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ABSTRACT The gearbox is an important component of a wind turbine (WT). Once the gearbox is damaged,
problems such as long-term maintenance and high maintenance costs will occur. Therefore, it is necessary to
carry out on-line condition monitoring (CM) of WTs. Because a large amount of data is accumulated by the
supervisory control and data acquisition (SCADA) system, CMs based on data-driven methods have been
widely investigated. In this paper, a CM method that is based on the KNN regression method and bagging
ensemble strategy is proposed. The proposed method is validated by SCADA data collected from a field
WT. The results show that the ensemble model can achieve the desired estimation accuracy and improve the

operation efficiency by approximately 30%.

INDEX TERMS Wind turbine gearbox, data-driven method, condition monitoring, KNN, bagging.

I. INTRODUCTION
To cope with global climate change, China has announced
that it will achieve peak carbon dioxide emissions by
2030 and carbon neutrality by 2060 [1]. Therefore, clean
energy power generation technology has broad development
potential. As a kind of clean energy, wind energy has been
widely utilized worldwide. According to the Global Wind
Energy Council (GWEC)S report [2], although the global
newly installed capacity reached 93 GW in 2020, a large
number of wind turbines (WTs) still need to be installed.

With an increase in the number of wind turbines in service
and the extension of operation times, the possibility of
component failure also increases. According to the statistical
data [3], due to the harsh operating environment and other
conditions, the gearbox is the component of WTs with a high
incidence of faults. Once the gearbox is damaged, problems
such as high maintenance costs, complex maintenance
processes, and long maintenance times due to structural
constraints will ensue [4]. Therefore, it is necessary to carry
out online condition monitoring (CM) of gearboxes.

The CM of gearboxes is divided into vibration signal
analysis [5], oil quality analysis [6] and supervisory control
and data acquisition (SCADA) system data analysis [7]
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according to different signal sources. However, vibration
signal analysis requires the installation of professional
sensors to collect high-frequency vibration data, resulting
in additional expenses. Qil quality analysis is an invasive
method that cannot realize online monitoring. Presently,
almost all wind turbines are equipped with the SCADA
system [8], which can collect a large amount of operational
and record fault data. Therefore, WTCM based on SCADA
data has been widely employed by scholars.

Since a large amount of data accumulates in the SCADA
system, the data-driven method is an essential method in
CM based on SCADA data [9]. Fu et al. [10] built a model
based on deep learning to process the temperature of a
gearbox using historical SCADA data. Jin et al. [11] mined
health status-related information from SCADA data and
established a Mahalanobis space as a reference space for wind
turbine condition monitoring. Liu et al. [12] constructed a
global monitoring statistic based on all temperature variables
contained in the SCADA system to monitor the overall health
status of the wind turbine. Zhang et al. [13] combined the
random forest with extreme gradient boosting to establish a
wind turbine fault detection framework. Luo et al. [14] pro-
posed a SCADA data-based, online monitoring method based
on a a pair-copula and BP neural network. Dhiman et al. [15]
applied a SVM to WT gearbox condition monitoring and
analyzed the regression residual from a statistical point of
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view. Dhiman et al. [16] proposed the highly reliable method
of applying the TWSVM and adaptive threshold to WT
gearbox anomaly detection.

The K-nearest neighbors (KNN) algorithm is a commonly
used nonparametric method that was proposed by Cover and
Hart in 1968 [17]. The KNN algorithm does not need to train
a model in advance and is often selected to solve regression
and classification problems. The operating environment and
operating parameters of WTs are complex and changeable.
The models trained by conventional parametric methods,
such as neural networks and Bayesian methods, may
have poor flexibility and encounter the problem of model
mismatch. The KNN algorithm does not need to train the
model in advance and only needs to update the training set in
time to obtain the optimal estimation effect; thus, it is suitable
for WICM.

However, when the number of training samples is large,
the KNN algorithm is bound to cause a vast amount of
time overhead and to reduce the operation efficiency when
calculating the Euclidean distance between the test sample
and all training samples. Scholars have performed many
studies on how to reduce the loss of operation accuracy
while improving the computational efficiency of the KNN
algorithm [18].

