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ABSTRACT The gearbox is an important component of a wind turbine (WT). Once the gearbox is damaged,
problems such as long-term maintenance and high maintenance costs will occur. Therefore, it is necessary to
carry out on-line condition monitoring (CM) of WTs. Because a large amount of data is accumulated by the
supervisory control and data acquisition (SCADA) system, CMs based on data-driven methods have been
widely investigated. In this paper, a CM method that is based on the KNN regression method and bagging
ensemble strategy is proposed. The proposed method is validated by SCADA data collected from a field
WT. The results show that the ensemble model can achieve the desired estimation accuracy and improve the
operation efficiency by approximately 30%.

9 INDEX TERMS Wind turbine gearbox, data-driven method, condition monitoring, KNN, bagging.

I. INTRODUCTION10

To cope with global climate change, China has announced11

that it will achieve peak carbon dioxide emissions by12

2030 and carbon neutrality by 2060 [1]. Therefore, clean13

energy power generation technology has broad development14

potential. As a kind of clean energy, wind energy has been15

widely utilized worldwide. According to the Global Wind16

Energy Council (GWEC)ś report [2], although the global17

newly installed capacity reached 93 GW in 2020, a large18

number of wind turbines (WTs) still need to be installed.19

With an increase in the number of wind turbines in service20

and the extension of operation times, the possibility of21

component failure also increases. According to the statistical22

data [3], due to the harsh operating environment and other23

conditions, the gearbox is the component of WTs with a high24

incidence of faults. Once the gearbox is damaged, problems25

such as high maintenance costs, complex maintenance26

processes, and long maintenance times due to structural27

constraints will ensue [4]. Therefore, it is necessary to carry28

out online condition monitoring (CM) of gearboxes.29

The CM of gearboxes is divided into vibration signal30

analysis [5], oil quality analysis [6] and supervisory control31

and data acquisition (SCADA) system data analysis [7]32
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according to different signal sources. However, vibration 33

signal analysis requires the installation of professional 34

sensors to collect high-frequency vibration data, resulting 35

in additional expenses. Oil quality analysis is an invasive 36

method that cannot realize online monitoring. Presently, 37

almost all wind turbines are equipped with the SCADA 38

system [8], which can collect a large amount of operational 39

and record fault data. Therefore, WTCM based on SCADA 40

data has been widely employed by scholars. 41

Since a large amount of data accumulates in the SCADA 42

system, the data-driven method is an essential method in 43

CM based on SCADA data [9]. Fu et al. [10] built a model 44

based on deep learning to process the temperature of a 45

gearbox using historical SCADA data. Jin et al. [11] mined 46

health status-related information from SCADA data and 47

established aMahalanobis space as a reference space for wind 48

turbine condition monitoring. Liu et al. [12] constructed a 49

global monitoring statistic based on all temperature variables 50

contained in the SCADA system to monitor the overall health 51

status of the wind turbine. Zhang et al. [13] combined the 52

random forest with extreme gradient boosting to establish a 53

wind turbine fault detection framework. Luo et al. [14] pro- 54

posed a SCADA data-based, online monitoring method based 55

on a a pair-copula and BP neural network. Dhiman et al. [15] 56

applied a SVM to WT gearbox condition monitoring and 57

analyzed the regression residual from a statistical point of 58
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view. Dhiman et al. [16] proposed the highly reliable method59

