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ABSTRACT This paper aims to introduce an adaptive metaheuristic algorithm based on tunicate swarm
optimization (TSA) for effectively solving global optimization problems and the optimumdesign of a shallow
spread foundation. The proposed adaptive tunicate swarm optimization (ATSA) has two main phases at each
iteration: searching all around the search space based on a randomly selected tunicate and improving the
search using the position of the best tunicate. This modification improves the algorithm’s exploration ability
while also preventing premature convergence. The suggested algorithm’s performance is confirmed using a
set of 23 mathematical test functions of well-known CEC 2017 and the outcomes are compared with TSA as
well as some effective optimization algorithms. In addition, the newmethod automates the optimumdesign of
shallow spread foundations while taking two objectives into account: cost and CO2 emissions. The analysis
and design procedures are based on both geotechnical and structural limit states. A case study of a spread
foundation has been solved using the proposed methodology, and a sensitivity analysis has been conducted
to investigate the effect of soil parameters on the total cost and embedded CO2 emissions of the foundation.
The simulation results demonstrate that, when compared to other competing algorithms, ATSA is superior
and may produce better optimal solutions.

INDEX TERMS Tunicate swarm, metaheuristic, shallow foundation, cost, CO2 emissions.

I. INTRODUCTION
Many real-world design problems can be considered opti-
mization problems, and an appropriate optimization method
is required for the solution. On the other hand, design prob-
lems have become more complicated when discontinuities,
incomplete information, dynamicity, and uncertainties are
involved. In such a case, classical optimization algorithms
based on mathematical principles demand exponential time
or may not find the optimal solution at all. To overcome
the mentioned problem, during the last few decades, intro-
ducing new efficient metaheuristic optimization algorithms
to deal with the drawbacks of classical techniques has been
of great concern. The privileges of these algorithms include
derivation-free mechanisms, simple concepts and structure,
local optima avoidance, and effectiveness for discrete and
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continuous functions. Accordingly, there is an increasing
interest in presenting new metaheuristic algorithms that offer
higher accuracy and efficiency in dealing with complex opti-
mization problems.

Particle swarm optimization was proposed by Kennedy
and Eberhart [1], ant colony optimization was introduced
by Dorigo and Di Caro [2], harmony search was proposed
by Geem et al. [3], firefly algorithm was suggested by
Yang [4], gravitational search algorithm was introduced
by Rashedi et al. [5], sine cosine algorithm was devel-
oped by Mirjalili [6], crow search algorithm was pro-
posed by Askarzadeh [7], spotted hyena optimizer was
introduced by Dhiman and Kumar [8], Harris hawks opti-
mization was presented by Heidari et al. [9], emperor pen-
guin optimizer was proposed by Dhiman and Kumar [10],
chameleon swarm algorithm was developed by Braik [11],
sooty tern optimization algorithm was proposed by Dhiman
and Kuar [12], hunter–prey optimization was developed by
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Naruei et al. [13], and rat swarm optimizer was introduced
by Dhiman et al. [14].
Although metaheuristic methods can yield acceptable

results, no algorithm can solve all optimization problems
better than others. In addition, in most engineering optimiza-
tion problems, the objective function is discontinuous and
has a large number of design variables. As a result, several
research projects have been carried out to enhance the original
metaheuristic algorithms’ performance and efficiency and
apply them to engineering problems. Dhiman [15] introduced
a hybrid bio-inspired metaheuristic optimization approach,
namely the Emperor Penguin and Salp SwarmAlgorithms for
engineering problems. Eslami et al. [16] proposed improved
particle swarm optimization with chaotic sequence for opti-
mal location of the power system stabilizer. Bingol and
Alatas [17] proposed chaotic league championship algo-
rithms for complex benchmark functions. Kaveh et al. [18]
applied a non-dominated sorting genetic algorithm to solve
the performance-based multi-objective optimal design of
steel moment-frame structures considering the initial cost and
the seismic damage cost. Dhiman et al. [19] developed a
novel binary emperor penguin optimizer for automatic feature
selection. Li and Wu [20] proposed an improved slap swarm
optimization for determining the crucial failure surface in
slope stability evaluation. Temur [21] introduced a hybrid
version of teaching learning-based optimization for the opti-
mum design of cantilever retaining walls under seismic loads.
Bardhan et al. [22] proposed a modified equilibrium opti-
mizer for predicting soil compression index. For pile group
foundation design, Chan et al. [23] used an automated opti-
mal design method based on a hybrid genetic algorithm.
Bingol and Alatas [24] proposed enhanced optics inspired
optimization for real-world engineering problems. Kumar
and Dhiman [25] presented a comparative study of fuzzy
optimization through fuzzy number. Khajehzadeh et al. [26]
proposed modified gravitational search algorithm for multi-
objective optimization of foundation.