Ensemble learning constructs and combines multiple
learners to complete learning tasks, which can often obtain
generalization performance with significant advantages over
a single learner [19]. Ensemble systems have prove n
to be very effective and extremely versatile in a broad
spectrum of problem domains and real-world applications.
Bagging is the most famous representative of the parallel
ensemble learning strategy [20]. Bagging can be combined
with almost any learning algorithm to form an ensemble
learning system, such as a neural network [21] or decision
tree [22].

To solve the problem of slow operation caused by
an excessively large training set of KNNs, a condition
monitoring method based on the bagging ensemble strategy
and the KNN regression method is proposed in this paper.
The training set is randomly sampled based on bagging to
construct multiple KNN individual learners. With an increase
in the number of individual learners, the ensemble system will
become more complex, the estimation accuracy will increase,
and the calculation time will remain at the same order of
magnitude.

The SCADA data collected from a WT are used to validate
the feasibility of the industrial application of the proposed
approach. The results show that the proposed method can
realize gearbox CM and provide health rate indicators.

The remainder of this paper is organized as follows:
Section II presents the framework of the ensemble KNN
method. Section III gives a detailed description of the KNN
algorithm, bagging ensemble strategy and SPC technology.
Section IV shows the results of experiments to validate the
proposed method. The experimental results are summarized,
and the conclusions are given in Section V.
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FIGURE 1. NBM monitoring with the input u(t) for both the process G(t)
and its model G(t), their outputs y(t) and y(t), respectively, and the final
error or residual e(t).

Il. THE FRAMEWORK OF PROPOSED METHOD

A. NORMAL BEHAVIOR MODELING STRATEGY

Normal behavior modeling (NBM) is a condition monitoring
method based on the SCADA data-driven method [23].
Because the collected field data often have no distinct label,
we cannot use the classification algorithm to detect the
specific fault of the equipment. The NBM method based on
SCADA data can use the unlabeled operation data to monitor
the statuses of the target variables in which we are interested.
The framework of the NBM is shown in Fig. 1.

We will describe the NBM in detail. First, aiming at the
target variable, a model is established by using the historical,
collected, normal SCADA data, which is usually a data-
driven algorithm model. Second, the real-time SCADA data
are input into the model to obtain the estimated value of the
target variable, which represents the real-time value if the
equipment is in normal operation. Last, the residual between
the estimated value and the observed value is calculated. The
residual represents the current deviation of the target variable
from the normal operation.

B. THE PROPOSED FRAMEWORK OF ENSEMBLE KNN
METHOD

As shown in Fig. 2, the proposed WTCM, ensemble KNN
method can be divided into three parts: data preprocessing,
offline ensemble model establishment and online monitoring.
The specific steps are described as follows:

(1) Data preprocessing: First, to obtain the normal
available data, the missing data and abnormal data in the
original data are deleted according to the relevant technical
documents. Second, the relevant operating parameters are
selected as the target variable and auxiliary variables. Among
them, the target variable is the variable that we want
to monitor, and the auxiliary variables are the operating
parameters that are closely related to the target variable. Last,
the normal data are determined and normalized.

(2) Offline ensemble model establishment: Since the KNN
algorithm does not need to be trained in advance, it only needs
to randomly sample the training set n times to establish the
ensemble KNN learner. The threshold is calculated based on
SPC technology and the verification set.

(3) Online monitoring: The real-time SCADA data are
input as the testing sample into the ensemble model to
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FIGURE 2. The framework of proposed method.

obtain the estimated value y(¢) of the target variable and to
calculate the residual e(t) between y(¢) and the observed value
¥(¢) of the testing sample. Next, e(¢) is compared with the
threshold, and the health rate of the gearbox is calculated
according to the sliding window method.