of applying the TWSVM and adaptive threshold to WT60

gearbox anomaly detection.61

The K-nearest neighbors (KNN) algorithm is a commonly62

used nonparametric method that was proposed by Cover and63

Hart in 1968 [17]. The KNN algorithm does not need to train64

a model in advance and is often selected to solve regression65

and classification problems. The operating environment and66

operating parameters of WTs are complex and changeable.67

The models trained by conventional parametric methods,68

such as neural networks and Bayesian methods, may69

have poor flexibility and encounter the problem of model70

mismatch. The KNN algorithm does not need to train the71

model in advance and only needs to update the training set in72

time to obtain the optimal estimation effect; thus, it is suitable73

for WTCM.74

However, when the number of training samples is large,75

the KNN algorithm is bound to cause a vast amount of76

time overhead and to reduce the operation efficiency when77

calculating the Euclidean distance between the test sample78

and all training samples. Scholars have performed many79

studies on how to reduce the loss of operation accuracy80

while improving the computational efficiency of the KNN81

algorithm [18].82

Ensemble learning constructs and combines multiple83

learners to complete learning tasks, which can often obtain84

generalization performance with significant advantages over85

a single learner [19]. Ensemble systems have prove n86

to be very effective and extremely versatile in a broad87

spectrum of problem domains and real-world applications.88

Bagging is the most famous representative of the parallel89

ensemble learning strategy [20]. Bagging can be combined90

with almost any learning algorithm to form an ensemble91

learning system, such as a neural network [21] or decision92

tree [22].93

To solve the problem of slow operation caused by94

an excessively large training set of KNNs, a condition95

monitoring method based on the bagging ensemble strategy96

and the KNN regression method is proposed in this paper.97

The training set is randomly sampled based on bagging to98

construct multiple KNN individual learners. With an increase99

in the number of individual learners, the ensemble systemwill100

becomemore complex, the estimation accuracy will increase,101

and the calculation time will remain at the same order of102

magnitude.103

The SCADA data collected from aWT are used to validate104

the feasibility of the industrial application of the proposed105

approach. The results show that the proposed method can106

realize gearbox CM and provide health rate indicators.107

The remainder of this paper is organized as follows:108

Section II presents the framework of the ensemble KNN109

method. Section III gives a detailed description of the KNN110

algorithm, bagging ensemble strategy and SPC technology.111

Section IV shows the results of experiments to validate the112

proposed method. The experimental results are summarized,113

and the conclusions are given in Section V.114

FIGURE 1. NBM monitoring with the input u(t) for both the process G(t)
and its model Ĝ(t), their outputs y (t) and ŷ (t), respectively, and the final
error or residual e(t).

II. THE FRAMEWORK OF PROPOSED METHOD 115

A. NORMAL BEHAVIOR MODELING STRATEGY 116

Normal behavior modeling (NBM) is a condition monitoring 117

method based on the SCADA data-driven method [23]. 118

Because the collected field data often have no distinct label, 119

we cannot use the classification algorithm to detect the 120

specific fault of the equipment. The NBM method based on 121

SCADA data can use the unlabeled operation data to monitor 122

the statuses of the target variables in which we are interested. 123

The framework of the NBM is shown in Fig. 1. 124

We will describe the NBM in detail. First, aiming at the 125

target variable, a model is established by using the historical, 126

collected, normal SCADA data, which is usually a data- 127

driven algorithm model. Second, the real-time SCADA data 128

are input into the model to obtain the estimated value of the 129

target variable, which represents the real-time value if the 130

equipment is in normal operation. Last, the residual between 131

the estimated value and the observed value is calculated. The 132

residual represents the current deviation of the target variable 133

from the normal operation. 134

B. THE PROPOSED FRAMEWORK OF ENSEMBLE KNN 135

METHOD 136

As shown in Fig. 2, the proposed WTCM, ensemble KNN 137

method can be divided into three parts: data preprocessing, 138

offline ensemble model establishment and online monitoring. 139

The specific steps are described as follows: 140

(1) Data preprocessing: First, to obtain the normal 141

available data, the missing data and abnormal data in the 142

original data are deleted according to the relevant technical 143

documents. Second, the relevant operating parameters are 144

selected as the target variable and auxiliary variables. Among 145

them, the target variable is the variable that we want 146

to monitor, and the auxiliary variables are the operating 147

parameters that are closely related to the target variable. Last, 148

the normal data are determined and normalized. 149

(2) Offline ensemble model establishment: Since the KNN 150

algorithm does not need to be trained in advance, it only needs 151

to randomly sample the training set n times to establish the 152

ensemble KNN learner. The threshold is calculated based on 153

SPC technology and the verification set. 154

(3) Online monitoring: The real-time SCADA data are 155

input as the testing sample into the ensemble model to 156
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FIGURE 2. The framework of proposed method.

