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ABSTRACT Energy balancing in smart microgrid plays a vital role to improve the reliability and resolves
the load shedding problem to ensure consistent energy supply. However, energy balancing is challenging
due to uncertain and intermittent nature of renewable energy integrated in smart microgrid. To solve such
problems, dynamic energy pricing mechanism is developed that maintain energy balance for overcoming the
gap between demand and supply. Thus, the particle swarm optimization based super twisting sliding mode
controller (PSO-STSMC) is developed which uses dynamic energy pricing to control renewable energy
resources’ generation according to the consumers’ demand for real time closed loop energy balancing in
an energy market. The proposed PSO-STSMC based model is compared with existing models like propor-
tional integral derivative (PID) controller, proportional integral (PI) controller, proportional derivative (PD)
controller, and fractional order proportional derivative (FO-PD) controller and the optimized models of the
particle swarm optimization based proportional integral (PSO-PI) controller and particle swarm optimization
based proportional integral derivative (PSO-PID) controller. Simulations results demonstrate that energy
price regulation by PSO-STSMC consistently controls the elastic demand for real time energy balancing.

INDEX TERMS Smart grid, dynamic price server, elastic demand, renewable energy sources, dynamic
energy price, elastic demand, demand side load management, energy balance, super twisting sliding mode

controller.

I. INTRODUCTION

Electricity demand is rising and the traditional energy
resources are depleting thus, a sustainable production that is
dependent on renewable energy sources is needed [1]. The
renewable energy sources are more sustainable and cheaper
than the conventional sources of energy [2]. They generate the
clean energy without the damaging effects on environment
as the harmful gases emission in surroundings are negligi-
ble. The energy generated by renewable sources shows the
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random fluctuation due to climate change [3]. For instance,
climate and environmental conditions disturb wind, solar,
geothermal, tidal, ocean thermal and other renewable energy
generation sources [4].

Future smart grids will contain integrated diverse renew-
able energy and distributed generation systems [5]. Hence,
with integration of diverse energy generation resources power
grids will be more volatile in terms of energy supply due
to fluctuations and uncertainties in energy generation and
trading processes for consumers [6]. Consequently, the smart
grids should be capable of demand responsive management
systems to tackle these fluctuations in energy generation
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TABLE 1. Abbreviations, symbols and terms.

Abbreviations | Full form

D Energy demand

S Energy supply

DR Demand response

PID Proportional integral derivative
(controller)

FO-PI Fractional order proportional inte-
gral (controller)

FO-PD Fractional order  proportional
derivative (controller)

STSMC Super twisting sliding mode con-
troller

PSO-STSMC | Particle swarm optimization with
super twisting sliding mode con-
troller

DSLM Demand side load management

S/D Supply to demand ratio

o Virtual demand rate

D, Virtual demand

T Time constant

d Degree of polynomial

a; Coefficients polynomial p

Sa Energy production model

p Energy unit price

K, Proportional gain

K; Integral gain

Ky Derivative gain

St Overall energy production

Chaz Installed maximum capacity

G; Net production of energy by jth
source type

Crawsj Maximum capacity of renewable
source for energy generation

Po»j Average cost required for energy
production by jth source type

S; Production model for source type j

T; Mean time to reach maximum ca-
pacity production volume

Pe Per unit price for consumers

A Fractional operator in FO-PD con-
troller

system in real time [7]. Recent works shows effectiveness
of demand response based demand side energy management
systems in energy balancing in renewable energy inte-
grated smart grid [8]. Whereas, dynamic energy pricing
can also influence the energy generation and demand of
consumers [9]. Recent research work also presented sev-
eral energy pricing based energy management mechanism
which evaluated the effectiveness of using energy price as
control signal for the energy management [10]. There is an
increasing trend in the research work which proposes energy
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management schemes for the efficient utilization of the
renewable energy and fulfill consumers’ energy demand [11].
Such energy management schemes facilitates the smart grid
operation which not only increases the reliability but also
enhances the communication between supplier and con-
sumer through AMI for efficient utilization of the avail-
able resources [12]. In this study, with the framework of
the demand side energy management system, a closed loop
system is evaluated for the purpose of reliable and automated
energy balancing in a energy market. The optimal adap-
tive controller consisting of the PSO algorithm and STSMC
controller which essentially regulates the pricing signal in
order to attain energy balancing. Hence, making the smart
grid achieve energy balancing autonomously. However, the
applications of the PSO tuned STSMC is not evaluated for
the purpose of the generation control is recent studies. Hence,
there is a gap in the research work to utilize the optimal
robust controller based strategy for the purpose to regulate
the energy price of the energy market and consequently gain-
ing and maintaining energy balance. For performing energy
price regulation in closed loop, the dynamic price server
gets the load side consumers’ demand data and regulates
the instantaneous prices of energy to the grid to achieve
the demand and supply balancing. Also, the current control
strategies consists of manually tuned classical controllers
results in volatile pricing signal. Hence, making the demand
and generation fluctuating due to volatility in the pricing
signal and making the energy price signal not feasible for
the energy markets. Thus, the smart grid’s energy market
gets an energy balance situation by dynamic pricing regulated
by the PSO-STSMC. Moreover, the validation of deploying
PSO-STSMC controller in an energy market, the results are
compared with the manually tuned and Genetic Algorithm
(GA), and Differential Evolution (DE) based tuned classical
controllers’ responses.

