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ABSTRACT IEEE Std. 1149.1, also known as the Joint Test Access Group (JTAG) standard, provides
excellent controllability and observability for ICs and hence is widely used in IC testing, debugging, failure
analysis, or even online chip control/monitoring. Unfortunately, it has also become a backdoor for attackers
to manipulate the ICs or grab confidential information from the ICs. One way to address this problem
is to disable JTAG pins after manufacturing testing. However this countermeasure prohibits the in-filed
testing and debugging capability. Other countermeasures such as authentication and encryption/decryption
methods based on specific static keys have also been proposed. However, these approaches may suffer from
side-channel or memory attacks that may figure out the specific keys. This paper presents an authentication-
based secure JTAGwrapper with a dynamic feature to defend against the attacks mentioned above.We gener-
ate different keys for different test data dynamically. Therefore, only legal test data can be updated to the test
data registers (TDRs) through JTAG. Furthermore, the attackers will get fake responses if they shift in illegal
test data, which makes it extremely difficult to break our proposed method. We can also employ the physical
unclonable function (PUF) to distinguish the legal test data for different chips. Experiments on a RISC-V
CPU processor called SCR1 show that our proposed method can have an area overhead of only 0.49%.

INDEX TERMS Hardware security, IEEE test standard security, JTAG security, memory attack, secure
JTAG wrapper, physical unclonable function (PUF), in-field testing, in-field debugging.

I. INTRODUCTION
IEEE 1149.1 standard was initially developed for board-
level testing. Nowadays, this standard has been adopted
in many applications such as post-silicon debugging, chip
reconfiguration, verification, power management, and clock
control [1]. This standard defines mandatory hardware com-
ponents, including a test access port (TAP), a test access
port controller (TAPC), an instruction register (IR), a bypass
register (BR), and a sequence of boundary-scan cells (BSCs),
as well as some optional test data registers (TDRs) [2]. Users
can access the BSCs and the TDRs through the TAP with
excellent observability and controllability.

However this convenient feature may become a backdoor
for potential attackers [3], [4]. Many attacks that exploit
the controllability and observability of JTAG have been
reported. These include breaking the secret key of a cipher
circuit [4]–[7], finding the possible backdoor of an FPGA [8],
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modifying the firmware of a gaming console [9], getting the
root privilege of an IoT device [10], etc.

This paper proposes an authentication-based JTAG wrap-
per with a dynamic feature that can prevent the attacker
from arbitrarily accessing the TDRs. The main idea of this
method is to authenticate all the test data to be updated to
the intellectual properties (IPs) through TDRs. We add a test
seed in front of each test data to form legal test data. Only
the legal test data can pass the authentication procedure and
be updated to the protected IPs. In addition, the attacker will
get a fake response if they shift in illegal test data and then
try to shift out any data in the IPs. We deploy a golden key
generator and a test key generator to the JTAG infrastructure.
The golden key generator generates various golden keys for
different JTAG instructions based on a physical unclonable
function (PUF) or a key stored in memory. A legal test data
will make the test key generator generate a correct test key
which is the same as the golden key.

The advantages of our proposed method include high secu-
rity and low area overhead. Traditionally, authentication-
based countermeasures authenticate a single user before
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using the JTAG infrastructure. Therefore if attackers can pass
the authentication by using some brute-force or side-channel
attack, they can use the JTAG infrastructure freely afterward.
Our proposed method authenticates every test data before
it is updated to a TDR. Thus even if attackers find a seed
of a specific test data, they still need to break the seeds
of other test data. The main components of the proposed
test key generator and fake response generator are linear
feedback shift registers (LFSRs) which are much smaller than
encryption/decryption circuitry. Hence, the area overhead is
relatively low.

We organize this paper as follows. Section II describes the
threats to JTAG and the countermeasures proposed in literal.
Section III presents the proposed secure JTAG wrapper and
its components in detail. The test seed generation method is
illustrated in Section IV. In Section V, we evaluate the secu-
rity of our proposed method and analyze the risk of suffering
from common attacks. In Section VI, we report experimental
results and compare the results with previous works. Finally,
Section VII concludes this paper.