obtain the estimated value ŷ(t) of the target variable and to157

calculate the residual e(t) between ŷ(t) and the observed value158

y(t) of the testing sample. Next, e(t) is compared with the159

threshold, and the health rate of the gearbox is calculated160

according to the sliding window method.161

III. METHOD162

A. KNN REGRESSION ALGORITHM FOR CONDITION163

MONITORING164

The basic principle of the KNN regression algorithm is165

described as follows: when the target variable of the testing166

sample is unknown, obtain the K nearest neighbors of the167

testing sample, and take the average value of the target168

variable of the K nearest neighbors as the estimated value169

of the target variable of the testing sample. Therefore, the170

essence of the regression problem is the prediction problem.171

The difference is that in the condition monitoring, the target172

variables of the testing samples can be actually measured,173

so the distance measurement formula of the KNN regression174

algorithm can be improved. The calculation is detailed as175

follows:176

For a testing sample x = (x1, x2, . . . , xm, y)T (y is the177

target variable)178

(1) Calculate the Euclidean distance between x and the179

training sample xj = (x1j, x2j, . . . , xmj, yj)T :180

dj(x, xj) = (
m∑
l=1

∣∣xl − xlj∣∣2 + ∣∣y− yj∣∣2)1/2 (1)181

where dj(x, xj) is the Euclidean distance between x and xj .182

(2) Sort the Euclidean distance in descending order, 183

identify K training samples closest to x and record them 184

as x(K )
p = (x(K )

1p , x
(K )
2p , . . . , x

(K )
mp , y

(K )
p )T , p ∈ [1,K ]. The 185

estimated value of the testing sample’s target variable is 186

expressed as follows: 187

ŷ =
K∑
p=1

y(K )
p /K (2) 188

To further improve the accuracy of the algorithm, the 189

‘‘weighted method’’ can be employed instead of the ‘‘average 190

method.’’ In this paper, the nearest neighbor samples closer 191

to the testing sample will be assigned a large weight, and the 192

nearest neighbor samples further from the testing sample will 193

be assigned a smaller weight. The formula of the weighted 194

KNN (wKNN) is expressed as follows: 195

ŷ =
K∑
p=1

y(K )
p · wp (3) 196

wp = D(K )
1+K−p/D

(K )(
K∑
p=1

wp = 1) (4) 197

where wp is the weight of the p-th nearest neighbor, D
(K )
1+K−p 198

is the Euclidean distance between x and its 1 + K − p-th 199

neighbor, and D(K ) is the sum of the Euclidean distances 200

between x and its neighbors. 201

According to the specific steps of the KNN algorithm, the 202

time consumption of the KNN algorithm is only related to the 203

size of the training set; the calculation time is linear with the 204

size of the training set; its time complexity is O(n); and n is 205

the number of training samples. 206

B. KNN ALGORITHM WITH BAGGING STRATEGY 207

The general structure of ensemble learning is to gener- 208

ate multiple a̧ř individual learnersa̧ś and then combine 209

them through a selected strategy. The common strategies 210

are boosting, bagging and stacking [24]. Boosting is a 211

serial iterative structure, with a strong dependence among 212

individual learners. Stacking is a hierarchical structure. 213

To avoid overfitting, individual learners are required to be 214

heterogeneous. 215

The bagging ensemble strategy is a parallel strategy. 216

All homogeneous learners are interdependent. By randomly 217

changing the distribution of the training sets, new training 218

subsets are generated, and individual learners are trained. 219

The steps of the KNN regression algorithm with the bagging 220

strategy are presented as follows: 221

Let the number of individual learners be b, and let the 222

number of training samples for each individual learner be nb, 223

generally nb ≤ n. 224

(1) The original training set is randomly sampled b times 225

to form b KNN-based training subsets. 226

(2) A KNN individual learner is trained based on each 227

training subset, and then these KNN learners are combined. 228

When combining the individual learners, the simple voting 229
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FIGURE 3. Bagging ensemble strategy diagram.