In order to decrease the electricity demand and supply
difference (e), we implemented (PSO-STSMC) in closed loop
system, so that, the consumers’ demand can be controlled.
The system’s working is summarized like as:

o The closed loop feedback error, that’s referred to as as

balance error (e) is reduced by the STSMC controller.

o STSMC controller gives the price (p) signal to drive the
plant.

o The closed loop maintains a critical position to create the
stability between generation and demand when the error
between them is nearly same to zero.

o For simulations, our model is designed in MATLAB/
Simulink environment, which is composed of STSMC
and PSO-STSMC and a dynamic pricing demand
response model with generation feedback. The proposed
model is applied on an example of smart microgrid inte-
grated with seven renewable energy sources solar, wind,
tidal, oceanthermal, geothermal, biogas and hydropower
to control closed-loop elastic demand of consumers.

o The achievement of the proposed STSMC-based model
is clearly appeared by its comparison to the response
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of the models like PI controller and PID controller,
when demand is in normal state and with PD con-
troller and FO-PD controller for peak and dip demand.
In the scenario of optimization the performance of
PSO-STSMC is compared with PSO-PID and PSO-PL
The results describes that the our proposed scenario
of STSMC/PSO-STSMC is better in performance for
energy balancing by using dynamic energy price.

The organization of the work is as follows: Introduc-
tion is explained in section I. Section II describes related
work, problem statement in Section III, overview of existing
and proposed technique is given in Section IV, whereas in
Section V closed loop energy management model is dis-
cussed. In Section VI simulation results and comparative
study is carried out moreover, performance evaluation is
also demonstrated. Finally, section VII conclude the entire
work.

Il. RELATED WORK

A lot of work has been conducted for load management in
smart grid using dynamic energy pricing, some of them are
listed as follows: Some techniques like the PID closed loop
control system can adjust the price of energy online to counter
dynamically and instantaneously the demands of load side,
but there is the poor control for integration of distributed
energy sources and large time delay process [13]. FO-PI con-
troller regulates the energy price and maintain the energy bal-
ance. Automated energy balancing is the major objective of
applying fractional order PI technique. It is applied for market
management of energy and not verified experimentally [14].
Price changing is an important procedure for the smart grid
which keeps up the balance between energy production and
utilization with the help of STSMC in close loop system. The
load changing, shifting, and modifying strategies according
to the price are helpful for managing the load on consumers’
side. If this technique is applied with particle swarm opti-
mization then it can give better results [15]. Demand side
management is in such a way that improves the reliability
of consumers to supply them energy without any shortage.
Game theory algorithms is the applied technique for systems
operation. The model performance is only related to demand
side load management [16]. Broadcasting of dynamic energy
price signals for controlling consumer’s demand is a suitable
and easy way. In smart grid community, PI controller is used
to regulate the energy price. So, the net energy demand can be
controlled to respond fluctuation of renewable energy genera-
tion. However, PI controller is unable to improve the stability
and reduce the instant energy demand overshoot [17]. Clas-
sical and fractional order controllers are also widely used in
the power grid for the purpose to remove high disturbance and
noise in voltage and current wave forms. Whereas provides an
acceptable damping during the operation of power system at
the output [18]-[20]. However our approach of employing an
adaptive PSO-STSMC regulates the energy pricing signal for
the energy market to efficiently utilize the available renew-
able energy and meet consumers’ demand.
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The most effective electricity flow manage method for
a residential electricity network (RELN), because of the
growing significance of demand-side assets in the electricity
marketplace which includes of a little amount of homes,
depends on the idea of load-side management. Especially,
a kind of most effective and dynamic RELN electricity con-
sumption scheduling framework is managed to reduce the
entire operational cost, while fully observing about the output
forecast error of renewable energy sources (RESs), the load
preference of consumers and the situation of the electricity
storage system. This load control strategy is limited only to
domestic areas [21]. The graphical user interface (GUI) is the
technique to maintain check and balance of the appliances
status and condition, energy utilization and to calculate the
per unit cost of energy. Hardware results shows the benefits
of the proposed DSM algorithm [22]. The objective of DSM is
to improve energy efficiency by using better materials, over
smart energy tariffs with convincing for specific utilization
patterns, up to the best real-time control of renewable sources.
The major overview and a taxonomy is obtained by this paper
for DSM and various types of DSM are discussed in it [23].
A persuasive smart energy management system (PSEMS)
which gives relaxation to poor and middle class consumers.
The PSEMS uses an algorithm based on mild modified intru-
sive genetic algorithm (MMIGA), technique. The PSEMS
provides the better chance to domestic user to make choice
regarding the use of electricity. Reducing electricity bill so
that electricity should be useful for them [24]. The simula-
tion’s scenario indicate that the proposed energy management
system (EMS) is capable to save the energy in microgrid and
related domestic areas. It reduces energy consumption costs
accordingly, but also to satisfy user’s reliability by opera-
tional management of both demand and supply sides. In this
scenario PI controller technique is applied [25]. This work
provides a consumption side energy management technique
which is done by applying heuristic-based evolutionary algo-
rithm (EA) [26]. The proposed technique helps to manage
the load on consumers side. This can balance the demand
and supply and would also decrease the maximum demand
along with load shifting, thus the system becomes efficient.
Load side management for load shifting based on heuristic
optimization algorithm is a major technique applied in this
scenario. The proposed optimization algorithm has objective
to shape the final load curve as near to possible to the desired
load curve. The limitation of this strategy is compliance in
the number of shift able loads in the system, which users are
willing to use at any instantaneous time [27]. An efficient
home energy management controller (EHEMC) based on
genetic harmony search algorithm (GHSA). The major goal
is to reduce electricity expense, peak to average ratio (PAR),
and enhances the consumers’ easement [28]. The applied
technique is ‘‘Real time prices derivation from LMPs” for the
stabilization of supply and demand. Its important advantage
is the control of extreme price volatility. The key demerit is
the instability of close loop system by market’s LMPs [29].
The applied technique is home energy management (HEM)