Shallow spread foundation, a geotechnical structure that
transfers loads to the soil beneath it immediately and is
one of the most significant and sensitive structural compo-
nents, has received a lot of attention in recent studies. Struc-
tures’ functionality can be jeopardized unless the effective
loads are successfully sent to the earth by a well-designed
foundation. As a result, the proper design of the spread
foundation has received wide attention in recent investi-
gations. Traditionally, in the design of spread foundations,
initial assumed dimensions will be checked for all geotech-
nical and structural limit states. If the dimensions are unable
to satisfy the limitations, they will be changed until all
of the requirements are met. The construction cost is not
taken into account throughout this time-consuming iterative
procedure. In the optimum design of these structures, the
dimensions that provide the minimum cost or weight and
satisfy all the requirements are defined automatically. Actu-
ally, spread foundations are widely used and typically involve
a large amount of material volume. In addition, a considerable

portion of the structure’s cost is associated with the foun-
dations, and the economical design of foundations is an
essential concern for geotechnical engineers. Therefore, sev-
eral optimum design approaches for spread foundations have
already been developed, with the main goal of these stud-
ies being cost reduction. Wang and Kulhawy [27] devised
a design technique that took construction economics into
account directly, resulting in a foundation with the lowest
possible construction cost. Nigdeli et al. [28] employed three
metaheuristic optimization algorithms, including Flower Pol-
lination Algorithm, Harmony Search and Teaching-Learning
Based Optimization algorithm for the optimum design of
reinforced concrete footings. Gandomi and Kashani [29] con-
sidered the final cost of foundation as an objective func-
tion and applied eight swarm intelligence techniques to the
problem. Kashani et al. [30] investigated the performance
of three evolutionary algorithms, namely, evolution strategy,
differential algorithm, and biogeography-based optimization
algorithm for foundation design optimization.

On the other hand, as the annual emissions of carbon
dioxide (CO2) have grown by up to 80% since 1970, the
consideration of CO2 emissions in the design of concrete
structures has become of greater interest among researchers.
The main binder used in concrete is Portland cement, and a
large amount of CO2 is produced during its manufacturing.
Therefore, minimization of embedded CO2 emissions seems
crucial to incorporate into the design criteria of reinforced
concrete structures. For optimization of embedded carbon
dioxide (CO2) emissions and the economic cost of reinforced
concrete walls, Yepes et al. [31] suggested a hybrid opti-
mization method based on a variable neighborhood search
threshold acceptance strategy. Paya-Zaforteza et al. [32]
implemented the well-known simulated annealing (SA) algo-
rithm to design reinforced concrete (RC) building frames
with the lowest possible embedded CO2 emissions and the
lowest possible RC frame construction cost. Using a hybrid
glowworm swarm optimization algorithm, Yepes et al. [33]
developed a way for optimizing cost and CO2 emissions
while designing precast–prestressed concrete road bridges
with a double U-shape cross-section. Khajehzadeh et al. [34]
developed an effective hybrid evolutionary approach based on
an adaptive gravitational search algorithm for multi-objective
optimization of reinforced concrete (RC) retaining walls.

Recently, Kaur et al. [35] suggested the tunicate swarm
algorithm (TSA) as a new bioinspired meta-heuristic opti-
mization technique. Tunicates use swarm intelligence and
jet propulsion at sea to choose the optimal state for seeking
food in their surroundings. TSA outperforms other competi-
tor approaches when it comes to identifying optimal solu-
tions and is well-suited to real-world optimization challenges.
Sharma et al. [36] applied TSA for parameter extraction
of the photovoltaic module. Li et al. [37] developed an
improved version of the tunicate swarm algorithm (ITSA)
for solving and optimizing the dynamic economic emission
dispatch (DEED) problem. Fetouh and Elsayed [38] proposed
an improved tunicate swarm algorithm for optimal control

VOLUME 10, 2022 39205



A. Arabali et al.: Adaptive Tunicate Swarm Algorithm for Optimization of Shallow Foundation

and operation of fully automated distribution networks. Rizk-
Allah et al. [39] applied an enhanced TSA for solving large-
scale nonlinear optimization problems. Al-Wesabi et al. [40]
developed a multi-objective quantum tunicate swarm opti-
mization with a deep learning model for intelligent dys-
trophinopathy diagnosis. Mansoor et al. [41] proposed an
intelligent tunicate swarm algorithm for multiple configura-
tions of Photovoltaic systems under partial shading condi-
tions. Khajehzadeh et al. [42] developed a hybrid version of
TSA for seismic analysis of earth slopes. Houssein et al. [43]
presented an improved tunicate swarm algorithm for global
optimization and image segmentation.

