classification prob-
lem developed by Terry Sejnowski in collaboration with
R. Paul Gorman of the Allied-Signal Aerospace Technology
Center [87]. The problem is to classify an object as a mine or
rock. It contains 111 examples for the mine class obtained by
bouncing sonar signals off a metal cylinder at various angles,
and 97 examples for the rock class obtained from rocks
under similar conditions. The dataset has 60 input features,
with each feature representing the energy within a specific
frequency band, combined during a certain duration.

3) WHEAT SEEDS DATASET

The Wheat Seeds dataset is a multi-class (3-class) classifica-
tion problem that involves the classification of species given
measurements of seeds belonging to three different varieties
of wheat, namely Kama, Rosa, and Canadian. The number
of samples for each class is balanced (70 for each), making
210 in total. It has 7 input variables (or features) that were
constructed using a soft X-ray technique and the GRAINS
package [88].

4) BREAST CANCER WISCONSIN DATASET

The Breast Cancer Wisconsin dataset is a binary (2-class)
classification problem in which we attempt to predict one
of two possible outcomes (benign or malignant). The dataset
contains various measurements of breast tissue samples for
cancer diagnosis. It contains measurements like the thickness
of the clump, the marginal adhesion, the uniformity of cell
size and shape, etc. The dataset was originally provided
by Wolberg and Mangasarian [89] from the University of
Wisconsin Hospitals in Madison. There are 569 cases of data

36971

IEEE Access

A. Al Bataineh et al.: Multi-Layer Perceptron Training Optimization Using Nature Inspired Computing

where 357 cases belong to class O (benign), and the remaining
212 cases belong to class 1 (malignant). Therefore, the dataset
is imbalanced and more challenging. The number of input
variables or features to be used for this dataset is 30.

5) HABERMAN's SURVIVAL DATASET

The Haberman dataset is a binary (2-class) classification
problem [90]. It includes cases from the University of
Chicago’s Billings Hospital’s research on the survival status
of patients who had undergone breast cancer surgery between
1958 and 1970. There are 306 data cases (or examples).
225 cases are classified as class 1 (the patient lived for 5 years
or more), while the remaining 81 cases are classified as class
2. The dataset contains 3 input variables. The goal is to predict
whether a patient will survive for 5 years or longer or die
within 5 years after the surgery.

B. EXPERIMENTAL SETUP

The proposed CSA method for training MLP models and
other algorithms are evaluated using the five classification
datasets introduced above. Table 3 presents the specifications
for each dataset. The number of input features, data examples,
and classes are respectively presented for each dataset.
Accordingly, the MLP architecture used by each dataset is
defined prior to the training process, taking into account
the dimensions of each dataset. Table 4 shows the MLP
architectures for all datasets. The input layer for a dataset has
one node per input feature. The output layer contains only one
neuron with sigmoid as the activation function for the binary
classification datasets. The domain of the sigmoid function is
the set of all real numbers, R, and is defined as follows:

1
14 e7%

Here, o is the sigmoid and Z is the input vector.

For multiclass classification datasets, the output layer
contains one neuron per class with softmax as the activation
function. In contrast to the sigmoid function, which takes a
single input and assigns a number (the probability) ranging
from O to 1 to whether it is a yes (positive), the softmax
function can take multiple inputs and assign a probability to
each one. The softmax activation function’s equation is as
follows.

(®)

0@ =

N eZi
$(@)i = S o)
j=1

Here, S is the softmax, Z is the input vector, €% is the
standard exponential function for the input vector, c is the
number of classes in the dataset, and ¢¥ is the standard
exponential function for the output vector.

With respect to the hidden layer, it has little or nothing
to do with data dimensions. To the best of the author’s
knowledge, there is no standard or accepted method for
calculating the number of neurons in a hidden layer. As a
result, we used systematic experimentation to determine the
number of hidden neurons that work best for each dataset.

36972

TABLE 3. Specification of the classification datasets.

Dataset #Input features #Data examples #Classes
Iris Flower 4 150 3
Sonar 60 208 2
Wheat Seeds 7 210 3
Breast Cancer Wisconsin 30 569 2
Haberman’s Survival 3 306 2

TABLE 4. MLP architecture for each dataset.

Dataset Input layer Hidden layer Output layer

Iris Flower 4-nodes 11 neurons 3 neurons

Sonar 60-nodes 30 neurons 1 neuron

Wheat Seeds 7-nodes 25 neurons 3 neurons
Breast Cancer Wisconsin ~ 30-nodes 25 neurons 1 neuron
Haberman’s Survival 3-nodes 9 neurons 1 neuron

For all datasets, ReLLU is used as the activation function in
all hidden neurons. ReL.U outputs the input directly if it is
positive, otherwise it outputs zero. The ReLU formula is
deceptively simple, as defined below.

R(z) = max(0, 2) (10

Here, R is the ReL.U and z is the input vector.

It should be noted that there is no computation involved in
the input layer; thus, we have used the term nodes rather than
neurons to represent the input layer. The input layer is simply
a layer that receives input features.