VOLUME 10, 2022



F. R. Albogamy et al.: Optimal Adaptive Control Strategy for Energy Balancing in Smart Microgrid

IEEE Access

controller design by wind driven optimization (WDO) and
genetic algorithm (GA). This technique is applicable on
domestic level load management. The benefit to the con-
sumers is to reduce electricity bills. However its application
are bounded at residential level only [30]. Although different
system have vital role for demand side energy management.
However they are inter linked with some drawbacks too.
some of them are bounded to only using single parameters
to show their required result. To get the result more real-
istic random uncertainty value is added. Some system are
limited to set energy prices online to tackle dynamically
and instantaneously the demands of grid energy consumers.
It is just numerically demonstrated that the control of power
generation using dynamic pricing can maintain the best price
point of demand and supply curve.

The above discussed references have the problem of deci-
sion making that leads to uncertainty in market conditions.
For solving this problem, the smart grid in upcoming time will
have to be flexible and shows the quick and sharp response
to the fluctuation and uncertainty in demand or generation of
energy. Our proposed model of PSO-STSMC, is the reliable
and autonomous technique for the energy market which is
useful for both consumers and energy supplying companies.
It can be applicable at international energy market price
management not just at residential level but also for com-
mercial and industrial sector. Fluctuating renewable energy
generation by the distributed renewable energy sources is
following the elastic demand at all time through dynamic
energy pricing. By applying our proposed technique the sta-
bility of closed loop energy system is maintained. The draw-
backs of above mentioned research can be easily overcame
by applying PSO-STSMC. More detailed literature review
with the methodology adopted, objectives, achieved results
and limitations are listed in the Table 2.

Ill. PROBLEM STATEMENT

The RESs are dependent on the climate or weather condition
which can easily affect the power generation and may disrupt
the continuous energy supply to the end user [31]. Moreover,
there is elastic demand of consumers along with fluctuating
supply of renewable sources, they lead to uncertainty and
instability in energy market [32]. Demand side management
is an important strategy to overcome such unreliable situation
for creating the energy balance [33]. In this regard authors
presents, an energy market management based on closed loop
elastic demand control scheme by means of dynamic price
signal broadcasting. A PID controller structure is used to
regulate energy price signals for demand response agents
of smart grid community [34]. Thus, total energy demand
can be governed to respond fluctuation of renewable energy
generation. Single techniques of PID, PI and fractional order
PI is applied for energy balancing or demand side load man-
agement [35]. Multi techniques are well suited, through them
we can observe the demand response and judge the best one
scheme for energy balancing. Besides this only the parameter
of dynamic price is applied for energy balancing. The demand
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side management by piecewise linear demand function is not
so trustworthy, because the demand shows rise and fall at
any instant and supply of distributed renewable sources is
fluctuating as well. So, if the demand is in any uncertain or
random situation the supply should trace it, then in such a way
the reliable energy balance can be well developed.