II. BACKGROUND AND PRIOR WORKS
A. THREATS TO JTAG
The convenient feature provided by the JTAGmaymake itself
a backdoor for potential attackers. An attacker can achieve
malicious purposes by stealing secret information [4]–[7] or
modifying the firmware. Below are two examples of JTAG
attacks.

In [9], the authors present several attacks to hack some
modern gaming consoles. The attacks are a combination of
software and hardware attacks. One typical example is to use
the JTAG tomanipulate the directmemory access (DMA) unit
by setting the contents of some target DMA addresses. Then,
when the system management controller (SMC) triggers the
DMA unit, such as loading the necessary memory address,
the attacker can successfully overwrite the memory context
and force the kernel to jump to a specific address.

In [10], the authors provide a way to get the root privilege
of a popular Wi-Fi router through the on-chip debugging
(OCD) mechanism controlled by the JTAG. The OCD mech-
anism allows one to set watchpoints to pause the device and
get the memory content at each memory address. The root
privilege can be obtained by modifying the boot arguments in
memory to boot the device into the single-usermode. Tomod-
ify the boot arguments successfully, the attacker has to know
the actual memory address of the firmware. Therefore, they
utilize the OCDmechanism to set watchpoints at the possible
memory addresses to pause the device when it touches the
addresses. The actual memory address of the firmware can
be figured out by setting enough watchpoints. Then they can
modify the booting arguments and continue the process to get
the root privilege with the actual address.

The JTAG-based attacks can be implemented successfully
if the attacker can directly access the hardware components,
including IR, scan chains, and TDRs, through the TAP.

The attacker can get the highest privilege as long as they
exploit these hardware components.

B. COUNTERMEASURES OF JTAG ATTACKS
Several countermeasures have been proposed to defend
against JTAG-based attacks. In this paper, we classify these
protection schemes into four categories based on the taxon-
omy of [4], as shown in Fig. 1 and described next.

FIGURE 1. Taxonomy of protection schemes [4].

1) DISABLE JTAG
This scheme disconnects the TAP pins after manufacture
testing and debugging, which can efficiently prevent attacks
through JTAG. However, this disables the in-field testing
and debugging functions [11] that are essential for mission-
critical applications such as automotive, military, andmedical
electronics, where high reliability of ICs is demanded [12].

2) AUTHENTICATION-BASED METHOD
The authentication-based scheme can be further divided into
password-based [1], [13] and challenge-response-protocol-
based (CRP-based) methods [14]–[17]. Their common objec-
tive is to verify the legality of users.

The test infrastructure has two states for the password-
based methods: locking state and unlocking state. Users can-
not access any test data registers (TDR) except the bypass
register in the locking state. To unlock the test infrastructure,
they must shift a secret password into a dedicated register.
An authenticated user can then access all the TDRs in the
unlocking state.

Some methods that apply the challenge-response-protocol
authentication to the test wrapper have been proposed to
enhance security [14]–[17]. The CRP-based methods involve
at least two parties: device and user. When a user requires to
use a device, the device sends a challenge to the user. In a
simpler case, the user just sends the correct response back.
In a more complex case, the user cannot generate the correct
responses by himself; he would need to obtain the correct
responses from a third party, e.g., a secure server.

The CRP-based methods are generally more secure than
the password-based methods since the challenge may vary
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each time. The attacker needs more effort to implement the
brute-force attack on these methods. However the CRP-based
methods may require higher area overhead since the authen-
tication protocol is usually based on cryptography.

3) ENCRYPTION-BASED METHOD
When an encryption-based scheme is implemented, the user
needs to encrypt the test data with a secret key before shifting
the test data via TDI [18]. After the encrypted test data is sent
to the device, it will be decrypted with the secret key. There-
fore, only the user who knows the secret key in the targeted
device can encrypt the test data correctly. Moreover, the test
data/response will be encrypted before shifting out via TDO.
Therefore, the user cannot get the true test data/response until
decrypting it with the correct key. The encryption algorithm
can be a stream cipher or a block cipher. The issue with
this method is that once the secret keys are figured out, all
protections will fail. Also, the area overhead would be high.