Regrading the development enviroment, we used Jupyter
Notebook with Python 3.9 to implement the CSA-based
trainer and other trainer algorithms. The weights and biases of
the MLP models are initialized randomly in the first iteration
to small random values in the range of [-1,1]. Additionally,
the input features of each dataset were scaled to lie between
zero and one, as given in Eq. (11).

x; — min(x)

(11)

“@= max(x) — min(x)

where x = (x1,...,x,) and z; is the i normalized input
feature.

Furthermore, each algorithm includes a number of control
parameters whose values must be carefully chosen. We exper-
imented with various values for these parameters and chose
the optimal values that produced the best performance. The
goal is to find the best parameters for each algorithm in
order to conduct a fair performance comparison. Table 5
shows each algorithm’s control parameters. We can see that
all nature-inspired algorithms have the same population size
and run for 100 iterations. Other parameters are specific to
each algorithm.

VII. RESULTS AND DISCUSSION
The algorithms’ performance is evaluated using the 5-fold
cross-validation method. As shown in Figure 11, each dataset

VOLUME 10, 2022

A. Al Bataineh et al.: Multi-Layer Perceptron Training Optimization Using Nature Inspired Computing

IEEE Access

TABLE 5. Controlling parameters for the training algorithms.

Algorithm Controlling parameter Value
Population size 20

CSA Number of iterations 100
Number of Clones 10
Mutation rate a= % exp(—f) (p = 1.0)
Population size 20
Number of iterations 100

GA Crossover rate 0.9
Mutation rate 0.3
Selection method Rank
Population size 20
Number of iterations 100

Pheromone update constant 20

ACO Pheromone constant 1
Global pheromone decay rate 0.1
Local pheromone decay rate 0.5
Pheromone sensitivity 0.8
Visibility sensitivity 2.5
Population size 20
Number of iterations 100
PSO Local weight 0.5
Global weight 0.3
Inertia weight 0.9
Population size 20
HHO Number of iterations 100
Initial energy [-1, 1]
Population size 20
MFO Number of iterations 100
Spiral factor 1
Convergence constant [-2,-1]
Population size 20
FPA Number of iterations 100
Switch probability 0.8
Number of iterations 1000
BP Optimizer SGD
Learning rate 0.01
Momentum 0.9

will be randomly split into 5-folds of approximately equal
size. The first fold is used as a test set to compute a
performance measure such as accuracy, and the remaining
4-folds are used as a training set to train the model. This
approach generally results in a less biased estimate of the
model and can be very useful in problems with a small
number of data examples.

1) RESULTS FOR THE IRIS FLOWER DATASET

The MLP architecture for solving this datasetis4 — 11 — 3.
Therefore, a fully-connected 4 — 11 — 3 MLP will have
(4 x11)+ (11 x 3)+ (11 4 3) = 91 weights and biases. The
goal of all algorithms is to find the optimal values for these
weights and biases so that the Iris flowers can be correctly
classified. Table 6 gives the average accuracy (AVG) and

VOLUME 10, 2022

All Data

Training Data

Fold? | Fold3 | Fold4 | | Fold5 b
Foldl Fold3 | | Fold4 | | Fold5
Foldl | Fold2 Fold4 | | Fold> r
Foldl | Fold2? | | Fold3 Fold5

Foldl | | Fold2 | | Fold3 | |Fold4 | | Fold3

Average

Final Evaluation

FIGURE 11. 5-fold cross-validation approach.

TABLE 6. 5-Fold cross-validation results for the iris flower dataset.

Algorithm AVG (%) STD (%)

CSA 98.89% 1.63%

GA 97.28% 2.94%
ACO 95.33% 4.98%
PSO 95.33% 2.66%
HHO 98.61% 2.36%
MFO 98.33% 2.39%
FPA 97.30% 2.49%

BP 96.66% 2.98%

standard deviation (STD) for each algorithm obtained using
the 5-fold cross-validation approach. As given in the table,
CSA outperforms all other algorithms. The results of CSA
follow by those of HHO, MFO, FPA, GA and BP. PSO
and ACO show similar performance, but PSO has a lower
standard deviation.

2) RESULTS FOR THE SONAR DATASET

The MLP architecture for solving this dataset is 60 — 30 — 1.
Therefore, a fully-connected 60 — 30 — 1 MLP will have
(60 x 30) 4+ (30 x 1) + (304 1) = 1861 weights and biases.
Table 7 gives the average accuracy (AVG) and standard
deviation (STD) for each algorithm obtained using the 5-fold
cross-validation approach. As given in the table, CSA again
outperforms all other algorithms. The results of CSA follow
by those of HHO, MFO, FPA, GA, PSO, ACO and BP,
respectively. Because the Sonar dataset is imbalanced and
contains many more input features than the Iris dataset, all
algorithms achieved lower results. Another reason is that the
number of data examples for the Sonar dataset is very small,
considering the high number of input features.

3) RESULTS FOR THE WHEAT SEEDS DATASET

The MLP architecture for solving this dataset is of 7 —
25 — 3. Therefore, a fully-connected 7 — 25 — 3 MLP will

36973

IEEE Access

A. Al Bataineh et al.: Multi-Layer Perceptron Training Optimization Using Nature Inspired Computing

TABLE 7. 5-Fold cross-validation results for the sonar dataset.