IV. EXISTING AND PROPOSED SYSTEM METHODS

The role of different controllers is under consideration for
balancing the demand and supply. PID, and ID controller
parameters are tuned through the GA to control the inter-
mittent generation of RESs [36]. The PID controller controls
energy per unit prices (p) to establish balance between power
generation and consumption. Whereas a renewable energy
integrated microgrid scenario shows that consumers’ demand
can be settled through STSMC, which adjust the per unit
energy price to the DSLM of grid community. Closed-loop
STSMC is used to control the undetermined and variable load
for maintaining the energy balance. The dynamic price of
energy is a key factor to manage the load on consumers’ side.
As the demand is elastic due to intermittent sources and the
automated application in smart grid can easily determine and
regulate. The fractional-order PI controller is employing for
energy production control by dynamic price in closed loop
system. To make the multi-source generation more realistic
and stable the uncertainty is added in it. It is cleared by
the simulations output that fractional order integrator (1) can
be useful for decreasing the average energy deficiency error
and price volatility in the smart grid energy markets [13].
Our proposed adaptive PSO-STSMC technique offers ben-
efits of enhancing electricity per unit price reaction of con-
trol system when compared with PI and PID controller’s
response. Moreover, there are various applications of the
STSMC control technique in industries and removing steady
state error in nonlinear systems, which are presented in the
works [37]-[40].

In optimization, the points where conditions are the best
and most favourable are said to be optimum points. We do
the optimization to find the best among different possible
solution. In order to ensure optimization of the parameters
of the STSMC, it is mandatory to keep in mind the limits of
local optimal solution. Whereas, in the heuristic algorithms,
the fall into local optimal solution cannot be ignored. Also,
these algorithms are based on greedy strategy and essentially
miss better optimal solutions which are not existed in the
greedy rule [41]. Eventually when the local optimal solu-
tion is derived, various other heuristic algorithms also find
the global optimal solution in given optimization problem.
Whereas, the choosing of the optimization technique purely
depends upon the performance in solving that optimization
problem. Hence, an optimization algorithm can be chosen
based on the optimization and solving solution time, hence
algorithms with fastest optimization speed are preferred.
Moreover, authors in [42], [43] demonstrated through com-
paring various algorithms with PSO algorithm in terms of
the convergence speed, where the PSO algorithm has the
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TABLE 2. Summary of related work in terms of methodology, objectives, results and shortcomings.

Ref. Methodology Objectives Results Limitations
[49] Piece wise linear | Analysis of Demand | Selections of two extreme | Exact and uncertain factors
price demand | elasticity points for getting the correct | affect the local market de-
modeling price demand relation mand and price data
[50] Genetic WDO | Load balancing | GWDO technique best per- | Enhance the reliability of the
(GWDO) algorithm, | through load | forms in terms of electricity | power system
hybrid of GA and | scheduling cost and PAR reduction than
WDO its counterparts
[52] Itching between time | Demand side man- | Comparison of results is pre- | COs emission coming from
shifting and ampli- | agement of house- | sented for summer and win- | the diesel generator func-
tude modulation load | hold appliances ter seasons tioning
mode
[53] Real-time residential | To boost the social | Proposed approach can | The individual household
TOU pricing solution | welfare by reducing | be powerful solution for | electricity = demand  is
using  closed-loop | the cost of energy for | RT price-based demand | recorded by a smart meter
consumer feedback | utility and consumer | response program not of all community
is proposed
[54] Conventional three- | Combination of | Grid energy and local DG | The energy conversion sta-
phase local power | renewable generation | energy can continuously | tion can handle the faults in
supply system in hybrid DC/AC | support each other grid lines
microgrids
[55] Instantaneous chang- | evaluation of “best- | Approach is same as that in | Applicable only for two re-
ing of solar, wind, | fit” participation fac- | the conventional approach newable energy sources so-
and load demand tors (PFs) lar and wind
[56] Stochastic model Demand  response | DR program reserve does | Only two test systems to de-
scheduling not impose computational | scribe the benefit
problem to the stochastic
model
[57] Game formulations | Demand-side Prices for opportunistic | The best response is
for proposed real- | management users offered by wholesaler | bounded to specific numbers
time pricing of users
[58] General economic | Net transformation | Extreme price volatility Lack of small level equilib-
equilibrium model of our energy rium analysis
systems
[59] RES-E support | The electricity prices | Electricity prices increase | Disputation about the final
systems are | in the European | due to RES-E, greenhouse | effect of RES-E on house-
financed through | Union gas and country’s character- | hold electricity prices
the electricity market istics
[61] Dynamic power sys- | Future energy plan- | Isolated mode of operation | Less energy is utilized than
tem model ning of the Danish island of | planned energy
Bornholm
[62] Energy plan tool | Wind power is inte- | 26 is the maximum attain- | Difference was 1.41 percent
based on the year | grated on large-scale | able wind power penetration | within natural gas usage
2007 level
[63] Front-end calculation | Optimization of a | Analysis for optimizing the | Specific location and apply
to calculate the en- | wind  photovoltaic | size of the integrated system | an iterative scheme
ergy generated integrated hybrid
system