4) DETECTION-BASED METHOD
The main idea of authentication-based and encryption-based
countermeasures is to prevent an attacker from accessing
JTAG infrastructure. However, people can use the JTAG
freely once authenticated or have the correct cipher key.
Therefore, implementing detectors that monitor the opera-
tions of JTAG is an alternative way to avoid potential risks.

Static and machine learning-based detection methods have
been proposed [11]. Static detectors rely on some specific
rules defined in the IC design stage. A set of JTAG instruc-
tion sequences is chosen to represent legitimate operations.
If users enter an instruction sequence that does not follow the
rules, they will be regarded as attackers. Machine-learning
detectors are trained to detect the behaviors of an attacker.
In the training phase, the JTAG operations are characterized
by a set of features. The features include intra-instruction
statics and inter-instruction transition, such as the instruction
opcodes and the number of clock cycles within the shift-DR
state. Then, models are trained using these features to classify
the JTAG operations into normal operations or attacks. This
way, models are expected to be classified in real-time when
the chips are running, and hence online detection can be
achieved.

The detection-based methods highly rely on the collected
information of JTAG attacks. A comprehensive analysis of
these attacks is needed to ensure the accuracy of the classifi-
cation. False negatives and false positives are possible with-
out enough collected information for this countermeasure.

III. PROPOSED SECURE JTAG WRAPPER
We propose an authentication-based countermeasure against
JTAG attacks. Fig. 2 shows the overview of the proposed
secure JTAG wrapper, which comprises three main parts: the
original JTAG infrastructure, the secure JTAG architecture,
and the golden key generator. The original JTAG infrastruc-
ture contains TAP, TAPC, IR, and several TDRs, as shown
in the brown boxes. The secure JTAG architecture consists

of a test key generator, a key comparator, a gating logic,
a fake response generator, a logic controller, and someMUXs,
as shown in the blue boxes. The golden key generator is
shown in the yellow box. Next, we summarize the basic
ideas of our proposed method and describe their details in
the following sections.

FIGURE 2. Overview of the proposed secure JTAG wrapper.

• The golden key generator generates a unique golden key
for each defined JTAG instruction. Our design assumes
that different TDRs are accessed by different instruc-
tions which the user or company already defines. For
example, if two TDRs named IP1 and IP2 are used
for debugging, two instructions called DEBUG-IP1 and
DEBUG-IP2 may have been defined. The inputs to
the golden key generator are a secret key and a JTAG
instruction. The secret key can be derived from a master
key stored in memory such as flash or ROM memory
or from a PUF circuitry. IC designers can choose the
source of the key according to security requirements and
available resources.

• The test key generator is used to generate a test key for
each test data with a seed. The test key is then compared
to the golden key in the key comparator. Only when the
test key is equal to the golden key can the user exploit
the JTAG functions.

• The gating logic will set the Update_DR signal to 1 only
when the test key is the same as the golden one. Hence
users who do not enter the correct seeds cannot access
their target TDR correctly.

• The fake response generator will generate fake responses
of the TDRs after a Capture_DR operation has been
done. The MUXs are responsible for selecting true or
fake responses to shift out, making the attacker confused
about the authenticity of responses.

• The test seed and test data are shifted in from the
TDI. Hence no additional input pin for keys is needed.
Besides, there is no need to add new JTAG instruc-
tions. Thus the attackers may not know whether there is
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FIGURE 3. Test key generator.

a protection mechanism and cannot determine whether
the information obtained is true or fake.