Algorithm AVG (%) STD (%)
CSA 82.85% 3.98%
GA 79.84% 5.27%
ACO 77.32% 6.30%
PSO 79.38% 3.68%
HHO 80.81% 4.66%

MFO 80.77% 4.87.66%
FPA 79.96% 5.15%
BP 76.46% 3.96%

TABLE 8. 5-Fold cross-validation results for the wheat seeds dataset.

Algorithm AVG (%) STD (%)
CSA 97.00% 2.9%
GA 95.44% 3.0%
ACO 94.90% 2.6%
PSO 95.20% 2.9%
HHO 96.80% 2.66%
MFO 96.20% 2.88%
FPA 95.87% 2.66%
BP 94.30% 2.9%

have (7 x 25) + (25 x 3) + (25 + 3) = 278 weights
and biases. Table 8 gives the average accuracy (AVG) and
standard deviation (STD) for each algorithm obtained using
the 5-fold cross-validation approach. As given in the table,
CSA again outperforms all other algorithms. The results of
CSA follow by those of HHO, MFO, FPA, GA, PSO, ACO
and BP, respectively.

4) RESULTS FOR THE BREAST CANCER WISCONSIN
DATASET

The MLP architecture for solving this very challenging
dataset is of 30 — 25 — 1. Therefore, a fully-connected
30 — 25 — 1 MLP will have (30 x 25) + (25 x 1) +
(25 + 1) = 801 weights and biases. Table 9 gives the
average accuracy (AVG) and standard deviation (STD) for
each algorithm obtained using the 5-fold cross-validation
approach. As given in the table, CSA outperforms all other
algorithms slightly. The results of CSA follow by those of
HHO, MFO, FPA, GA, PSO, ACO, and BP respectively.

5) RESULTS FOR THE HABERMAN's SURVIVAL DATASET

The MLP architecture for solving this very challenging
dataset is of 3 — 9 — 1. Therefore, a fully-connected 3 —9 — 1
MLP will have (3 x 9) + (9 x 1) + (9 + 1) = 46 weights
and biases. Table 10 gives the average accuracy (AVG) and
standard deviation (STD) for each algorithm obtained using
the 5-fold cross-validation approach. As shown in the table,
CSA outperforms all other algorithms. The results of CSA
follow by those of HHO, MFO, FPA, GA, PSO, BP and ACO,
respectively.

36974

TABLE 9. 5-Fold cross-validation results for the breast cancer wisconsin
dataset.

Algorithm AVG (%) STD (%)

CSA 98.24% 3.83%
GA 96.28% 3.84%
ACO 93.39% 3.86%
PSO 95.48% 4.46%
HHO 97.86% 3.84%
MFO 96.92% 3.88%
FPA 96.41% 3.84%

BP 92.08% 4.42%

TABLE 10. 5-Fold cross-validation results for the haberman'’s survival
dataset.

Algorithm AVG (%) STD (%)

CSA 76.10% 1.60%
GA 74.66% 2.80%
ACO 72.20% 2.50%
PSO 74.56% 2.50%
HHO 75.90% 2.80%
MFO 75.50% 2.82%
FPA 74.76% 2.94%

BP 74.20% 3.6%

It is unlikely that any model developed using the Haber-
man’s Survival dataset will generalize due to the small
dataset’s size and the fact that the data is based on diagnoses
and operations for breast cancer that occurred many decades
ago.

According to the experimental results on the five datasets,
itis clear that CSA outperforms other algorithms, particularly
the backpropagation algorithm. There are many motives
why CSA should be considered rather than backpropagation
to train MLP neural networks. Backpropagation relies on
computing gradients and is highly sensitive to the initial
values of the weights and biases, the learning rate, and the
momentum. In some cases, a small change in any of these
values has a significant impact on the predictive performance
of the MLP network being trained. In contrast, CSA is a
gradient-free optimization algorithm that can jump out of
local minima or the weights and biases can be reinitialized
to start looking in a new area of the search space, allowing
it to find a good optimal solution if run long enough. The
drawback, however, is that CSA and other nature-inspired
algorithms often take longer than backpropagation to reach
a solution. So, when the training time is reasonable, which
can vary greatly depending on the problem, CSA is a
better alternative MLP network training technique than
backpropagation.

VIil. CONCLUSION
MLP networks are one of the most well-known and widely
used machine learning algorithms. They have been widely

VOLUME 10, 2022

A. Al Bataineh et al.: Multi-Layer Perceptron Training Optimization Using Nature Inspired Computing

IEEE Access

applied in a variety of real-world applications, including med-
ical diagnosis, electronic signal analysis, active and passive
sonar target classification, seed and flower classification, and
more. MLP network training is an optimization problem,
and therefore, the optimization algorithm used is of primary
importance. Backpropagation is the most widely used
algorithm to train MLP networks. However, backpropagation
is not ideal and often unable to find the global minimum.
Optimization algorithms inspired by nature can be used
to effectively train MLP networks. This research presents
an efficient MLP training technique that employs CSA to
improve the predictive accuracy of MLP when solving real-
world problems. CSA involves selecting candidate solutions
called antibodies based on affinity by matching against
the primary antigen. The selected antibodies are cloned,
and then undergo hypermutation inversely proportional to
their affinity. Aside from the encoding paradigm used to
represent the MLP’s weights and biases as antibodies,
our proposed methodology includes genetic operators for
cloning and mutation to improve the MLP’s ability to avoid
getting stuck in local optima. The proposed CSA training
method is tested on five real-world benchmark classification
datasets of varying difficulty. Different MLP architectures are
trained, taking into account the dimensions of each dataset.
To validate the proposed CSA method’s effectiveness in
training MLPs, its performance is compared to that of BP
and other six popular nature-inspired training algorithms,
including GA, PSO, ACO, HHO, MFO, and FPA. We conduct
systematic experimentation with a robust test harness in
order to determine the optimal parameters of each algorithm
that will provide the best possible performance for each
algorithm. Experiment results show that MLP models provide
better results in all five datasets when trained by CSA
compared to other benchmark algorithms. This is due to
the CSA’s ability to avoid getting stuck in local optima.
Therefore, it can be concluded that the proposed CSA method
shows great promise for search and optimization problems,
such as training neural networks.