faster convergence speed and that too in the early stage of
the solving the optimization problem. With the capability of
larger coefficients of acceleration, and large speed setting in

the PSO algorithm, it is more obvious to find the global
optimal solution in less computational time. Whereas with
the same capability of the PSO algorithm makes it to not fall
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FIGURE 1. Over all implementation flow chart of the proposed energy balancing model with seven renewable energy sources for the consumption areas
of residential, commercial and industrial in smart microgrid.
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or stuck in local optimal solution. Hence, an algorithm should
be constrained to ensure finding the global optimal solution to
the optimization problem. Also, authors in [44], [45] carried
out a PSO based optimization problem solving technique,
and concluded that the for continuous value optimization
problems, PSO algorithm has a memory function and moves
toward the global and local optimal solution in each iteration
of the optimization algorithm. Hence, by properly limiting
the range for the STSMC controller’s coefficients values, and
settling the PSO parameters will result in faster convergence
towards the global optimal solution without being stuck in
the local optimal solution. So, in the case of the closed loop
energy market management using dynamic pricing, the PSO
algorithm is used to optimize the STSMC coefficients, which
eventually finds the global optimal solution of the algorithm
and greatly shorten the optimization time.

The particle swarm optimization (PSO) algorithm is ini-
tialized with random number of birds. Each member is called
particle and the population is swarm. Each particle is seeks
the optimum value by updating generation (iteration). In each
iteration every particle is upgraded by the two best values.
First one is the fitness value or the best solution. Second
best one is tracked by particle swarm optimizer. They are
flying towards the location of the best fitness of particle
itself and by the location of whole population (global version
of the algorithm) [46]. The STSMC algorithm is applied
to decrease the uncertainty of the linear plants to find the
robustness, and STSMC u(t) was used in [47] for removing
mismatch between generation and demand, which is modeled
as follows:

Cstsmc(t) = kie + kay/(le|)sign(e) + v (N
v = kasign(e) 2)

where, e is error obtained by comparison of demand and
supply, k1, ka, k3 are the parameters of the STSMC and
sign is a function used to decrease the chattering or noise
effects in STSMC. These parameters are tuned to get optimal
results. STSMC has 3 coefficients; k| is the proportionality
constant, The range of k; is between [0 1] and k3 is the integral
constant [48]. The proposed model is PSO-STSMC that tuned
the parameters, ki, kp, k3 multiple times and gives the best
optimized parameters. These parameters are the most suitable
for adjusting the fluctuating energy generation, so that it fol-
lows the demand of consumers. Hence, PSO-STSMC plays a
vital role for energy balancing process.

V. CLOSED-LOOP ENERGY MARKET MANAGEMENT
MODEL

The energy is one of the major requirement of daily life and
has become the wheel of running modern industrial devel-
opment. The energy is demanded by different areas of the
community like industrial, commercial and residential. The
demanded energy is not the same by all consumer’s sides,
high amount of energy is required to industry and then to
commercial markets and residential areas respectively. so,
there is flexibility in demand and it does not remain constant.
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FIGURE 2. Demand and generation elasticity curve 1,2.

The unbalancing situation may also occur due to high
demand of energy consumers comparatively with low gen-
eration and its vice versa. The overall modelling of the mar-
ket scenario and price based energy management system is
carried-out in [13], [14], and mathematically defined using
the following equations.

e=D-3S§ 3)

The scenario is developed to diminish the D and S differ-
ence in close loop PID controller and the error is tackled
by applying the mentioned technique Figure 4. In closed
loop system the desired response or input and output
response are compared at summing junction, if there is any
error (e) the controller drives the plant to make the correction.
PID controller decreases the steady state error and enhances
the system’s performance by increasing forward path gain,
minimizes fluctuation, contains small offsets and can control
the process with rapidly changing output. The error becomes
zero when D and § are equal, which is shown in equations (4)
and (5) [13], [14].

D=S “)
e=0 (%)

If demand is greater than supply D > S then error is positive
e > 0 and in case demand is smaller than supply D < S
the error will be negative e < 0 At point Q, D and S are
equal and both are the function of price (p) which is presented
in [13], [14]. For liberal market it is the best price for
consumers. At Q point demand and supply curves intersect
one another and provide the optimal market price as shown
in Figure 2.