Iil. METHOD
A. KNN REGRESSION ALGORITHM FOR CONDITION
MONITORING
The basic principle of the KNN regression algorithm is
described as follows: when the target variable of the testing
sample is unknown, obtain the K nearest neighbors of the
testing sample, and take the average value of the target
variable of the K nearest neighbors as the estimated value
of the target variable of the testing sample. Therefore, the
essence of the regression problem is the prediction problem.
The difference is that in the condition monitoring, the target
variables of the testing samples can be actually measured,
so the distance measurement formula of the KNN regression
algorithm can be improved. The calculation is detailed as
follows:

For a testing sample x = (x1,x2, ..
target variable)

(1) Calculate the Euclidean distance between x and the
training sample xj = (xj, X2/, - . . , Xmj» Y) :

X! (v is the

dite, ) = o —x 4 =D
=1

where d;(x, x;) is the Euclidean distance between x and x;.
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(2) Sort the Euclidean distance in descending order,

identif;/ K training samples closest to x and record them
K K) (K K) (K

as x[(, = (xgp) xép),...,x,(np),yl(, ))T,p € [1,K]. The

estimated value of the testing sample’s target variable is

expressed as follows:
K
=> ¥k ©)
p=1

To further improve the accuracy of the algorithm, the
“weighted method” can be employed instead of the ““average
method.” In this paper, the nearest neighbor samples closer
to the testing sample will be assigned a large weight, and the
nearest neighbor samples further from the testing sample will
be assigned a smaller weight. The formula of the weighted
KNN (wKNN) is expressed as follows:

K
y=29 W 3)
p=1
K
K
wp = Dk, /DO w, =1) 4)
p=1
)

where w), is the weight of the p-th nearest neighbor, Dy} »
is the Euclidean distance between x and its 1 + K — p-th
neighbor, and D% is the sum of the Euclidean distances
between x and its neighbors.

According to the specific steps of the KNN algorithm, the
time consumption of the KNN algorithm is only related to the
size of the training set; the calculation time is linear with the
size of the training set; its time complexity is O(n); and 7 is
the number of training samples.

B. KNN ALGORITHM WITH BAGGING STRATEGY

The general structure of ensemble learning is to gener-
ate multiple af individual learnersas and then combine
them through a selected strategy. The common strategies
are boosting, bagging and stacking [24]. Boosting is a
serial iterative structure, with a strong dependence among
individual learners. Stacking is a hierarchical structure.
To avoid overfitting, individual learners are required to be
heterogeneous.

The bagging ensemble strategy is a parallel strategy.
All homogeneous learners are interdependent. By randomly
changing the distribution of the training sets, new training
subsets are generated, and individual learners are trained.
The steps of the KNN regression algorithm with the bagging
strategy are presented as follows:

Let the number of individual learners be b, and let the
number of training samples for each individual learner be ny,
generally n, < n.

(1) The original training set is randomly sampled b times
to form b KNN-based training subsets.

(2) A KNN individual learner is trained based on each
training subset, and then these KNN learners are combined.
When combining the individual learners, the simple voting
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FIGURE 3. Bagging ensemble strategy diagram.

Individual

method is utilized for the classification task, and the simple
average method is employed for the regression task.

As previously mentioned, the time complexity of the KNN
learner is O(np), so the time complexity of the bagging
ensemble KNN algorithm is b(O(np) 4+ O(s)). Generally, the
voting/average complexity s is very small, and b is generally
a small constant, so the complexity of the conventional KNN
algorithm and bagging integrated KNN algorithm has the
same order of magnitude.

C. THRESHOLD SETTING METHOD

The output of condition monitoring is often a continuous
value, but we cannot judge whether the gearbox is faulty
according to the continuous output, so we need to convert the
condition monitoring result into a binary output by setting the
threshold. If the residual exceeds the threshold, the gearbox
will have a high probability of abnormality at this time. In this
paper, statistical process control (SPC) is selected as the
method to use to set the threshold.

SPC is a process monitoring method based on statistical
theory that can be applied to involve the alarm threshold in
WTCM [24]. Because the gearbox often shows overheating
faults, this paper mainly discusses how to set the upper limit
of the alarm. The detailed method is expressed as follows:

Assuming random variable X N(,u, 02), according to the
relevant theory of normal distribution, the probability of
random variable X falling in the interval —oo, u + 1.6450]
and —oo, u + 1.28207] are expressed as follows:

P(—o0o < X < pu+1.6450] ~ 0.95 5)

P(—oo < X <+ 1.2820] =~ 0.90 6)

If the value of X continually exceeds the above range, the
operation process will be affected by abnormal factors and

fails. Therefore, the overheating and warming threshold can
be designed according to the normal distribution of © and o.