However, it is prone to becoming stuck in local optima
and is unable to find the optimal answer in some difficult
circumstances [44].

In order to overcome this weakness, in the current study,
an adaptive version of the tunicate swarm algorithm (ATSA)
is developed and utilized for spread foundation optimization.
Therefore, the main contribution of this work can be summa-
rized as follows:

1- An effective global optimization algorithm (ATSA)
based on the tunicate swarm algorithm has been developed.

2- Two separate phases are introduced in the TSA to
increase both the global and local search capability of the
original algorithm.

3- The performance of ATSA is evaluated on 23 frequently
used benchmark functions and compared to other optimiza-
tion algorithms.

4- To verify the effectiveness of the proposed method
for the solution of real-world problems, the new method is
applied to spread foundation optimization.

5-In the optimum design of the foundation, total construc-
tion cost as well as total CO2 emissions are considered as
objective functions.

II. FOUNDATION OPTIMIZATION
Reinforced spread foundation, as a key geotechnical con-
struction, must securely and reliably support the super-
structure, maintain stability against excessive settlement and
failure of the soil’s bearing capacity, and restrict concrete
stresses. Aside from these design goals, spread foundations
must meet a number of requirements. In both long and short
dimensions, they must have sufficient shear and moment
capacities, and the steel reinforcement design must comply
with all design codes.

Mathematically, general form of a constraint optimization
problem can be expressed as follows:

minimize f (X)

subjectto gi(X) ≤ 0, i = 1, 2, . . . , p, (1)

hj(X) = 0, j = 1, 2, . . . ,m,

XL
≤ X ≤ XU (1)

where X is n dimensional vector of design variables, f (X)
is the objective function, g(X) and h(X), respectively, are
inequality and equality constraints. Boundary constraints,

XL and XU , are two n-dimensional vectors containing the
design variables’ lower and upper bounds, respectively.

In the problem of foundation optimization, it is required to
identify the objective function, design constraint, and design
variables that are presented in the following sub-sections.

A. OBJECTIVE FUNCTION
In the current study, the problem of spread foundation opti-
mization considers the embedded CO2 emission and the
construction cost of the structure. Hence, this optimization
problem aims to minimize one of these two objective func-
tions. Both objective functions consider the amount of exca-
vation, formwork, reinforcing steel, concrete, and compacted
backfill.

The total cost of the structure is presented in the following
equation:

fcost = CsWst + CcVc + CeVe + Cf Af + CbVb (2)

where,Wst is the weight of the steel bars,Vc ,Ve andVb denote
the volume of concrete, excavation and backfill. Af shows the
area of formwork. Cc, Ce, Cb, Cf and Cs are the unit costs of
concrete, excavation, backfill, formwork, and reinforcement,
respectively. The unit prices are presented in Table 1 [45].

The next objective which quantify the total amount of
CO2-emissions of the footing can be expressed in the follow-
ing form:

fco2 = EsWst + EcVc + EeVe + Ef Af + EbVb (3)

where, Ec, Ee, Eb, Ef and Es are the unit emission of concrete,
excavation, backfill, formwork, and reinforcement, respec-
tively as presented in Table 1 [45].

TABLE 1. Unit cost and CO2 emission of foundation construction [45].

B. DESIGN VARIABLES
The design factors for the spread footing model are shown
in Figure 1. There are two types of design variables: those
that define geometrical parameters and those that describe
reinforcing steel. The dimensions of the foundation are rep-
resented by four geometric design variables, as illustrated in
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FIGURE 1. Design variables of the footing.

Figure 1. X1 is the foundation’s length, X2 is the founda-
tion’s width, X3 is foundation’s thickness and X4 is depth
of embedment. Moreover, the steel reinforcement has two
design variables: X5 is the longitudinal reinforcement and X6
is the transverse reinforcement.

C. DESIGN CONSTRAINTS
The forces operating on the footing are depicted in Figure 1.
M and P denote the axial load and moment imparted to the
footing in this figure. The minimum and maximum bearing
pressures on the foundation’s base are qmin and qmax, respec-
tively. The next sub-sections go over the design restrictions
that must be taken into account when optimizing the spread
footing.

1) BEARING CAPACITY
The foundation’s bearing capacity must be sufficient to with-
stand the forces acting along the base. The maximum stress
should be less than the soil’s bearing capacity to ensure a safe
design:

qmax ≤
qult
FS

(4)

where qult denotes the foundation’s ultimate bearing capacity
and qmax is the maximum contact pressure at the boundary
between the foundation’s bottom and the underlying soil. The
lowest and highest applied bearing pressures on the founda-
tion’s base are calculated as follows:

qmin
max

=
P

X1X2

(
1∓

6 e
X1

)
(5)

where e denotes the eccentricity, which is defined as the
ratio of the overturning moments (M ) to the total vertical
forces (P).