IX. FUTURE WORK

The future direction of current research will focus on a
thorough assessment of the CSA method for large benchmark
datasets. Another potential future direction in this area is
training two popular classes of deep learning neural networks:
Convolution Neural Networks (CNN) and Recurrent Neural
Networks (RNN). Both CNN and RNN are changing the
way we communicate with the world. They are at the core
of the deep learning revolution, powering a wide range of
real-world applications such as self-driving cars, unmanned
aerial vehicles, speech recognition, etc. Aside from the
network architecture, which has been the primary focus of
researchers’ efforts to optimize, their performance is also
heavily reliant on the training algorithm chosen to optimize
the network weights and biases. Despite the fact that several
optimizers have been proposed in the literature to address
the shortcomings of traditional gradient descent approaches

VOLUME 10, 2022

(e.g., SGD), there is still the possibility of getting trapped in
local optima. Therefore, the future direction in this domain
would be to propose efficient CSA methods for training deep
neural networks in order to reduce the risk of falling into local
optima. This can be achieved more easily than ever before
due to the recent significant increase in processing power.
A hybrid CSA and gradient descent (like Adam) model could
also be developed in the future. The CSA can be used to
find values for the initial weights and biases for the gradient
descent algorithm, allowing it to avoid local optima and thus
improve the predictive accuracy of the deep neural network
being trained.

ACKNOWLEDGMENT

The authors are grateful to the anonymous peer reviewers for
their insightful comments. Everyone’s generosity and exper-
tise have improved this manuscript in countless ways and
saved them from numerous mistakes; those that inevitably
remain are entirely their own responsibility.

REFERENCES

[1] M. Wahde, Biologically Inspired Optimization Methods: An Introduction.
Southampton, U.K.: WIT Press, 2008.

[2] P. Adby, Introduction to Optimization Methods. Springer, 2013.

[3] P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization.
Philadelphia, PA, USA: SIAM, 2019.

[4] A. M. Hemeida, S. A. Hassan, A.-A.-A. Mohamed, S. Alkhalaf,
M. M. Mahmoud, T. Senjyu, and A. B. El-Din, “Nature-inspired algo-
rithms for feed-forward neural network classifiers: A survey of one decade
of research,” Ain Shams Eng. J., vol. 11, no. 3, pp. 659-675, Sep. 2020.
A. Mairaj, A. A. Bataineh, D. Kaur, and A. Javaid, “Identifying the optimal
solutions of Bohachevsky test function using swarming algorithms,” in
Proc. Int. Conf. Artif. Intell. (ICAI), 2019, pp. 109-115.

[6] X.-S. Yang, Nature-Inspired Optimization Algorithms. New York, NY,
USA: Academic, 2020.

S. Mirjalili, ““Moth-flame optimization algorithm: A novel nature-inspired
heuristic paradigm,” Knowl.-Based Syst., vol. 89, pp. 228-249, Nov. 2015.

[8] A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, and H. Chen,
“Harris hawks optimization: Algorithm and applications,” Future Gener.
Comput. Syst., vol. 97, pp. 849-872, Aug. 2019.

[9]1 X.-S. Yang, “Flower pollination algorithm for global optimization,” in
Proc. Int. Conf. Unconventional Comput. Natural Comput. Springer, 2012,
pp. 240-249.

[10] A. A. Bataineh, A. Jarrah, and D. Kaur, “High-speed FPGA-based of the
particle swarm optimization using HLS tool,” Int. J. Adv. Comput. Sci.
Appl., vol. 10, no. 5, pp. 1-7, 2019, doi: 10.14569/IJACSA.2019.0100502.

[11] S. A. G. Shirazi and M. B. Menhaj, “A new genetic based algorithm for
channel assignment problems,” in Computational Intelligence, Theory and
Applications. Springer, 2006, pp. 85-91.

[5

—

17

—

[12] A.A.Bataineh and D. Kaur, “A comparative study of different curve fitting
algorithms in artificial neural network using housing dataset,” in Proc.
IEEE Nat. Aerosp. Electron. Conf. (NAECON), Jul. 2018, pp. 174-178.

[13] B. Zhang, Y. Wu, J. Lu, and K.-L. Du, “Evolutionary computation and
its applications in neural and fuzzy systems,” Appl. Comput. Intell. Soft
Comput., vol. 2011, Jan. 2011, Art. no. 938240.