VOLUME 10, 2022

In practical applications, the sample mean X and sample
standard deviation S are employed to replace u and o of the
normal distribution. The formula is presented as follows:

B 1 n

X=->"¢ (7
n =1

5= (— i(e X)) ®)
n—1 P !

where ¢; is the residual of the observed value and estimated
value and 7 is the number of testing samples.
The formula of the threshold can be defined as follows:

T = X +1.2828 )
T, = X +1.6458 (10)

where T is the first alarm threshold and T is the second
alarm threshold.

If the gearbox oil temp continuously exceeds the threshold,
a significant failure of the gearbox will occur at this time.
Hierarchical thresholds can realize hierarchical alarms in
industrial applications and provide different fault tolerances
for industrial applications.

IV. CASE ANALYSIS

A. DATA DESCRIPTION

The SCADA data used in this paper to verify the effectiveness
of the proposed method in this paper are obtained from
an onshore WT in Hebei Province, China. The main
characteristic parameters of the WT are listed as follows: the
related power is 2 MW, the related wind speed is 12 m/s; the
cut-in wind speed is 4 m/s; the cut-off wind speed is 25 m/s
and the SCADA system sample interval is 10 mins. The fault
type is gearbox bearing overheating.

B. DATA PREPROCESSING

The unavailable data in historical SCADA data are deleted,
including the following data: missing data, data with active
power less than or equal to zero, data with wind speeds less
than the cut-in speed, and data with wind speeds greater than
the cut-off wind speed. The samples with abnormal operating
parameters are removed based on the Laida criterion; 14,000
samples remain.

There are dozens of characteristic parameters in SCADA
system. Firstly, eight variables are roughly selected and
their Pearson correlation coefficients with gearbox bearing
temperature are calculated: wind speed, generator speed,
ambient temp, active power, impeller speed, wind direction
angle and reactive power. The range and Pearson correlation
coefficient of selected variables is shown in Tab. 1.

It can be seen from table 1 that there is a strong positive
correlation between bearing temperature and wind speed,
generator speed and active power, which is in line with the
normal characteristics that the increase of wind speed leads to
the increase of rotating speed and load of impeller, generator
and other equipment, and then the increase of gearbox bearing
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TABLE 1. The range of selected variables.

Variable Range Correlation coeffi-
cient

Wind speed /(m - s~ 1) [4.0,19.31] 0.846

Generator speed /(7 - min™ ) [1001.2,1694.3] 0.928

Ambient temp /°C [4.0,31.0] -0.214

Active power / kW [54.8,2018.2] 0.829

Impeller speed/(r - min—1) [9.00,15.02] 0.927

Wind direction angle/° [13.5,338.0] -0.151

Reactive power/ var [-1.54,3.92] -0.093

Gearbox bearing temp / °C [43.65,69.00] 1

temperature. Wind direction angle is closely related to pitch
and yaw system, reactive power and grid connection process.
They have little impact on gearbox, so the correlation is poor.
Although the correlation between bearing temperature and
ambient temperature is general, when the power and wind
speed are the same, the difference of ambient temperature
will also lead to great differences in the operation state of
the unit, which needs to be referred to in condition division
and condition monitoring. Combined with the above analysis,
it is determined that the auxiliary variables are wind speed,
generator speed, impeller speed, ambient temperature and
active power.

Normalize the samples to avoid dimensional influence.
The formula is presented as follows:

x* = &~ Xmin_ (11)
Xmax — Xmin
where x is the raw data, xpi, is the minimum of the
corresponding parameter, and xpax iS the maximum of the
corresponding parameter.

We select No. 1-6,000 samples as the training samples
to establish the ensemble model and designate No. 6,001-
7,000 samples as the verification samples to select various
parameters of the ensemble model and to design the alarm
threshold. Samples No. 6,001-14,000 are taken as testing
samples to monitor the condition of the gearbox.

C. PERFORMANCE ANALYSIS OF MODEL

This section will compare the performance of the con-
ventional KNN model and ensemble model. The running
environment of the program is MATLAB R2019a; the CPU
model is Intel 17-10710U; and the RAM is 16G.

The performance of the conventional KNN model is
analyzed, and the influence of the number of training samples
on the conventional KNN model is discussed (K = 10).