A. GOLDEN KEY GENERATOR
The golden key generator generates different keys for dif-
ferent instructions that access TDRs. The inputs are a secret
key and a JTAG instruction. The secret key may be stored in
memory or generated by a PUF. The PUF is a function with
outputs depending on the fabrication process variation [19].
It generates different values for different ICs under the same
input. Many PUF designs have been proposed so far. Our
proposed method can adopt any PUF design. It is harder to
predict the golden keys if a PUF is adopted. However the area
overhead may be larger than using a key stored in memory.
Therefore, IC designers may select suitable schemes based on
their security requirements.

B. TEST KEY GENERATOR
A test key generator consists of an LFSR called the key
LFSR and a characteristic detector, as shown in Fig. 3. The
purpose is to generate the test key from the test data and its
associated seed. The user must shift the seed derived from
a test data into the key LFSR before entering the test data.
The contents of the LFSR are changed when the test data is
being shifted into the TDR. After the test data is shifted into
the TDR, the content of the key LFSR will be the test key.
The test key will be compared with the golden key in the key
comparator. The detailed procedure for generating the test
key is as follows. In the beginning, an instruction is shifted
to the instruction register. After that, the LFSR_start and the
LFSR_enable signals from the controller are set to 1. Then,
the seed is shifted into the key LFSR from the TDI port. After
the seed is loaded into the key LFSR, the LFSR_start signal
is changed to 0 to start running the LFSR. At the same time,
the output of the characteristic detector starts to alternate the
contents of the key LFSR as follows.

The purpose of the characteristic detector is to make the
key generation algorithm irregular and difficult to predict.
Refer to Fig. 3. The inputs to the characteristic detector are
TDI and CD_enable, where CD_enable is from the con-
troller. When the CD_enable is set to 1, the characteristic
detector will monitor the value of the TDI port. As long as
a designer-defined characteristic pattern appears at the TDI
port, the characteristic detector will send a trigger signal to
change the content of the key LFSR. For example, assume the
characteristic pattern is 101. Then whenever 101 appears at

the TDI port and the CD_enable is set to 1, the characteristic
detector will send 1 to the key LFSR to change its content.
Hence, only the test data with the correct seed can generate
the correct test key in the test key generator. In this paper,
we call the test data with correct seeds legal test data. On the
contrary, we call the test data with incorrect seeds illegal test
data.

C. KEY COMPARATOR
As shown in Fig. 4, the key comparator compares a test key
and a golden key. It outputs a valid signal if they are identical.
The test key generator generates a test key based on the
seed and the test data. The comparison result must become
available after the test data is shifted in and before the test
data is updated. Therefore, we use a D flip-flop driven by the
Exit1_DR signal to latch the comparison. The comparison
result is then sent to the gating logic and the fake response
generator to guide whether the test data can be updated and
whether the correct response can be shifted out.

FIGURE 4. Key comparator and fake response selector.

D. GATING LOGIC
A gating logic is in charge of preventing illegal test data from
being updated to the TDRs. As shown in Fig. 5, we use AND
gates to set the Update_DR signals. The Update_DR signal
will be 0 if the comparison_result is 0, in which case the
test data cannot be updated. In addition, IC designers can
choose which TDRs to protect. The Update_DR signals to
unprotected TDRs will not be connected to the AND gates.
In this way, some debugging functions not associated with
secret information or system manipulation can be opened to
normal users. This will reduce the timing overhead when
executing some debugging procedures.

E. FAKE RESPONSE GENERATOR
A fake response generator comprises a fake response selector,
a shadow LFSR, some XORs, and MUXs, as shown in Fig. 6.
Attackers will get fake responses when they shift in illegal
test data and capture the response of the TDR afterward.
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FIGURE 5. Gating logic.

FIGURE 6. Fake response generator.

Furthermore, attackers will get the same data when they shift
in the same test data, either legal or illegal. Therefore it is
difficult to figure out whether the input data is legal. This
also prevents attackers from noticing the existence of the
protection circuit and is effective to protect against exhaustive
attacks.