2) ECCENTRICITY
The following requirements must be met such that tensile
forces at the bottom of the footing are avoided:

e ≤
X1
6

(6)

3) SETTLEMENT
According to the following inequalities, foundation settle-
ment should be kept within a legal range:

δ ≤ δall (7)

where δall is the permitted settlement and δ is the foundation’s
immediate settlement. The settlement can be estimated as
follows using the elastic solution proposed by Poulos and
Davis [46]:

δ =
P(1− ν2)

κzE
√
X1X2

(8)

where κz is the shape factor, ν is the Poisson’s ratio and
E is modulus of elasticity. In this research, the shape factor
proposed by Wang and Kulhawy [27] is used as follows:

κz = −0.0017(X2/X1)2 + 0.0597(X2/X1)+ 0.9843 (9)

where, X1 is the foundation’s length, and X2 is the founda-
tion’s width.

4) ONE-WAY SHEAR
The footing must be viewed as a wide beam for one-way
shear. According to ACI [47], the shear strength of concrete
measured along a vertical plane extending the whole width of
the base and located at a distance equal to the effective depth
of the footing (Vu) should be less than nominal shear strength
of concrete:

Vu ≤
1
6
φV
√
f ′cbd (10)

where φV is the shear strength reduction factor of 0.75 [47],
fc is the concrete compression strength, b is the section width,
and d denotes the depth at which steel reinforcement is
placed.

5) TWO-WAY SHEAR
The tendency of the column to punch through the footing slab
is called ‘‘punching shear’’. According to (11), the maximum
shearing force in the upward direction (Vu) should be less than
the nominal punching shear strength to avoid such a failure.

Vu ≤ min

{
1+ 2

βc

6
,

αsd
b0
+ 2

12
,
1
3

}
∅V
√
f ′cb0d (11)

where b0 is the crucial section’s perimeter taken at d/2 from
the column’s face, d denotes the depth at which steel rein-
forcement is placed, βc is the ratio of a column section’s long
side to its short side and αs is equal to 40 for interior columns.
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6) BENDING MOMENT
The nominal flexural strength of the reinforced concrete foun-
dation section should be less than the moment capacity [47]:

Mu ≤ φMAS fy
(
d −

a
2

)
(12)

where Mu denotes the bending moment of the reaction
stresses due to the applied load at the column’s face,
ϕM presents the flexure strength reduction factor equal
to 0.9 [47], As denotes the area of steel reinforcement and
fy is the yield strength of steel.

7) REINFORCEMENTS LIMITATION
In each direction of the footing, the amount of steel reinforce-
ment must fulfill minimum andmaximum reinforcement area
limitations according to the following inequality [47]:

ρminbd ≤ AS ≤ ρmaxbd (13)

where AS is the cross section of steel reinforcement, ρmin and
ρmax are the minimum and maximum reinforcement ratios
based on the following equations [47]:

ρmin = max

{
1.4
fy
, 0.25

√
f ′c
fy

}
(14)

ρmax = 0.85β1
f ′c
fy

(
600

600+ fy

)
(15)

where, β1 is a constant equal to 0.85 [47].

8) LIMITATION OF EMBEDMENT’S DEPTH
The depth of embedment (X4) should be limited between
0.5 and 2. Therefore:

0.5 ≤ X4 ≤ 2 (16)

To address the above mentioned limitations and transform
a constrained optimization to an unconstrained one, a penalty
function method is used in this paper. according to:

F(X) = f (X)+ r
p∑
i=1

max{0, gi(X)}l (17)

where F(X) is the penalized objective function, f (X) is
the problem’s original objective function presented in (2)
and (3) and r is a penalty factor and p in the total number of
constraints.

III. TUNICATE SWARM ALGORITHM (TSA)
TSA is a simple meta-heuristic optimizer inspired by the
performance of marine tunicates and their jet propulsion
systems during navigation and foraging. [35]. This animal has
a millimeter-scale form. Tunicate can locate food sources in
the sea. In the supplied search space, however, there is no indi-
cation of the food source. A tunicate must satisfy three basic
conditions when traveling with jet propulsion: it must avoid
colliding with other tunicates in the search space; it must take
the correct path to the optimal search location; and it must be
as close to the best search agent as possible. The candidate

solutions (i.e., tunicates) in TSA are looking for the best
food source (i.e., the best value of the objective function).
The tunicates change their positions in reference to the best
tunicates that are stored and improved in each iteration during
this process. The TSA starts with a population of randomly
generated tunicates based on the design variables’ allowable
boundaries, as shown in the equation below:

ETp = ETminp + rand ×
(
ETmaxp − ETminp

)
(18)

where, ETp is the position of each tunicate and rand is a random
number within range [0, 1]. ETminp and ETmaxp are design vari-
ables’ lower and upper bounds, respectively. The tunicates
adjust their location during the iterations by the following
formula [35]:

ETp (Ex + 1) =
ETp (x)+ ETp (Ex)

2+ c1
(19)

where, c1 is a random number within range [0,1] and ETp (x)
refers to the updated position of the tunicate with respect to
the position of the food source based on (20).