[14] K. W. Chau, ‘“‘Particle swarm optimization training algorithm for ANNS
in stage prediction of Shing Mun river,” J. Hydrol., vol. 329, nos. 3-4,
pp. 363-367, 2006.

[15] A. Jarrah, A. A. Bataineh, and A. Almomany, “The optimization of
traveling salesman problem based on parallel ant colony algorithm,” Int.
J. Comput. Appl. Technol., vol. 13, no. 1, pp. 1-19, 2022.

36975

http://dx.doi.org/10.14569/IJACSA.2019.0100502

IEEE Access

A. Al Bataineh et al.: Multi-Layer Perceptron Training Optimization Using Nature Inspired Computing

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Let a biogeography-
based optimizer train your multi-layer perceptron,” Inf. Sci., vol. 269,
pp. 188-209, Jun. 2014.

A. A. Bataineh and A. Jarrah, “High performance implementation of
neural networks learning using swarm optimization algorithms for EEG
classification based on brain wave data,” Int. J. Appl. Metaheuristic
Comput., 2022.

G. S. Shehu and N. Cetinkaya, “Flower pollination—feedforward neural
network for load flow forecasting in smart distribution grid,” Neural
Comput. Appl., vol. 31, no. 10, pp. 6001-6012, Oct. 2019.

S. M. J. Jalali, S. Ahmadian, P. M. Kebria, A. Khosravi, C. P. Lim,
and S. Nahavandi, “Evolving artificial neural networks using butterfly
optimization algorithm for data classification,” in Proc. Int. Conf. Neural
Inf. Process. Springer, 2019, pp. 596-607.

S. M. J. Jalali, M. Karimi, A. Khosravi, and S. Nahavandi, “An efficient
neuroevolution approach for heart disease detection,” in Proc. IEEE Int.
Conf. Syst., Man Cybern. (SMC), Oct. 2019, pp. 3771-3776.

A. A. Bataineh and D. Kaur, “Immuno-computing-based neural learning
for data classification,” Int. J. Adv. Comput. Sci. Appl., vol. 10, no. 6,
pp. 1-7, 2019, doi: 10.14569/IJACSA.2019.0100632.

S. M. J. Jalali, S. Ahmadian, A. Khosravi, S. Mirjalili, M. R. Mahmoudi,
and S. Nahavandi, “Neuroevolution-based autonomous robot navigation:
A comparative study,” Cognit. Syst. Res., vol. 62, pp. 35-43, Aug. 2020.
D.J. Montana and L. Davis, “Training feedforward neural networks using
genetic algorithms,” in Proc. Int. Joint Conf. Artif. Intell., vol. 89, 1989,
pp. 762-767.

D. Whitley, T. Starkweather, and C. Bogart, “Genetic algorithms and
neural networks: Optimizing connections and connectivity,” Parallel
Comput., vol. 14, no. 3, pp. 347-361, Aug. 1990.

R. S. Sexton, R. E. Dorsey, and J. D. Johnson, “Toward global
optimization of neural networks: A comparison of the genetic algorithm
and backpropagation,” Decis. Support Syst., vol. 22, no. 2, pp. 171-185,
1998.

M. N. H. Siddique and M. O. Tokhi, “Training neural networks:
Backpropagation vs. Genetic algorithms,” in Proc. Int. Joint Conf. Neural
Netw., vol. 4, Jul. 2001, pp. 2673-2678.

Z.-G. Che, T.-A. Chiang, and Z.-H. Che, ‘“‘Feed-forward neural networks
training: A comparison between genetic algorithm and back-propagation
learning algorithm,” Int. J. Innov. Comput., Inf. Control, vol. 7, no. 10,
pp. 5839-5850, 2011.

K. Khan and A. Sahai, ““A comparison of BA, GA, PSO, BP and LM for
training feed forward neural networks in e-learning context,” Int. J. Intell.
Syst. Appl., vol. 4, no. 7, p. 23, 2012.

J. Kennedy and R. Eberhart, ‘“Particle swarm optimization,” in Proc. IEEE
Int. Conf. Neural Netw. (ICNN), vol. 4, Nov./Dec. 1995, pp. 1942-1948.
R. Malviya and D. K. Pratihar, “Tuning of neural networks using particle
swarm optimization to model MIG welding process,” Swarm Evol.
Comput., vol. 1, no. 4, pp. 223-235, Dec. 2011.

A. Roy, D. Dutta, and K. Choudhury, “Training artificial neural network
using particle swarm optimization algorithm,” Int. J. Adv. Res. Comput.
Sci. Softw. Eng., vol. 3, no. 3, 2013.

R. C. Green, L. Wang, and M. Alam, “Training neural networks using
central force optimization and particle swarm optimization: Insights and
comparisons,” Expert Syst. Appl., vol. 39, no. 1, pp. 555-563, Jan. 2012.
C. Blum and K. Socha, “Training feed-forward neural networks with ant
colony optimization: An application to pattern classification,” in Proc. 5th
Int. Conf. Hybrid Intell. Syst. (HIS), Nov. 2005, pp. 1-6.

K. Socha and C. Blum, “An ant colony optimization algorithm for
continuous optimization: Application to feed-forward neural network
training,” Neural Comput. Appl., vol. 16, pp. 235-247, May 2007.