The fake response selector selects whether to shift out
a true or fake response. Fig. 4 shows the fake response
selector. First, it receives the comparison result from the
key comparator. Then the comparison result is latched as
Fake_response_select using a D flip-flop driven by the Cap-
ture_DR signal. Fake_response_select is then sent to the
MUXs to determine whether to shift out fake responses.
Notice that the initial value of the Fake_response_select is
set to 0. The Fake_response_select is set to 1 only when legal
test data is entered.

Refer to Fig. 6. The key LFSR updates its value to a
shadow LFSR when the Update_DR signal is 1. After that,
the shadow LFSR starts running when the TAP controller is
in the Shift_DR state. The fake response is thus obtained by
XORing the outputs of the protected TDR and itself. Since
we do not want the attacker to recognize that the response
is fake, the fake response is XORed with the TDR’s output.
In addition, the fake response will be the same if the same
illegal test data is shifted into the protection mechanism
because the key LFSR provides the initial value of the shadow
LFSR. Note that the characteristic polynomial of the shadow
LFSR should be different from the key LFSR to hide the
structure of the key LFSR.

IV. SEED GENERATION METHOD
After implementing the proposed protection mechanism
inside a chip, the designers need to derive the seed for each

test data. This derivation is done by performing a reverse
derivation process for LFSRs [20], as described next.

We acquire the golden key of each instruction. It can be
done easily since the Boolean function of the golden key
generator is predefined during the IC design phase. As long as
we know the actual value of the secret key, we can generate all
golden keys. In addition, the characteristic polynomial of the
key LFSR and the characteristic pattern of the characteristic
detector are also predefined. For illustration, assume that the
key LFSR has N bits. The trigger signal is connected to the
output of the Mth D flip-flop of the key LFSR. The length of
a TDR is L, and the trigger signal is 1 at the Kth cycle when
shifting in the test data. Note that the signal may be triggered
more than once.

Under the above assumptions, we can utilize an LFSRwith
a reciprocal characteristic polynomial of the key LFSR to
derive the seed. We call this LFSR a reverse LFSR (RLFSR)
hereafter. The trigger signal is connected to the output of
the (N-M-1)st D flip-flop of the RLFSR when the value of
(N-M-1) is larger than zero. Otherwise, the trigger signal is
connected to the output of the (N+(N-M-1))th D flip-flop of
the RLFSR. The trigger signal is inverted at the (L-Q)th cycle.
The seeds can be derived by simulating the RLFSR with the
initial data equaling the reverse golden key for L cycles. Note
that the RLFSR is only for simulation. We do not have to
implement it physically inside a chip.

For example, we assume the key LFSR is a 5-bit LFSR,
and its characteristic polynomial is x5+x2+1. The length of
the TDR is 8. The trigger signal is connected to the output of
the 3rdD flip-flop, and it will be 1 at the 6thcycle, as shown
in Fig. 7. The reverse characteristic polynomial of x5+x2+1
is x5+x3+1, which is the characteristic polynomial of the
RLFSR. The trigger signal is connected to the output of the
1st D flip-flop (5-3-1 = 1), and it will be 1 at the 2nd cycle.
Suppose that the golden key is 10100. We can get a reverse
golden key 00101. Then we set the initial data of the RLFSR
as 00101 and run for eight cycles. Since the trigger signal
is 1 at the 2nd cycle, the final value of the RLFSR is 11001,
as shown in Fig. 8. We reverse this final value to get the
seed 10011. Refer to Fig. 7. To verify the correctness of
the seed, we can set the derived seed as the initial data of the
key LFSR and run it for eight cycles. With the trigger signal
being 1 at the 6th cycle, we will obtain the final value of the
key LFSR 10100, which is the same as the golden key we
defined.

This seed generation method can obtain the seeds of all test
data. Fig. 9 shows the seed generation flow of a chip. First,
we set some environment parameters, such as the polynomial
of the key LFSR, the golden key’s length, and the trigger
signal’s position. The key LFSR model and the reverse LFSR
model can be built with these parameters. Second, we read
in the test data file, which records the golden key of each
instruction, the length of each TDR, and the needed test data.
Third, we read one test data and analyze the trigger cycles.
The seed can be generated by simulating the reverse LFSR
for L cycles. Fourth, we append the seed in front of the
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FIGURE 7. A 5-bit key LFSR.