ETp (x) =

SF + A×
∣∣∣SF − rand × ETp∣∣∣ , if rand ≥ 0.5

SF − A×
∣∣∣SF − rand × ETp∣∣∣ , if rand < 0.5

(20)

where SF is the food source, which is represented by the
population’s optimal tunicate position; and A denotes a ran-
domized vector to prevent tunicates from colliding with one
another which is modelled as:

A =
c2 + c3 − 2c1

VTmin + c1 (VTmax − VTmin)
(21)

where, c1, c2 and c3 are random numbers within range [0, 1];
VTmin and VTmax reflect the minimum and maximum speeds
that are used to create social interaction which considered
as 1 and 4, respectively [35].

The TSA algorithm’s steps are presented below:
Step 1: Initialize the tunicate population ETp based on (18).
Step 2: Choose the initial parameters and maximum num-

ber of iterations.
Step 3: Calculate the fitness value of each search agent.
Step 4: The best tunicate is explored in the given search

space.
Step 5: Update the position of each tunicate using (19).
Step 6: Adjust the updated tunicate which goes beyond the

boundary in a given search space.
Step 7: Compute the updated tunicate fitness value. If there

is a better solution than the previous optimal solution, then
update the best.
Step 8: If the stopping criterion is satisfied, then the algo-

rithm stops. Otherwise, repeat the Steps 5–8.
Step 9: Return the best optimal solution which is obtained

so far.
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FIGURE 2. Flowchart of the ATSA.

IV. ADAPTIVE TUNICATE SWARM ALGORITHM
Despite the TSA’s ability to produce efficient results when
compared to other well-known algorithms, it is susceptible to
becoming trapped in local optima and is not ideal for very
complex problems with several local optima [44]. As shown

in (19) and (20), in TSA, every tunicate updates its position
based on the position of the food source (i.e., the posi-
tion of the best tunicate in the whole population). However,
without any knowledge of the position of the food source
(FS), there will not be any recovery for the algorithm if
premature convergence happens. In other words, once the
algorithm has converged, it loses its potential to explore and
becomes inactive. Therefore, the TSA algorithm becomes
locked at local minimum points as a result of this mecha-
nism. In light of these conditions, an adaptive version of the
TSA (ATSA) is proposed to overcome the mentioned weak-
nesses and increase the search capability and flexibility of the
algorithm.

An effective metaheuristic algorithm needs to divide the
search process into two phases: exploration and exploitation.
Exploration involves exploring new positions far from the
current position in the entire search area. The exploration
phase takes place when a metaheuristic algorithm attempts to
identify the entire solution space and explore the promising
areas. In contrast, exploitation refers to the capability of an
optimization algorithm to search around near-optimal solu-
tions. This phase allows the optimizer to concentrate on the
neighborhood that consists of higher-quality solutions within
the searching space. As mentioned earlier, at each iteration
pass, the TSA algorithm updates the position of candidate
solutions around a single point that is the best solution in the
whole population. It means the TSA has a good exploitation
capability. However, its weakness is the lack of an effective
global search and the algorithm suffers from an effective
exploration ability.

In order to improve the performance and exploration capa-
bility of the algorithm, the proposed ATSA has two main
phases in each iteration. In the first phase (exploration phase),
a candidate solution is picked at random instead of the best
solution, and the position of the candidate solutions will be
updated according to the position of this random tunicate.
In addition, to have effective exploration, an optimizer should
use its randomized operators to thoroughly explore diverse
areas of the search space [9]. Therefore, in the proposed
ATSA, two separate random numbers are considered in the
tunicate’s updating equation to produce solutions in various
regions of the search space.

The exploration phase of the ATSA is mathematically
modeled as follows:

ETp (Ex + 1)= ETp (r)−rand1 × |ETp (r)−2× rand2 × ETp (Ex) |

(22)

where ETp (r) is randomly selected tunicate form the current
population. rand1 and rand2 are random numbers between
0 and 1. This procedure promotes exploration and also allows
the TSA algorithm to perform a more robust global search
throughout the whole search space.