method is utilized for the classification task, and the simple230

average method is employed for the regression task.231

As previously mentioned, the time complexity of the KNN232

learner is O(nb), so the time complexity of the bagging233

ensemble KNN algorithm is b(O(nb) + O(s)). Generally, the234

voting/average complexity s is very small, and b is generally235

a small constant, so the complexity of the conventional KNN236

algorithm and bagging integrated KNN algorithm has the237

same order of magnitude.238

C. THRESHOLD SETTING METHOD239

The output of condition monitoring is often a continuous240

value, but we cannot judge whether the gearbox is faulty241

according to the continuous output, so we need to convert the242

condition monitoring result into a binary output by setting the243

threshold. If the residual exceeds the threshold, the gearbox244

will have a high probability of abnormality at this time. In this245

paper, statistical process control (SPC) is selected as the246

method to use to set the threshold.247

SPC is a process monitoring method based on statistical248

theory that can be applied to involve the alarm threshold in249

WTCM [24]. Because the gearbox often shows overheating250

faults, this paper mainly discusses how to set the upper limit251

of the alarm. The detailed method is expressed as follows:252

Assuming random variable XÑ(µ, σ 2), according to the253

relevant theory of normal distribution, the probability of254

random variable X falling in the interval −∞, µ + 1.645σ ]255

and −∞, µ+ 1.282σ ] are expressed as follows:256

P(−∞ < X ≤ µ+ 1.645σ ] ≈ 0.95 (5)257

P(−∞ < X ≤ µ+ 1.282σ ] ≈ 0.90 (6)258

If the value of X continually exceeds the above range, the259

operation process will be affected by abnormal factors and260

fails. Therefore, the overheating and warming threshold can261

be designed according to the normal distribution of µ and σ .262

In practical applications, the sample mean X̄ and sample 263

standard deviation S are employed to replace µ and σ of the 264

normal distribution. The formula is presented as follows: 265

X̄ =
1
n

n∑
l=1

el (7) 266

S = (
1

n− 1

n∑
l=1

(el −
↼

X )
2
)1/2 (8) 267

where el is the residual of the observed value and estimated 268

value and n is the number of testing samples. 269

The formula of the threshold can be defined as follows: 270

T1 = X̄ + 1.282S (9) 271

T2 = X̄ + 1.645S (10) 272

where T1 is the first alarm threshold and T2 is the second 273

alarm threshold. 274

If the gearbox oil temp continuously exceeds the threshold, 275

a significant failure of the gearbox will occur at this time. 276

Hierarchical thresholds can realize hierarchical alarms in 277

industrial applications and provide different fault tolerances 278

for industrial applications. 279

IV. CASE ANALYSIS 280

A. DATA DESCRIPTION 281

The SCADA data used in this paper to verify the effectiveness 282

of the proposed method in this paper are obtained from 283

an onshore WT in Hebei Province, China. The main 284

characteristic parameters of the WT are listed as follows: the 285

related power is 2 MW; the related wind speed is 12 m/s; the 286

cut-in wind speed is 4 m/s; the cut-off wind speed is 25 m/s 287

and the SCADA system sample interval is 10 mins. The fault 288

type is gearbox bearing overheating. 289

B. DATA PREPROCESSING 290

The unavailable data in historical SCADA data are deleted, 291

including the following data: missing data, data with active 292

power less than or equal to zero, data with wind speeds less 293

than the cut-in speed, and data with wind speeds greater than 294

the cut-off wind speed. The samples with abnormal operating 295

parameters are removed based on the Laida criterion; 14,000 296

samples remain. 297

There are dozens of characteristic parameters in SCADA 298

system. Firstly, eight variables are roughly selected and 299

their Pearson correlation coefficients with gearbox bearing 300

temperature are calculated: wind speed, generator speed, 301

ambient temp, active power, impeller speed, wind direction 302

angle and reactive power. The range and Pearson correlation 303

coefficient of selected variables is shown in Tab. 1. 304

It can be seen from table 1 that there is a strong positive 305

correlation between bearing temperature and wind speed, 306

generator speed and active power, which is in line with the 307

normal characteristics that the increase of wind speed leads to 308

the increase of rotating speed and load of impeller, generator 309

and other equipment, and then the increase of gearbox bearing 310
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TABLE 1. The range of selected variables.