D(p) = S(p) (6)

The analytical model is used to show the energy suppliers
where the energy production capacity is determined by the
polynomial (p) of energy price. The below represented energy
production model is applied to show the price response of
energy supplying companies taken from [13], [14].

d
sa(p) =Y aip' )
i=0
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P
Power plant
D @ //-I-\ e Controller
Ds )
FIGURE 3. Block diagram of closed-loop supply control by dynamic pricing.
TABLE 3. Model parameters used in simulation scenario of 50MW installed power.
Energy source | Percentage contribution | Cmax(MW) | T(min) | Po,j(cent/kWh)
Hydro power 40 20 5 8.2
Solar 8 4 5 22
Bio gas 20 10 30 4.15
Wind 12 6 8 5
Ocean thermal 4 2 10 6
Geothermal 10 5 9 8
Tidal 6 3 7 10
Here d is the degree of the polynomial. It is cleared from
Figure 2 that with the increase in energy per unit price,
energy production is also increased and suppliers will get the m _ ; [ L
opportunity to get more profit by selling the energy to the = : % T p|[|,m!m";r
grid consumers as discussed in [13], [14]. Energy production w :

delay and price broadcasting delay from suppliers is also
used for energy generation modelling. The product of s,(p)

with ﬁ gives the production delay model of energy.

1
Where m
is denoted by t. The below mentioned transfer function
depends on per unit price of energy [13], [14].

is a transfer function and time constant

1
§; = Sd(P)”—H (8)

There is another important parameters of virtual demand

is added in the actual demand, which is modeled as
follows [13], [14].

e=D+Ds—S ©)

As a result of Dy the generated energy is greater than the
actual demand. It sets a margin by which energy shortage can
be avoided because persistent energy shortage cause power
outage [15].

In proposed system model, the generation sources con-
sidered are renewable energy resources the output of which
depends on the solar irradiance, environmental and weather
conditions Figure 8. The energy generated by them is fluc-
tuating. In the intermittent conditions energy supplier com-
panies have to fulfill the demand of customers according
to the generation. The power is supplied from the local
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FIGURE 4. Response of PID controllers for unit step reference signal.

grid station of renewable energy. To cope up the high con-
sumption of electricity, the operator of distribution system
provides DR programs. The proposed STSMC is used due
to its high robustness, stability and accuracy features. The
applied STSMC controller reduces the error and the inter-
mittent supply follows the demand in the best suitable way.
Our focus will be on dynamic energy price which is the
price-based demand response programs. Energy is provided
to consumers in real-time even there is a high or low change
in demand. Therefore, automation of load manage structures
is an essential factor for demand side electricity manage-
ment. Smart electricity systems are developed for the man-
agement of elastic demand of consumers using PSO-STSMC
by dynamic price server as shown in Figure 7. D and S data is
communicated with dynamic price generation server. If there
is any gap (e) between S and D, it is minimized by STSMC,
then price signal is sent to consumers through dynamic price
server. The dynamic price is shown on smart meter through
which consumers can alter their demand. Other strategies
along this are load moving and load shifting for energy
management [64].
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VI. SIMULATION RESULTS AND PERFORMANCE
EVALUATIONS

This section describes the simulation scenario of multi
renewable energy source model in smart micro grid (SG).
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The proposed model contains diverse sources like hydro
power, wind, tidal, bio gas, geothermal, and solar power.
The numerical values for the solar, hydro power, wind, and
tidal are taken from the study of [14]. The major challenges
for balancing D and S are occur because of wind and solar
renewable power sources, as they have fluctuating generation
characteristics Figure 9.

Simulation results are categorized into two sections, first
one is the description of results without optimization and the
second one explains the optimized techniques’ performance.

A. SCENARIO 1: RESPONSE OF MULTI POWER
GENERATION MODEL WITHOUT OPTIMIZATION

USING DIFFERENT CONTROLLERS FOR THE

DEMAND OF CONSUMERS

Simulation results of multi renewable energy sources that
generates SOMW power using PD, FO-PD, PI, PID and
STSMC controller applying individually in close loop sys-
tem. P, S/D and their comparative analysis are explained in
detail.