FIGURE 8. The reverse LFSR.

test data to form legal test data and record it. We repeat the
above steps until all legal test data belonging to this TDR
has been obtained. Then we set the golden key according to
the instruction and the length of another TDR and get the
corresponding seeds. Finally, the legal test data file will be
generated.

V. SECURITY ANALYSIS
In this section, we analyze the security of the proposed
method against various typical attacks that aim to break the
protection mechanism in different ways. In addition, a com-
parison with prior works is also given.

A. BRUTE-FORCE ATTACK
The brute-force attack, also known as the exhaustive attack,
is based on the trial-and-error method. The attacker finds the
correct answer by deleting the wrong candidate repeatedly.
It can be applied to the countermeasures mentioned above
too. The password-based methods protect the JTAG access
by requiring users to shift in a secret password. A static or
short password is vulnerable to a brute-force attack [21].

FIGURE 9. Seed generation and legal test data derivation flow.

Our work uses a different seed for different test data to
authenticate the user instead of a static password. Moreover,
the fake response generator is implemented to obfuscate
attackers, making attackers unable to recognize whether the
test data is legal. In other words, attackers cannot remove the
wrong candidates. Even if attackers could find the correct
seed of a specific test data after many tries, they still need
much effort to break the seed of another test data. Assume
the length of a seed is N, the size of a TDR is L. There
are 2N possible seeds for each test data and 2L possible test
data for the TDR. There are 2N+L possible cases for a TDR.
Besides, since the golden key for each instruction is different,
the attacker must find a different seed for another instruction.

B. MEMORY ATTACK
The memory attack aims to discover sensitive information in
memories. Some methods to retrieve the data have been pre-
sented. The ‘‘memory cold boot attack’’ is a famous one [22]–
[26]. Taking dynamic random-access memory (DRAM) as an
example, the data in DRAM may retain for several seconds
after it is powered off, even if it is removed from a moth-
erboard. This characteristic is called memory remanence.
Detailed steps to get the data in DRAM based on memory
remanence are presented in [25]. With this kind of attack,
confidential data such as an encryption key can be retrieved.

We can use a secret key (stored in memory or generated
by a PUF) to generate the golden keys. The golden keys are
compared with the test keys generated by the seeds and test
data using the test key generator to check whether the test
data is legal. Even if the memory attack may discover the
secret key, it is hard for the attacker to break our protection
mechanism due to the following reasons. First, the attacker
may not know how to derive the golden keys from the secret
key. Second, the attacker cannot derive the seeds shifted into
the TDI with test data. Third, the seeds are entered into the
chips only when test data is entered; they are never stored
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statically in memory. Due to these facts, our proposedmethod
can defend against memory attacks effectively.

C. REVERSE ENGINEERING ATTACK
Research on the reverse engineering attack has been carried
out [27]. This type of attack assumes that direct access to a
chip is possible, and the connection of wires and the logic
gates used in a chip can be fully identified. In other words,
it is assumed that the attacker can figure out the detailed logic
design information of the protection mechanism.

In this paper, our secure structure uses a secret key stored in
memory or generated by a PUF to derive a different seed for
each test data. Even if the reverse engineering attack can be
completely and accurately carried out and the seed generation
algorithm is completely identified (which is very unlikely),
the attacker still needs to guess the secret key used in the
protection mechanism. Suppose the secret key is a PUF key.
In that case, the attacker will need great effort to break another
chip by repeatedly guessing the correct values even though a
PUF key for a specific chip is obtained.