temperature. Wind direction angle is closely related to pitch311

and yaw system, reactive power and grid connection process.312

They have little impact on gearbox, so the correlation is poor.313

Although the correlation between bearing temperature and314

ambient temperature is general, when the power and wind315

speed are the same, the difference of ambient temperature316

will also lead to great differences in the operation state of317

the unit, which needs to be referred to in condition division318

and condition monitoring. Combined with the above analysis,319

it is determined that the auxiliary variables are wind speed,320

generator speed, impeller speed, ambient temperature and321

active power.322

Normalize the samples to avoid dimensional influence.323

The formula is presented as follows:324

x∗ =
x − xmin

xmax − xmin
(11)325

where x is the raw data, xmin is the minimum of the326

corresponding parameter, and xmax is the maximum of the327

corresponding parameter.328

We select No. 1-6,000 samples as the training samples329

to establish the ensemble model and designate No. 6,001-330

7,000 samples as the verification samples to select various331

parameters of the ensemble model and to design the alarm332

threshold. Samples No. 6,001-14,000 are taken as testing333

samples to monitor the condition of the gearbox.334

C. PERFORMANCE ANALYSIS OF MODEL335

This section will compare the performance of the con-336

ventional KNN model and ensemble model. The running337

environment of the program is MATLAB R2019a; the CPU338

model is Intel i7-10710U; and the RAM is 16G.339

The performance of the conventional KNN model is340

analyzed, and the influence of the number of training samples341

on the conventional KNN model is discussed (K = 10).342

Starting from the last 500 samples as the training set,343

expand the training set by increasing 500 samples each344

time from back to front according to the chronological345

relationship; construct the training set of conventional KNN;346

and test based on the verification set. In this paper, the root347

mean square error (RMSE) is utilized as the error function to348

evaluate the estimation accuracy of the model; its formula is349

FIGURE 4. The performance of conventional KNN model.

FIGURE 5. The performance of ensemble KNN model.

shown as follows: 350

RMSE =

√√√√ 1
n− 1

n∑
i=1

(yi − ŷi)
2 (12) 351

where yi is the observed value of the target variable and ŷi 352

is the estimated value of the target variable. The RMSE and 353

operation time are shown in Fig. 4. 354

First, the above figure is analyzed in terms of estimation 355

accuracy. With an increase in the number of training samples, 356

the RMSE shows a downward trend. When the number 357

of training samples is less than 2,000, the decline rate of 358

the RMSE increases. When the number of training samples 359

exceeds 2,000, the decline rate of the RMSE decreases. 360

From the aspect of running time, although the time fluctuates 361

slightly during the running process, it increases linearly with 362

an increase in the number of training samples, which is 363

consistent with the previously mentioned law of the KNN 364

algorithm. 365

Second, the performance of the ensemble KNN model is 366

investigated. Set the number of training samples of individual 367

learners to 500, set the number of individual learners to 1- 368

12 and establish 12 ensemble KNN models. Because the 369

bagging ensemble model exhibits randomness in sampling, 370

50 repeated experiments are carried out for each model. The 371

RMSE obtained from the experimental results is shown in the 372

box diagram of Fig. 5. 373

As shown in Fig. 5, with an increase in the number of 374

individual learners, the overall box of the ensemble KNN 375

model shows a tightening trend, indicating that the larger 376
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TABLE 2. Parameters of conventional KNN model and ensemble KNN model.

is the number of individual learners, the more complex the377

ensemble model, and the better its stability.378

Simultaneously, the median (Q2) of the RMSE tends379

to decrease with an increase in the number of individual380

learners. When the number of individual learners is less381

than 4, Q2 decreases at a faster rate. When the number of382

individual learners is greater than 4, Q2 fluctuates, but the383

change tends to be flat as a whole.384

We compare the performance of the conventional KNN385

model and ensemble KNN model. The estimation accuracy386

and calculation time of the conventional KNN model and387

ensemble KNN model under different training set scales388

are shown in the following table. In the table, t1 of the389

conventional KNN model is the time required to calculate390

1,000 verification samples; t2 of the integrated KNNmodel is391

the average time of 50 experiments; and Q3, Q2 and Q1 are392

the upper quartile, median and lower quartile, respectively,393

of the RMSE of the ensemble KNN model in 50 repeated394

experiments.395

As shown in Tab. 2, with an increase in the number396

of individual learners, the training time of the ensemble397

KNN model shows a linear upward trend. When there are398

3 individual learners, Q3 is 1.56 × 10−2, and the average399

training time is 0.027 s. Compared with 2,000 training400

samples of the conventional KNN model, the estimation401

accuracy decreases by 2.6% and the training time increases402

by 34.14%, indicating that the ensemble KNN model has403

advantages with regard to training time.404

Next, we will use the proposed KNNmethod, conventional405

KNN method, CNN and LSTM to perform an experiment on406

the verification set and to compare the program running time407

and estimation accuracy. The specific parameter settings of408

the abovemethods are listed as follows (the training sample of409

conventional KNN, CNN and LSTM is the last 1500 samples410

in the training set):411

(1) CNN: The size of the 2DCNN convolution kernel is set412

to 3×3; the number is set to 16; the ReLU activation function413

is applied the number of epochs is set to 20; and the learning414

rate is 0.005.415

(2) LSTM: The input layer time step of LSTM is set to416

6; the output is set to 6; the sigmoid activation function is417

employed; the learning rate is set to 0.005; epochs are set418

to 20; the loss function is the average absolute error MAE;419

TABLE 3. Comparative experimental results.