1) MULTI SOURCE POWER GENERATION MODEL OF 50MW
USING DIFFERENT CONTROLLERS

The overall energy production (S7) is defined as the sum of
the production from all energy sources.

m
Sr=>_G (10)
J=1

where m represents that the how many energy sources are
there and G; is the net production of energy through jth energy
source. The energy production model can be made more con-
sistent and persistent by following two factors. Energy suppli-
ers must earn their benefit and initiate to provide to smart grid
when the price of energy is higher than the production costs.
Second, each energy source has installed maximum capacity
Cnay that limits the power generation. By the help of above
factors, the below models explains the energy production

VOLUME 10, 2022



F. R. Albogamy et al.: Optimal Adaptive Control Strategy for Energy Balancing in Smart Microgrid

IEEE Access

TABLE 4. Renewable energy generation model.

j | Energy source type | T(min) | 7;(h) | Production models (S;)
1| Hydro power 5 | 005 %—;iff
2 Wind 8 | 008 0?010]382—;4215)]3
3 Bio gas 30 | 031 %—;iff
4 solar s | 005 %—;fff
5| Oceanthermal | 10 | 0.10 %—;fff
6|  Geothermal 9 | 009 %—;if))la
7 Tidal 7| 007 %—;fff

Price signal —|

Ds=alpha*D _ error(e)
|ml' |'m'4 |f".< Y { )

L

Hydropower

Generation to demand ratio (S/D)

Solar power

s > STSMC CONTROLLER

I . W/
DEMAND PROFILE _ —

Supply

Biogas power

oo

Ocean thermal power

‘: st |-

Geothermal power

s

Tidal power

FIGURE 8. Multi power generation model installed for 50 MW.

price function of the jth renewable source:

0 P < Do,j
G] = S] P0,j SPVS] < Cma)nj (11)
Cmax:j Sj > Cmax’j

The average cost of energy is represented by po,; for jth
source type. The production model is S; for the jth source type
according to Equation 8. The time constant S; for a capacitive
system can be calculated using the following formula by

putting the value of 7;.
T, =(1—e DTj (12)

The production models are developed for every power source
by the Equation 7 and Equation 8 and by entering the values
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of 7; from Table 4. Figure 8 shows the multi power gen-
eration model that is installed for S0OMW. The power gen-
eration consistently follows the demand as a result energy
balance in the market remain stable. In order to avoid the
power outage virtual demand is added to actual demand
by
—=15 (13)
From Figure 10, it is clear that this ratio is altering from
1.2 to 1.5 that is enough to tackle emergent conditions
of powers. The controller coefficients are taken from [15].
In case of FO-PD, kp = 1, ki = 10, kd = 0.2 and » = 0.33
coefficients values are used in each technique as per
requirement.
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FIGURE 10. Supply to demand ratio (S/D) of multi power generation model for normal as well as peak and dip demand without optimization.

2) PROCESS OF ENERGY BALANCING

The major processes involved in biogas energy generations
are; bio, thermo and physico-chemical conversion. It is com-
plex to initiate and manage such long step process. As a result
the response time of biogas energy source is 4-5 times greater
than the response times of remaining sources of energy, its
response to the price change is very slower than the others
Figure 9. But, hydroelectric and tidal stations are quickly
follow the change in energy price. The hydroelectricity sta-
tions has maximum installed capacity and follow the price
change as well, so it can counter the change in energy require-
ments. Hence, hydroelectric station has key role in balancing
demand and supply Figure 11. The wind, solar, ocean thermal
and geothermal energy generation can respond to demand
changes at the peak of their full instantaneous capacities,
which depend up on the environmental, climate and sun light
condition Table 3.
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3) COMPARATIVE ANALYSIS OF APPLIED TECHNIQUES

It is assumed that when the energy price increases the energy
supply companies get the better opportunities of earning
required profit. From Figure 12 in case of PID and PI
controller techniques, when demand is normal the price is
zero to the customers till 8:00hour, this period will give
loss to the companies and they will not be convinced to
generate demanded power, after that, the price is grad-
ually increasing even it cross the limit of 1800cent/kwh
in PID technique and 1500cent/kwh in PI technique at
24:00hour. The grid consumers do not tolerate such high
cost of energy. In technique STSMC the energy price will
reach up to the 20cent/kwh, this price is totally accord-
ing to the supplied power and not reaches to zero that
cause the financial deficit to suppliers. The per unit price
is not so enhanced that is out of the customer’s financial
approach. So, the best possible technique among PID, PI and
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FIGURE 13. Price response of multi power generation model for normal as well as peak and dip demand with optimization.

and minimum at peak and dip hours respectively so, the con-
sumers will pay the price according to their energy usage in

STSMC which is beneficial both for suppliers and customers
is STSMC.

In case of peak and dip demand Figure 12 three techniques
are applied STSMC, PD and FO-PD. The price is maximum
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all mentioned techniques. Along with this, only the STSMC
technique is useful for energy companies to earn so much
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TABLE 5. Optimized gains and rise time, settling time, percentage overshoot.