A. Lanaridis, V. Karakasis, and A. Stafylopatis, ““‘Clonal selection-based
neural classifier,” in Proc. 8th Int. Conf. Hybrid Intell. Syst., Sep. 2008,
pp. 655-660.

B. H. Barbosa, L. T. Bui, H. A. Abbass, L. A. Aguirre, and A. P. Braga,
“Evolving an ensemble of neural networks using artificial immune
systems,” in Proc. Asia—Pacific Conf. Simulated Evol. Learn. Springer,
2008, pp. 121-130.

R. Pasti and L. N. de Castro, “‘Bio-inspired and gradient-based algorithms
to train MLPs: The influence of diversity,” Inf. Sci., vol. 179, no. 10,
pp. 1441-1453, Apr. 2009.

H. Akbar, N. Suryana, and S. Sahib, “Training neural networks using
clonal selection algorithm and particle swarm optimization: A comparisons
for 3D object recognition,” in Proc. 11th Int. Conf. Hybrid Intell. Syst.
(HIS), Dec. 2011, pp. 692-697.

36976

(39]

[40]

[41]

[42]

(43]

(44]

[45]

[46]

(47]

(48]

[49]

(50]

[51]

(52]

(53]

[54]

[55]

[56]
(57

(58]

[59]

[60]
[61]

[62]

H. Chitsaz, N. Amjady, and H. Zareipour, “Wind power forecast using
wavelet neural network trained by improved Clonal selection algorithm,”
Energy Convers. Manage., vol. 89, pp. 588-598, Jan. 2015.

S. S. Sammen, M. A. Ghorbani, A. Malik, Y. Tikhamarine,
M. AmirRahmani, N. Al-Ansari, and K.-W. Chau, “Enhanced artificial
neural network with Harris hawks optimization for predicting scour depth
downstream of ski-jump spillway,” Appl. Sci., vol. 10, no. 15, p. 5160,
Jul. 2020.

W. Yamany, M. Fawzy, A. Tharwat, and A. E. Hassanien, ‘“Moth-flame
optimization for training multi-layer perceptrons,” in Proc. 11th Int.
Comput. Eng. Conf. (ICENCO), Dec. 2015, pp. 267-272.

Y. Ren, H. Li, and H.-C. Lin, “Optimization of feedforward neural
networks using an improved flower pollination algorithm for short-term
wind speed prediction,” Energies, vol. 12, no. 21, p. 4126, Oct. 2019.

J. Tlonen, J.-K. Kamarainen, and J. Lampinen, “Differential evolution
training algorithm for feed-forward neural networks,” Neural Process.
Lett., vol. 17, no. 1, pp. 93-105, 2003.

D. Karaboga, B. Akay, and C. Ozturk, “Artificial bee colony (ABC)
optimization algorithm for training feed-forward neural networks,”
in Proc. Int. Conf. Modeling Decisions Artif. Intell. Springer, 2007,
pp. 318-329.

S. Mirjalili, “‘How effective is the Grey Wolf optimizer in training multi-
layer perceptrons,” Appl. Intell., vol. 43, no. 1, pp. 150-161, 2015.

H. Faris, I. Aljarah, N. Al-Madi, and S. Mirjalili, “Optimizing the learning
process of feedforward neural networks using lightning search algorithm,”
Int. J. Artif. Intell. Tools, vol. 25, no. 6, Dec. 2016, Art. no. 1650033.

H. Faris, I. Aljarah, and S. Mirjalili, “Training feedforward neural
networks using multi-verse optimizer for binary classification problems,”
Appl. Intell., vol. 45, no. 2, pp. 322-332, Sep. 2016.

I. Aljarah, H. Faris, and S. Mirjalili, “Optimizing connection weights in
neural networks using the whale optimization algorithm,” Soft Comput.,
vol. 22, no. 1, pp. 1-15, 2016.

A. G. Karegowda, A. S. Manjunath, and M. A. Jayaram, “Application
of genetic algorithm optimized neural network connection weights for
medical diagnosis of PIMA Indians diabetes,” Int. J. Soft Comput., vol. 2,
no. 2, pp. 15-23, 2011.

S. Mirjalili, S. Z. M. Hashim, and H. M. Sardroudi, “Training feed-
forward neural networks using hybrid particle swarm optimization and
gravitational search algorithm,” Appl. Math. Comput., vol. 218, no. 22,
pp. 11125-11137, Jul. 2012.

C. Ozturk and D. Karaboga, “Hybrid artificial bee colony algorithm for
neural network training,” in Proc. IEEE Congr. Evol. Comput. (CEC),
Jun. 2011, pp. 84-88.

J.-F. Chen, Q. Do, and H.-N. Hsieh, “Training artificial neural networks
by a hybrid PSO-CS algorithm,” Algorithms, vol. 8, no. 2, pp. 292-308,
Jun. 2015.

B. P. Doppala, D. Bhattacharyya, M. Chakkravarthy, and T.-H. Kim,
“A hybrid machine learning approach to identify coronary diseases using
feature selection mechanism on heart disease dataset,” Distrib. Parallel
Databases, pp. 1-20, Mar. 2021.

L. N. de Castro and F. J. Von Zuben, “Learning and optimization using
the clonal selection principle,” IEEE Trans. Evol. Comput., vol. 6, no. 3,
pp- 239-251, Jun. 2002.