In the second phase of the ATSA algorithm (exploitation
phase), the tunicates update their positions according to the
position of the best tunicate found so far, based on (19).
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TABLE 2. Description of unimodal benchmark functions.

Furthermore, in the proposed ATSA, the worst tunicate
with the highest objective function value will be replaced
with a randomly generated tunicate at each iteration. Figure 2
shows the flowchart of the proposed ATSA algorithm.

A. COMPARATIVE TIME COMPLEXITY ANALYSIS
In order to evaluate the overall performance of a new
optimization algorithm from different points of view, the
computational time complexity analysis can be conducted.
In computer sciences, the ‘‘Big O notation’’ is a mathematical
notation which represents the required running time of an
algorithm by considering the growth rate in dealing with
different inputs.

The time complexity analysis of most algorithms involves
analyses of three components. Likewise, the time complexity
analysis of the proposed ATSA also requires analyses of these
three components:

1. Time complexity of initialization of the population, gen-
erally calculated byO(N×D) whereN denotes the population
size and D denotes the dimensions of the problem.
2. Time complexity of initial fitness evaluation, generally

evaluated by O (N × F(X)), where F(X) represents the
objective function.

3. Time complexity of the main loop, generally calcu-
lated by O (Maxiterations × (N × D + N × F(X))), where
Maxiterations is the maximum number of iterations.

Hence, the total time complexity of ATSA algorithm is
O(Maxiterations (N × D+ N × F(X))).

V. PERFORMANCE EVALUATION OF THE ATSA
The effectiveness of the suggested ATSA approach will be
investigated in this section. To this aim, on a set of bench-
mark test functions from the literature, the performance of
the new method is compared to that of the standard ver-
sion of the algorithm (TSA) as well as some well-known

metaheuristic algorithms. These are all minimization prob-
lems that can be used to test the new optimization algorithms’
robustness and exploration efficiency. The mathematical
description and characteristics of these test functions are
shown in Tables 2, 3, 4. This benchmark set covers three
main groups: unimodal functions with a unique global best
for testing the convergence speed and exploitation ability
of the algorithms; multimodal functions with multiple local
solutions and a global optimum for testing local optima avoid-
ance and exploration capability of an algorithm; and finally
multimodal functions with a fixed dimension.

The ATSA algorithm’s performance is compared with
the original TSA and some efficient optimization methods,
including Gravitational Search Algorithm (GSA), Grey Wolf
Optimizer (GWO), and Sine Cosine Algorithm (SCA). It’s
worth noting that the ATSA algorithm evaluates the objec-
tive function twice per iteration, whereas the TSA and other
approaches do so just once. Therefore, according to the
suggestion of the previous studies [35] and to have a fair
comparison between the results, the size of the population (N )
is considered equal to 40 for ATSA and equal to 80 for
TSA and other approaches. In addition, for all techniques, the
maximum number of iterations is considered equal to 1000.
In this way, in all experiments, the same number of function
evaluations, equal to 80,000, is used. The results of a sin-
gle run may be incorrect since metaheuristic approaches are
stochastic. As a result, to generate a meaningful comparison
and evaluate the effectiveness of the algorithms, a statistical
analysis should be utilized. To address this issue, 30 indepen-
dent runs for the stated algorithms are performed, with the
results presented in Tables 5, 6, 7.

The results of Tables 5, 6, 7, show the best (minimum),
worst (maximum), mean (average), median and standard
deviation (Std) of the solutions obtained from experiments
using the selected optimization algorithms. The best results
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TABLE 3. Description of multimodal benchmark functions.

among the five algorithms are shown in bold. According to
the results of these tables in the following subsections, the
exploration, exploitation, and convergence rate of the new
method are investigated using a comparative performance
comparison of ATSA against four selected algorithms.

A. EXPLOITATION CAPABILITY
Unimodal test functions can be considered to investigate
the exploitation capability of an optimization algorithm
[49], [50]. In this study, to evaluate the ability of ATSA to
exploit the promising regions, seven unimodal benchmark
functions (F1 to F7) are solved and the results are compared
with four selected optimization methods in Table 5. The
results of this table show that, for all unimodal functions
except F6, ATSA could provide a better solution. In addition,
for four functions (F1-F4), ATSA reached the global optima.
It means that the new algorithm has a large potential search
space compared with the other optimization algorithms.