and the Adam optimizer is utilized to update the network 420

weight. 421

As shown in Tab. 3, when the total number of training 422

samples is constant, the time consumed by the conventional 423

KNN and ensemble KNN is basically constant, the CNN and 424

LSTM consumed a substantial amount of time in the training 425

process, and the estimation time is longer than that of the two 426

KNNmethods. In terms of estimation accuracy, the ensemble 427

KNN has advantages over the other three methods. 428

D. CONDITION MONITORING OF GEARBOX 429

This section will monitor the condition of the gearbox using 430

the previously verified ensemble model and 8,000 testing 431

samples. The number of individual learners is 3, and the 432

training sample of each individual learner is 500. 433

First, the alarm threshold is set according to the verification 434

set. The X̄ of the residuals of the ensemble model on the 435

verification set is -0.0023, and S is 0.0154. According to 436

(9) and (10), the first alarm threshold is 0.0176, and the 437

second alarm threshold is 0.0232. Fig. 6 shows the condition 438

monitoring results and two-level alarm threshold of the 439

testing samples. It is worth mentioning that the difference 440

between the two-level thresholds in this paper is small, which 441

can explain why the estimation accuracy of the method 442

proposed in this paper is high. 443

The figure shows that the residuals of the first 2,500 444

samples do not continually or greatly exceed the threshold, 445
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FIGURE 6. The residual and two-level alarm threshold.

FIGURE 7. Real-time alert. (a) First alarm threshold. (b) Second alarm threshold.

indicating that the gearbox is still in normal operation at this446

time. After approximately 2,500 points, the residual of the447

sample significantly and continuously exceeds the threshold448

value, indicating that the gearbox state is abnormal at this449

time.450

Due to the harsh environment or sensor failure, the residual451

may exceed the alarm threshold under the normal condition452

of the gearbox. To avoid false alarms, we stipulate that when453

4 consecutive intervals (40 mins) are detected to exceed the454

threshold, an alarm will be triggered. The alarm condition is 455

shown in Fig. 7. 456

However, the residual sequence has the characteristics of 457

frequent fluctuation, which is not conducive to the intuitive 458

judgment of the operation state of the gearbox. Therefore, 459

we define a health rate based on the sliding window method 460

to improve the condition monitoring process of the gearbox. 461

If the length of the sliding window isM and the number of 462

samples below the alarm threshold in one window is N , then 463
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FIGURE 8. The health rate of gearbox.

for the first alarm threshold T1 and second alarm threshold464

T2, the first health rate R1 and second health rate R2 can be465

defined as:466

R1 =
N1

M
(13)467

R2 =
N2

M
(14)468

In this section,M = 1, 000. The health rate of the gearbox469

is shown in Fig. 8.470

The health rate curve shows that at approximately the first471

1,500 windows, the health rate of the gearbox remains stable472

and high, and the two-level health rates remain approximately473

100%. After the 1,500th window, the health rate began474

to decline, and at approximately the 2,500th window, the475

health rate fell to the first trough. After the health rate476

fluctuates, it reaches the lowest value after the 4,500th sliding477

window. The first health rate is below 70%, and the minimum478

second health rate is approximately 80%, indicating that the479

operation state of the gearbox is unstable and has failed.480

Thus, the health rate of the gearbox is always low. The health481

rate curve can provide a more intuitive operation status of482

the gearbox, reduce false alarms, and provide an important483

reference for staff.484

V. CONCLUSION485

In this paper, we propose a gearbox condition monitoring486

method based on the KNN algorithm and ensemble strategy.487

The method is validated by SCADA data collected from a488

WT. With the results of the experiments, we can safely reach489

the following conclusions:490

(1) With an increase in the number of training samples, the491

estimation accuracy of the KNN algorithm is improved, but492

when it is expanded to a certain scale, its estimation accuracy493

is improved slowly.494

(2) With an increase in the number of individual learners,495

the estimation accuracy of the ensemble learning model is496

improved, and the time only increases linearly. When the497

estimation accuracy is similar, the integrated learning model498

may have higher operational efficiency.499

(3) The ensemble KNN model combined with SPC 500

technology can realize the condition monitoring of WT 501

gearboxes, and the health rate calculation method based on 502

the sliding windowmethod is more suitable for the actual site. 503
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