D. SIDE-CHANNEL ATTACK
Side-channel attacks can be divided into three categories: the
active side-channel attack, the passive side-channel attack,
and the scan-based side-channel attack [27]. The active side-
channel attack uses special equipment to penetrate the hard-
ware circuit to extract or change signals inside the circuit. For
example, attackers may utilize electromagnetic fault injection
(EMFI) to obtain secret information [28]. This would require
some expensive equipment and hence could be pretty costly.
The passive side-channel attack uses some devices to collect
data from the I/O pins of a chip and then analyze the collected
data with various techniques to deduce some secret circuit
information. For example, an attacker may use the current
or power consumption curves at I/O pins to figure out the
secret key of the circuit [27]. This however requires complete
control of the chip and full understanding of the detailed
operations of the chip, usually at the exact cycle level, and
hence may be difficult to implement in practice. The scan-
based side-channel attacks utilize the excellent controllability
and the observability of the scan design to obtain secret
information through scan chains [7].

Our proposed method does not explicitly aim to defend
against active and passive side-channel attacks. However, our
methods can be easily combined with existing countermea-
sures for these attacks. For instance, one may use shielding
methods such as those used in commercial hardware security
modules or incorporate the latch-up technique of [29] in
our method to defend against the fault injection attack. One
may also use the false glitch cell method of [30] to protect
against the power analysis attack. As for the scan-based side-
channel attack, if the scan-based testing is controlled by
boundary-scan, then our method certainly can defend against
the attacks. However if the scan-based testing is totally
independent of the boundary scan, then our method cannot
protect against the scan-based attack.

TABLE 1. Analysis of possible vulnerability of different countermeasures.

TABLE 2. JTAG instructions for SCR1.

Finally, it is worth pointing out that even if the side-channel
attack can figure out the secret keys, the attack still cannot be
completed unless both the key reconstruction circuit structure
(including the fake generator) and the seed generation proce-
dure are fully explored.

E. COMBINED ATTACKS WITH ELABORATED MODELS
Combined attacks with elaborated models refer to combining
different attacks with various resources to break the pro-
tection mechanism. Clearly a combined attack method is
more powerful than a single model attack because it can
attack a circuit throughmultiple channels. However, attackers
need more effort and resources, and hence much more costs,
to implement a combined attack.

We have discussed four different types of attacks in the
above sub-sections A-D. Our proposed method can defend
against the brute-force attack, the memory attack, the reverse
engineering attack, and the scan-based side-channel attack.
Our proposed method is defeated only when all the following
conditions are met: 1) the secret key is broken, 2) the architec-
ture of the key generator is cracked, and 3) the seed generation
algorithm is figured out. In other words, a combined attack
must combine the attack methods that together can meet all
the above conditions to break our defense mechanism, which
would require extremely high cost in terms of both time and
equipment resources. One needs to guess the key exhaustively
or use expensive equipment to carry out side-channel attacks
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TABLE 3. Operation time overhead of the proposed method with SCR1.

TABLE 4. Area overhead of the proposed method with different size
seeds.

to figure out the key. To reconstruct the key generator archi-
tecture, one also needs to perform the time-consuming and
easy-to-fail reverse engineering work. Furthermore, unless
the seed generation algorithm code is stolen, there is no way
to figure out the detailed and exact procedure of the key
generation algorithm.

F. COMPARISON WITH OTHER WORKS
Some countermeasures have been described in Section II.
Each countermeasure has its advantages and disadvantages.
This section analyzes the pros and cons of these methods and
our method.

Disabling the JTAG is a straightforward way to defend
against the aforementioned attacks. However, in-field test-
ing and in-field debugging are also disabled. Furthermore,
accessing the TAP pins is still possible for the attacker using
some invasive attack such as probing [11].

The authentication-based countermeasures tell whether the
user is legal or not depending on the passwords or the
CRPs [12]–[17]. The password-based methods may suffer
from brute-force attacks or some side-channel attacks. For
example, suppose a password is compared to the real key bit-
by-bit serially. The attacker can use time variance to realize
which bit of the password is wrong [31]. They are also vulner-
able to memory attacks if the passwords are stored in mem-
ory. In addition, if the authentication procedure compares a
hardcoded password, it may also be cracked by the reverse
engineering attack [21]. As for the CRP-based methods, they
also take the risk of a memory attack. The brute-force attack
may be ineffective for the CRP-based methods because the
challenge may alter each time the user sends an accessing
request to the test infrastructure. However, the challenge-
response protocol used is usually public to all users. Once
the secret information is discovered, the attacker can generate
correct responses arbitrarily.