B. EXPLORATION VERIFICATION
In order to evaluate the capability of an optimization algo-
rithm to effectively explore the search space, multimodal
benchmark functions that have many local optima are usually
considered [49], [50]. Based on the presented procedure,

16 multimodal functions (F8 to F23) are minimized. Accord-
ing to the results of Tables 6 and 7, it can be observed that
the best and mean values reached by ATSA for most of the
functions (except F13) are significantly better than the other
methods. However, for F13, the results are also comparable
to the other algorithms. From the standard deviation point
of view, which indicates the stability of the algorithm, the
results show that ATSA is a more stable method when com-
pared with the other techniques. From the analysis, it can be
concluded that ATSA either outperforms the other algorithms
or performs almost equivalently. The consistent performance
of the new method for such a comprehensive suite of multi-
modal benchmark functions verifies its superior capabilities
of exploration.

C. CONVERGENCE CAPABILITY
The convergence progress curves of ATSA for benchmark test
functions are compared with TSA, GSA, SCA, and GWO
in Figure 3. The curves are plotted against the number of
function evaluations. The descending trend is quite evident
in the convergence curve of ATSA on all of the test functions
investigated. This strongly evidences the ability of the new
algorithm to obtain a better approximation of the global
optimum over the course of iterations. In addition, the curves
of test functions show that ATSA is capable of exploring the
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TABLE 4. Description of fixed-dimension multimodal benchmark functions.

search space extensively and identifying the most promising
region in fewer iterations. The obtained results indicate that
the ATSA outperforms the other algorithms in most cases and
has faster convergence to the best solution.

D. STATISTICAL SIGNIFICANCE ANALYSIS
In order to determine the statistical significance of the com-
parative results between two or more algorithms, a non-
parametric pairwise statistical analysis should be conducted.
As recommended by Derrac et al. [51], to assess meaningful
comparison between the proposed and alternative methods,
the nonparametric Wilcoxon’s rank sum test is performed
between the results. In this regard, utilizing the best results
obtained from 30 runs of each method, a pair-wise compari-
son is conducted.

Wilcoxon’s rank sum test returns p-value, sum of positive
ranks (R+) and the sum of negative ranks (R−) [52]. Table 8
presents the results of Wilcoxon’s rank sum test of ATSA
when compared with other methods. The p-value indicates
the minimum significance level for detecting differences.
In this study, α = 0.05 is considered as the level of signif-
icance. If the p-value of the given algorithm is greater than
0.05, then there is no significant difference between the two
compared methods. Such a result is indicated with ‘‘N.A’’ in
the winner rows of Table 8. On the other hand, if the p-value
is less than α, it definitively means that, in each pair-wise
comparison, the better result obtained by the best algorithm is
statistically significant and was not gained by chance. In such
cases, if the R+ is bigger than R-, indicates ATSA has a
superior performance than the alternative method otherwise
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TABLE 5. Results comparison of unimodal test functions.

TABLE 6. Results comparison of multimodal test functions.

ATSA has inferior performance and alternative algorithm
shown better performance [53].

According to the results of Wilcoxon’s rank sum test in
Table 8, the pairwise comparison between ATSA and GSA
reveals that in the optimization of 23 test functions, the
new method has superior performance in 19 cases and has
inferior performance in two cases. In addition, for F16 and
F20, bothmethods are statistically equivalent. Similarly, in the
other pairwise comparison, for the majority of the test suite,

TABLE 7. Results comparison of fixed-dimension multimodal test
functions.

ATSA provides better results. Therefore, the nonparametric
statistical analysis proves that ATSA generated significantly
better solutions and, comparatively, has superior performance
over the other algorithms.

As the results show, the ATSA is capable of conducting a
full investigation of the search area and promptly identifying
the most promising position. Based on the findings, it can be
inferred that ATSA outperforms the original algorithm aswell
as alternative optimization methods.

VI. MODEL APPLICATION
In this section, the optimum design of an interior spread
footing in dry sand is conducted using the proposed ATSA
by considering two objective functions: CO2 emission and
construction cost. This problem has been solved previously
by Camp and Assadollahi [45] using a hybrid big bang-big
crunch (BB-BC) algorithm. The input parameters for the case
study are given in Table 9.

The problem is solved by the presented procedure for
both the cost and CO2 objective functions. In order to verify
the efficiency of the proposed ATSA method, the analysis
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FIGURE 3. Convergence curve of test functions.
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TABLE 8. Results of Wilcoxon’s rank sum test. TABLE 9. Input parameters for the case study [45].

FIGURE 4. Average values of the objective functions.

results are comparedwith the standard TSA aswell as BB-BC
algorithms [45]. In this experiment, the maximum number
of function evaluations is considered equal to 50,000. Both
the TSA and ATSA algorithms are run 30 times, and the
best results of the analyses for the minimum cost and min-
imum CO2 emission obtained by each method are presented
in Table 10.