Starting from the last 500 samples as the training set,
expand the training set by increasing 500 samples each
time from back to front according to the chronological
relationship; construct the training set of conventional KNN;
and test based on the verification set. In this paper, the root
mean square error (RMSE) is utilized as the error function to
evaluate the estimation accuracy of the model; its formula is

93416
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FIGURE 5. The performance of ensemble KNN model.

shown as follows:

1 < 5
RMSE = —n_12(yi—y,~) (12)
=

where y; is the observed value of the target variable and y;
is the estimated value of the target variable. The RMSE and
operation time are shown in Fig. 4.

First, the above figure is analyzed in terms of estimation
accuracy. With an increase in the number of training samples,
the RMSE shows a downward trend. When the number
of training samples is less than 2,000, the decline rate of
the RMSE increases. When the number of training samples
exceeds 2,000, the decline rate of the RMSE decreases.
From the aspect of running time, although the time fluctuates
slightly during the running process, it increases linearly with
an increase in the number of training samples, which is
consistent with the previously mentioned law of the KNN
algorithm.

Second, the performance of the ensemble KNN model is
investigated. Set the number of training samples of individual
learners to 500, set the number of individual learners to 1-
12 and establish 12 ensemble KNN models. Because the
bagging ensemble model exhibits randomness in sampling,
50 repeated experiments are carried out for each model. The
RMSE obtained from the experimental results is shown in the
box diagram of Fig. 5.

As shown in Fig. 5, with an increase in the number of
individual learners, the overall box of the ensemble KNN
model shows a tightening trend, indicating that the larger
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TABLE 2. Parameters of conventional KNN model and ensemble KNN model.

Num of training samples 500 1,000 1,500 2,000 2,500 3,000
C i | RMSE/10~2 1.96 1.70 1.61 1.52 1.49 1.47
onventiona
t1/s 0.009 0.019 0.028 0.041 0.054 0.066
Num of individual learner 1 2 3 4 5 6
Q3 1.74 1.64 1.61 1.58 1.57 1.56
Ensemble RMSE/10~2 Q2 1.69 1.59 1.56 1.54 1.54 1.53
Q1 1.64 1.55 1.54 1.51 1.52 1.51
tals 0.007 0.018 0.027 0.039 0.051 0.062
is the number of individual learners, the more complex the TABLE 3. Comparative experimental results.
ensemble model, and the better its stability.
Simultaneously, the median (Q2) of the RMSE tends Method Ensemble Conventional ONN | LSTM
to decrease with an increase in the number of individual etho KNN KNN
learners. When the number of individual learners is less Num of
than 4, Q2 decreases at a faster rate. When the number of raind , 3*500 1500 1500 1500
. .. . raimning sam
individual learners is greater than 4, Q2 fluctuates, but the 2 : .g a. pes
change tends to be flat as a whole. Training time/s  — - 2669 2871
i 0.027
We compare the performance of the C().nver.ltlonal KNN Estimation Time/s 0.028 121 103
model and ensemble KNN model. The estimation accuracy (Average)
and calculation time of the conventional KNN model and Q3 161
ensemble KNN model under different training set scales RMSE/10—2 Q156 1.61 3.12 1.59
are shown in the following table. In the table, #; of the ol 154

conventional KNN model is the time required to calculate
1,000 verification samples; #, of the integrated KNN model is
the average time of 50 experiments; and Q3, Q2 and Q1 are
the upper quartile, median and lower quartile, respectively,
of the RMSE of the ensemble KNN model in 50 repeated
experiments.

As shown in Tab. 2, with an increase in the number
of individual learners, the training time of the ensemble
KNN model shows a linear upward trend. When there are
3 individual learners, Q3 is 1.56 x 1072, and the average
training time is 0.027 s. Compared with 2,000 training
samples of the conventional KNN model, the estimation
accuracy decreases by 2.6% and the training time increases
by 34.14%, indicating that the ensemble KNN model has
advantages with regard to training time.

Next, we will use the proposed KNN method, conventional
KNN method, CNN and LSTM to perform an experiment on
the verification set and to compare the program running time
and estimation accuracy. The specific parameter settings of
the above methods are listed as follows (the training sample of
conventional KNN, CNN and LSTM is the last 1500 samples
in the training set):

(1) CNN: The size of the 2DCNN convolution kernel is set
to 3 x 3; the number is set to 16; the ReLU activation function
is applied the number of epochs is set to 20; and the learning
rate is 0.005.