D. Dasgupta, “Artificial neural networks and artificial immune systems:
Similarities and differences,” in Proc. IEEE Int. Conf. Syst., Man, Cybern.,
Comput. Cybern. Simulation, vol. 1, Oct. 1997, pp. 873-878.

L. N. Castro, L. N. De Castro, and J. Timmis, Artificial Immune Systems:
A New Computational Intelligence Approach. Springer, 2002.

L. N. De Castro, Fundamentals of Natural Computing: Basic Concepts,
Algorithms, and Applications. Boca Raton, FL, USA: CRC Press, 2006.
J. D. Farmer, N. H. Packard, and A. S. Perelson, “The immune system,
adaptation, and machine learning,” Phys. D, Nonlinear Phenomena,
vol. 22, nos. 1-3, pp. 187-204, Oct./Nov. 1986.

H. Bersini and F. J. Varela, “Hints for adaptive problem solving gleaned
from immune networks,” in Proc. Int. Conf. Parallel Problem Solving
Nature. Springer, 1990, pp. 343-354.

L. N. De Castro and F. J. Von Zuben, “The clonal selection algorithm with
engineering applications,” in Proc. GECCO, 2000, pp. 36-39.

S. F. M. Burnet, The Clonal Selection Theory of Acquired Immunity, vol. 3.
Nashville, TN, USA: Vanderbilt Univ. Press, 1959.

J. Brownlee, “IIDLE: An immunological inspired distributed learning
environment for multiple objective and hybrid optimisation,” in Proc.
IEEE Int. Conf. Evol. Comput., Jul. 2006, pp. 507-513.

VOLUME 10, 2022

http://dx.doi.org/10.14569/IJACSA.2019.0100632

A. Al Bataineh et al.: Multi-Layer Perceptron Training Optimization Using Nature Inspired Computing

IEEE Access

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]
[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

(821
(83]
[84]
(851
(861

[87]

[88]

G. L. Ada and S. G. Nossal, “The clonal-selection theory,” Sci. Amer.,
vol. 257, no. 2, pp. 62-69, Aug. 1987.

J. Brownlee, “Clonal selection theory & CLONALG-the clonal selection
classification algorithm (CSCA),” Swinburne Univ. Technol., Hawthorn,
VI, Australia, Tech. Rep., 2005, p. 38.

J. W. Kimball, Introduction to Immunology. New York, NY, USA:
Macmillan, 1983.

J. Brownlee, “Antigen-antibody interaction,” Melbourne, Australia:
Complex Intell. Syst. Lab., Centre Inf. Technol. Res., Fac. Inf. Commun.
Technol., Swinburne Univ. Technol., Hawthorn, VI, Australia, Tech. Rep.,
2007.

J. Brownlee, “A review of the clonal selection theory of acquired
immunity,” Complex Intell. Syst. Lab., Swinburne Univ. Technol.,
Melbourne, VI, Australia, Tech. Rep., 2007.

V. Cutello, G. Nicosia, M. Pavone, and J. Timmis, “An immune algorithm
for protein structure prediction on lattice models,” IEEE Trans. Evol.
Comput., vol. 11, no. 1, pp. 101-117, Feb. 2007.

J. Kelsey and J. Timmis, “Immune inspired somatic contiguous hypermu-
tation for function optimisation,” in Proc. Genetic Evol. Comput. Conf.
Springer, 2003, pp. 207-218.

A. A. Bataineh and D. Kaur, “Optimal convolutional neural network
architecture design using clonal selection algorithm,” Int. J. Mach. Learn.
Comput., vol. 9, no. 6, pp. 788-794, Dec. 2019.

J. Brownlee, Clever Algorithms: Nature-Inspired Programming Recipes.
Jason Brownlee, 2011.

M. Mitchell, An Introduction to Genetic Algorithms. Cambridge, MA,
USA: MIT Press, 1998.

A. A. Bataineh and D. Kaur, “Immunocomputing-based approach for
optimizing the topologies of LSTM networks,” IEEE Access, vol. 9,
pp. 7899379004, 2021.

V. Cutello, G. Narzisi, G. Nicosia, and M. Pavone, “Clonal selection
algorithms: A comparative case study using effective mutation potentials,”
in Proc. Int. Conf. Artif. Immune Syst. Springer, 2005, pp. 13-28.

S. W. Tan, S. C. Lee, and C. L. Chan, “Clonal-selection-based minimum-
interference channel assignment algorithms for multiradio wireless
mesh networks,” in Bio-Inspired Computation in Telecommunications.
Amsterdam, The Netherlands: Elsevier, 2015, pp. 287-321.

A. A. Bataineh, “A comparative analysis of nonlinear
machine learning algorithms for breast cancer detection,” Int.
J. Mach. Learn. Comput., vol. 9, no. 3, pp. 248-254, Jun. 2019.

A. A. Bataineh, A. Mairaj, and D. Kaur, “Autoencoder based
semi-supervised anomaly detection in turbofan engines,” Int.
J. Adv. Comput. Sci. Appl., vol. 11, no. 11, pp.1-7, 2020, doi:
10.14569/1JACSA.2020.0111105.

A. S. A. Bataineh, “A gradient boosting regression based approach for
energy consumption prediction in buildings,” Adv. Energy Res., vol. 6,
no. 2, pp. 91-101, 2019.