The findings presented in Table 10 show that the optimum
design evaluated by the proposed ATSA algorithm is lower
than those evaluated by standard TSA andBB-BC techniques.
According to the result, the best price obtained by ATSA
is 1046.8$, which is almost 4.8% lower than the best price
calculated by TSA and 3.7% lower than the BB-BC’s result,
which means the newmethod could provide a cheaper design.
In addition, the best value of the CO2 objective function
calculated by the new algorithm is almost 7.2% and 4.2%
lower than those evaluated by the TSA and BB-BC methods,
respectively.
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TABLE 10. Optimization result for spread footing optimization.

FIGURE 5. Standard deviation of the results.

FIGURE 6. Convergence of TSA and ATSA for cost function.

Figures 4 and 5 illustrate the average and standard devia-
tion of the cost and CO2 objective functions from 30 different
runs, respectively. Based on these findings, the mean values
of the objective functions acquired by ATSA are lower than

FIGURE 7. Convergence of TSA and ATSA for CO2 function.

those obtained by TSA. Furthermore, the standard deviation
of the ATSA results is much smaller than that of the original
method, demonstrating that the ATSA significantly improves
the TSA’s instability.

The convergence progress curves of ATSA for cost and
CO2 objective functions are compared to those of TSA in
Figurs 6 and 7. As shown in these figures, the ATSA is capa-
ble of exploring the search space extensively and identifying
the most promising region in fewer iterations because of its
effective modifications. From the above results, it can be
inferred that ATSA outperforms the original algorithm and
the findings confirm the effectiveness of the new algorithm
for optimization of spread foundations.

In the last part of this section, a sensitivity analysis is
carried out to investigate the effects of soil parameters on the
spread foundation design. Ground conditions and soil char-
acteristics influence geotechnical engineering designs. As a
result, a comprehensive site study is required to determine
the ground conditions and design input parameters. In order
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FIGURE 8. Effects of φ variation on the cost and CO2 emission.

FIGURE 9. Effects of γ variation on the cost and CO2 emission.

to explore the effect of soil parameters on the final design, the
total construction cost and CO2 emission of the foundation
are computed by different values of effective friction angle
(φ) and unit weight of soil (γ ). Figure 8 shows the low-cost
and low-CO2 emission designs of a foundation for different
values of φ as the internal friction angle of the soil varies
from 26 to 40 degrees. As shown in Figure 8, Over this range,
the construction cost and CO2 emissions decrease drastically
as the friction angle of the soil (φ) increases. However, if φ
becomes greater than 34, the intensity of variation will be
reduced.

In the second stage, the total construction cost and CO2
emissions are obtained using different values of unit weight
of soil while the other properties are kept fixed. The results
are shown graphically in Figure 9 and indicate that increasing
the soil’s unit weight (γ ) from 15 to 22 KN/m3 reduces the
total price and CO2 emissions by nearly 12%.
The findings show that variations in effective friction angle

have the greatest effects on total cost and CO2 emissions, and
that this parameter is critical in the optimal design of spread
foundation. In other words, this parameter should be mea-
sured as accurately as possible during the site investigation.

VII. CONCLUSION
In this paper, two main contributions are presented:
(i) a novel adaptive version of the tunicate swarm algo-
rithm called ATSA is introduced and verified using a set of

23 mathematical test functions of the well-known CEC 2017;
and (ii) the proposed ATSA is applied for the low-cost and
low-CO2 emission design of shallow foundations. The pro-
posed method has the potential to increase the TSA’s explo-
ration ability while also preventing it from becoming trapped
in a local minima location. The new method’s performance is
evaluated using a combination of unimodal and multimodal
benchmark functions. According to the results and findings,
In terms of finding the global solution for most unimodal and
multimodal functions, ATSA outperforms standard TSA as
well as other approaches, In the next step, the proposed ATSA
is applied to the optimum design of the shallow foundation.
The performance of the new algorithm for the minimization
of construction costs and CO2 emissions of the foundation
is investigated by considering a case study from the liter-
ature. When compared to existing algorithms, the findings
indicate that the newly proposed method is quite robust and
efficient for optimum design of spread foundations. Finally,
a sensitivity analysis reveals the importance of the internal
friction angle of the soil on the final construction cost and
CO2 emissions.

There are several potential applications and research direc-
tions that can be recommended for future work. Many engi-
neering problems can be solved using the proposed algorithm,
including structural optimization, damping controller design
for power system oscillations, image processing, pipe routing
design, optimal power flow problems, resource scheduling,
and neural network training.

Like all stochastic optimization techniques, one of the
limitations of the proposed ATSA is that new optimizers
may be developed in the future that will perform better than
ATSA in some real applications. Additionally, due to the
stochastic nature of theATSA, it cannot be guaranteed that the
solutions obtained using the ATSA for optimization problems
are exactly equal to the global optimum for all optimization
problems.
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