(2) LSTM: The input layer time step of LSTM is set to
6; the output is set to 6; the sigmoid activation function is
employed; the learning rate is set to 0.005; epochs are set
to 20; the loss function is the average absolute error MAE;

VOLUME 10, 2022

and the Adam optimizer is utilized to update the network
weight.

As shown in Tab. 3, when the total number of training
samples is constant, the time consumed by the conventional
KNN and ensemble KNN is basically constant, the CNN and
LSTM consumed a substantial amount of time in the training
process, and the estimation time is longer than that of the two
KNN methods. In terms of estimation accuracy, the ensemble
KNN has advantages over the other three methods.

D. CONDITION MONITORING OF GEARBOX

This section will monitor the condition of the gearbox using
the previously verified ensemble model and 8,000 testing
samples. The number of individual learners is 3, and the
training sample of each individual learner is 500.

First, the alarm threshold is set according to the verification
set. The X of the residuals of the ensemble model on the
verification set is -0.0023, and S is 0.0154. According to
(9) and (10), the first alarm threshold is 0.0176, and the
second alarm threshold is 0.0232. Fig. 6 shows the condition
monitoring results and two-level alarm threshold of the
testing samples. It is worth mentioning that the difference
between the two-level thresholds in this paper is small, which
can explain why the estimation accuracy of the method
proposed in this paper is high.

The figure shows that the residuals of the first 2,500
samples do not continually or greatly exceed the threshold,
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indicating that the gearbox is still in normal operation at this
time. After approximately 2,500 points, the residual of the
sample significantly and continuously exceeds the threshold
value, indicating that the gearbox state is abnormal at this
time.

Due to the harsh environment or sensor failure, the residual
may exceed the alarm threshold under the normal condition
of the gearbox. To avoid false alarms, we stipulate that when
4 consecutive intervals (40 mins) are detected to exceed the

93418

threshold, an alarm will be triggered. The alarm condition is
shown in Fig. 7.

However, the residual sequence has the characteristics of
frequent fluctuation, which is not conducive to the intuitive
judgment of the operation state of the gearbox. Therefore,
we define a health rate based on the sliding window method
to improve the condition monitoring process of the gearbox.

If the length of the sliding window is M and the number of
samples below the alarm threshold in one window is N, then
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for the first alarm threshold 7'} and second alarm threshold
T, the first health rate R; and second health rate R, can be
defined as:

Ny
R = — 13
1= 57 (13)
Ny
Ry = — 14
2= 3 (14)

In this section, M = 1, 000. The health rate of the gearbox
is shown in Fig. 8.

The health rate curve shows that at approximately the first
1,500 windows, the health rate of the gearbox remains stable
and high, and the two-level health rates remain approximately
100%. After the 1,500th window, the health rate began
to decline, and at approximately the 2,500th window, the
health rate fell to the first trough. After the health rate
fluctuates, it reaches the lowest value after the 4,500th sliding
window. The first health rate is below 70%, and the minimum
second health rate is approximately 80%, indicating that the
operation state of the gearbox is unstable and has failed.
Thus, the health rate of the gearbox is always low. The health
rate curve can provide a more intuitive operation status of
the gearbox, reduce false alarms, and provide an important
reference for staff.

V. CONCLUSION

In this paper, we propose a gearbox condition monitoring
method based on the KNN algorithm and ensemble strategy.
The method is validated by SCADA data collected from a
WT. With the results of the experiments, we can safely reach
the following conclusions:

(1) With an increase in the number of training samples, the
estimation accuracy of the KNN algorithm is improved, but
when it is expanded to a certain scale, its estimation accuracy
is improved slowly.

(2) With an increase in the number of individual learners,
the estimation accuracy of the ensemble learning model is
improved, and the time only increases linearly. When the
estimation accuracy is similar, the integrated learning model
may have higher operational efficiency.
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(3) The ensemble KNN model combined with SPC
technology can realize the condition monitoring of WT
gearboxes, and the health rate calculation method based on
the sliding window method is more suitable for the actual site.
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