Controller Rise time (s) | Settling time (s) | Percent overshoot k, k; kg
DE-PI 0.278 0.735 14.2 2.09 3.46 -
DE-PID 0.257 0.863 11.3 1.54 7.87 3.89
DE-STSMC 0.236 0.849 10.7 K1=7.341 K2=0.001 K3=7.178
GA-PI 0.266 0.857 11.37 4.13 345 -
GA-PID 0.236 0.839 10.89 541 8.7 6.178
GA-STSMC 0.249 0.824 9.7 K1=3.827 K2=0.001 K3=3.1245
PSO-PI 0.214 0.779 13.7 1.0609 3.1245 -
PSO-PID 0.229 0.809 7.93 0.3854 9.3787 5.934
PSO-STSMC 0.201 0.780 6.54 K1=10.8943 | K2=0.0877 | K3=12.9462

amount that is profitable and fulfill the expenditures of the
energy production. This technique is better for suppliers and
consumer than the PD and FO-PD.

B. SCENARIO 2: RESPONSE OF MULTI POWER
GENERATION MODEL WITH OPTIMIZATION USING
DIFFERENT CONTROLLERS FOR THE DEMAND OF
CONSUMERS

Similarly, among optimized techniques, in PSO-STSMC the
per unit price is not so high or low and it is suitable both for
suppliers and consumers Figure 13. PSO-STSMC is better
in performance than PSO-PID and PSO-PI. Since there is a
direct relationship between price and supply, when the price
increases, the supply increases in the market. In PSO-STSMC
at peak demand the time of 2:00hour the price is 130cent/kWh
and at the time of 22:00hours when demand is minimum the
price is 1cent/kWh and throughout 24:00hours the price by
PSO-STSMC is greater than STSMC.
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This analysis shows that if we compare PSO-STSMC
response to the benchmark controllers’ response as givem in
Table. 5 shows better output because it convinces the suppli-
ers to generate high amount of energy for getting the accept-
able profit. This due to the robustness of the PSO-STSMC
controller which quickly started tracing the demand, and
provides lower energy price both for the consumers and sup-
pliers. Moreover, due to the robustness of the PSO-STSMC
control technique, the rise time, settling time, and overshoot
are also less when compared with the PID and PI based
control approach. Hence, PSO-STSMC has a key role to
control the demand side load and thus creates energy balance
as shown in Figurel5. So, it is cleared that from without opti-
mized and optimized techniques the outstanding performance
is of our proposed model of PSO-STSMC.

Gain tuning of PID, PI and STSMC controllers’ coef-
ficients is performed by DE, GA, and PSO optimization
as mentioned in the Table 5. The best optimum gains are
obtained through them, performance of PSO-STSMC is far
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better than other optimized results. There is low percent-
age overshoot of 6.54 of PSO-STSMC which means it can
earlier achieve the target of reducing the error. The settling
time of PSO-STSMC is 0.780hours which means the sys-
tems will have to face less number oscillations and it can
be stable in shorter time. Lower rise time of PSO-STSMC
is another important parameter that show preference of our
proposed system technique as compared to GA-PI, GA-
PID, GA-STSMC, DE-PI, DE-PID, DE-STSMC, PSO-PID,
and PSO-PI.

VIi. CONCLUSION

This study illustrates that elastic demand can be controlled
and made highly reliable without uncertain conditions by
the application of DSLM that operates automatically. It is
described that dynamic price is the preferable solution for
the demand side load control. The simulation results showed
that price control by STSMC is a self-governing technique
to handle the instantaneous, normal and sharp demand varia-
tions in multi-source power of energy market. It is observed
from the simulations that renewable energy integrated micro-
grid generation by PSO-STSMC can express the magnificent
performance of tracing the price-based elastic demand in
a closed loop energy market price management. Our find-
ings show that through PSO-STSMC, generation traces the
demand, even when the demand is at peak value of 40MW
at 2:00hours or minimum value of of 9MW at 22:00hours.
At peak and dip demand of 40MW and 9MW the gener-
ated powers by renewable distributed microgrid are 42MW
and 11MW respectively. In PSO-STSMC the price increases
and energy supplied by the sellers is also increased as they
get the better chance of earning profit and when price of
per unit energy is decreased the energy supply will be
reduced. Maximum energy of 1008000kWh is supplied at
the peak time of 2:00hour and the price is 130cent/kWh and
minimum energy 216000kWh is supplied at 22:00hour and
the price is lcent/kWh. In case of PSO-PID and PSO-PI
the prices are 1000cent/kWh and 630cent/kWh respectively.
Such energy generation is so costly that it can not be paid
by consumers, as a result the demand of energy will be
reduced. It is shown in Table 5 that optimized gains of
PSO-STSMC are achieved that play a vital to distinct it
than others in terms of rise time, settling time and per-
centage overshoot. Through these parameters our system
becomes more stable with the least steady state error. So,
our proposed method of PSO-STSMC is better in perfor-
mance than classical controller of PSO-PID and PSO-PIL.
PSO-STSMC plays a key role for the economically benefits
of energy suppliers and consumers as well as for balancing of
energy.
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