A. E. Bryson and Y.-C. Ho, Optimization, Estimation and Control.
Peachtree City, GA, USA: Ginn Company, 1969.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning rep-
resentations by back-propagating errors,” Nature, vol. 323, no. 6088,
pp. 533-536, Oct. 1986.

A. A. Bataineh, D. Kaur, and A. Jarrah, “Enhancing the parallelization
of backpropagation neural network algorithm for implementation on
FPGA platform,” in Proc. IEEE Nat. Aerosp. Electron. Conf. (NAECON),
Jul. 2018, pp. 192-196.

M. A. Nielsen, Neural Networks and Deep Learning. San Francisco, CA,
USA: Determination Press, 2015, 2018.

M. Negnevitsky, Artificial Intelligence: A Guide to Intelligent Systems.
London, U.K.: Pearson, 2005.

R. A. Fisher, “The use of multiple measurements in taxonomic problems,”
Ann. Eugenics, vol. 7, no. 2, pp. 179-188, 1936.

E. Anderson, “The species problem in iris,” Ann. Missouri Botanical
Garden, vol. 23, no. 3, pp. 457-509, 1936.

R. A. Fisher and M. Marshall, “Iris data set,” UC Irvine Mach. Learn.
Repository, vol. 440, p. 87, 1936.

R. P. Gorman and T. J. Sejnowski, “Analysis of hidden units in a layered
network trained to classify sonar targets,” Neural Netw., vol. 1, no. 1,
pp. 75-89, 1988.

M. Charytanowicz, J. Niewczas, P. Kulczycki, P. A. Kowalski, S. Lukasik,
and S. Zak, “Complete gradient clustering algorithm for features analysis
of X-ray images,” in Information Technologies in Biomedicine. Springer,
2010, pp. 15-24.

VOLUME 10, 2022

[89] W. H. Wolberg and O. L. Mangasarian, ‘“Multisurface method of pattern
separation for medical diagnosis applied to breast cytology,” Proc. Nat.
Acad. Sci. USA, vol. 87, no. 23, pp. 9193-9196, 1990.

[90] S.J. Haberman, “Generalized residuals for log-linear models,” in Proc.
9th Int. Biometrics Conf., 1976, pp. 104-122.

ALl AL BATAINEH (Member, IEEE) received
the B.Sc. degree in computer engineering from
Yarmouk University, Jordan, in 2010, the M.Sc.
degree in computer engineering from the Univer-
sity of Bridgeport, CT, USA, in 2016, and the
Ph.D. degree in electrical and computer engineer-
ing from The University of Toledo, OH, USA,
in 2021. He is currently an Assistant Professor
with the Electrical and Computer Engineering
Department, David Crawford School of Engineer-
ing, Norwich University, VT, USA. His current research interests include the
areas of artificial intelligence, machine learning, deep learning, computer
vision, metaheuristic optimization, fuzzy logic, embedded systems, and
FPGAs.

DEVINDER KAUR (Life Senior Member, IEEE)
received the B.Sc. and M.Sc. degrees (Hons.)
in physics, majoring in electronics from Panjab
University, in 1969 and 1970, respectively, the
M.Sc. degree in medical physics from the Univer-
sity of Aberdeen, U.K., in 1976, and the M.Sc.
and Ph.D. degrees in computer engineering from
Wayne State University, USA, in 1985 and 1989,
respectively. She was a Scientist with the Central
Scientific Instruments Organization, a National
Laboratory, Ministry of Science and Technology, Chandigarh, India,
from 1971 to 1981. In 1989, she joined The University of Toledo as a Faculty,
where she is currently a Full Professor with the Department of EECS. She
has published upwards of 100 articles in refereed journals and proceedings
of the international conferences. She has worked on projects funded by NSF,
AFRL, Daimler Chrysler, and ROMAN Engineering. Her research interests
include develop intelligent applications based on hybrid computational
models using biologically inspired computing and fuzzy systems. She was a
recipient of the IIT Delhi Fellowship, from 1970 to 1971, and the Fulbright
Senior Specialist Award, in 2004. She visited the Nippon Institute of
Technology Japan in that capacity. She was awarded the University Medal
for obtaining the first rank in her B.Sc. and M.Sc. degrees from Panjab
University. She was also received the Commonwealth Scholarship Award
for her M.Sc. degree from the University of Aberdeen.

SEYED MOHAMMAD J. JALALI (Member,
IEEE) received the M.S. degree in information
technology major in advanced information sys-
tems from Allameh Tabataba’i University, Tehran,
Iran, in 2016, and the Ph.D. degree from the
Institute for Intelligent Systems Research and
Innovation (IISRI), Deakin University, VIC, Aus-
tralia, in 2021. He was a Research Assistant
: at the University of Massachusetts, MA, USA,

- conducting research in the field of artificial
intelligence. He is currently a Research Fellow at Deakin University. His
primary research interests include machine learning, deep neural architecture
search, deep learning, and optimization. He has received the prestigious
Deakin University Postgraduate Research Scholarship (DUPRS), in 2018.
Besides, he is the Winner of the prestigious Alfred Deakin Postdoctoral
Research Fellowship Award, in 2021.

36977

http://dx.doi.org/10.14569/IJACSA.2020.0111105