The encryption-based countermeasure decrypts the test
data and encrypts the response using a cipher circuit inside a
chip [18]. Thus the attacker cannot get the true test response
until decrypting with the correct key. However the memory
attack is effective on the encryption-based countermeasures.
Once the key is leaked, the attacker can encrypt and decrypt
the data correctly.

The detection-based countermeasures monitor the behav-
ior of JTAG operations based on the instructions [11].
Its main idea is quite different from the authentication-based
and encryption-based countermeasures. The attacks men-
tioned above usually do not target detection-based counter-
measures. However, with the popular detection method based
on machine learning, the detector must be trained with an
established attack model or predefined rules. An attack that is
not considered in the training phase may escape the judging
of the detector, which is named the unknown attack in [11].

Our proposed countermeasure authenticates different test
data using different keys. Thus, the attacker cannot crack
the protection mechanism with a single attack model. The
protection method is defeated only when the secret key is
broken or stolen, the architecture of the key generator is
cracked, and the seed generation algorithm is figured out
completely. We summarize the possible vulnerability of the
countermeasures in TABLE 1.

VI. EXPERIMENTAL RESULTS
This section presents the experimental results of implement-
ing our proposed method in an open-source processor core
called SCR1 provided by Syntacore [32]. The SCR1 pro-
cessor is equipped with a debugging sub-system based on
the RISC-V debug specification. The user can access the
IR and TDRs via the JTAG interface. The SCR1 processor
provides six JTAG instructions as listed in TABLE 2. Unused
IR codes are mapped to the bypass register. Our proposed
method protects the TDRs corresponding to SCU_ACCESS,
DTMS, and DMI_ACCESS using 8-bit golden keys in the
experiment. The operation time overhead and area overhead
are described as follows.

A. OPERATION TIME OVERHEAD
For the proposed method, a legal test sequence (data) is
comprised of a seed and an original test data. Assume that the
length of the golden key is N bits. The operation time over-
head for each legal test data is N cycles. TABLE 3 denotes
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TABLE 5. Comparison of area overhead with prior countermeasures.

the operation time overhead for the SCU_ACCESS, DTMS,
and SMI_ACCESS instruction, with different seed lengths
added to the original design. The clock cycles are calculated
by performing one instruction. Note that the consumed clock
cycles begin from shifting an instruction into the IR to shifting
out the response.

We use an 8-bit golden key in our protection scheme,
and hence the operation time overhead is eight cycles.
We choose an 8-bit golden key because our method can reach
a high-security level with a small seed since the correct seed
alters with the test data. Furthermore, our protection method
can defend against memory attacks, brute-force attacks, and
reverse engineering attacks with a small-size golden key.

B. AREA OVERHEAD
TABLE 4 reports the area overhead of our proposed method
with the SCR1 processor. The circuit is synthesized using
Synopsys Design Compiler with the tsmc 90 nm tech-
nology file. The original area of the SCR1 processor is
126,593.81 um2, which is evaluated as 44,891 gate equiva-
lences (GEs).

When the proposed design with 8-bit to 128-bit seeds is
added to the original design, the design area becomes 45,111
to 47,834 GEs. Thus, our proposed method requires 220 to
2,943 extra GEs. The area overhead will increase while a
longer seed is adopted. Nevertheless, as mentioned in the
previous paragraph, our method can reach a high-security
level with a small seed. With the use of 8-bit seeds, the area
overhead is only 220/44891 = 0.49%. Thus the IC designers
may prefer to choose the small-size scheme.

C. COMPARISON WITH PRIOR WORKS
A comparison of our work with prior countermeasures [11],
[13], [17], [18] is given in TABLE 5. Although the bench-
marks used in these works may be different, most of them
focus on an SoC that provides a debug sub-system within a
chip. The area overhead data are extracted from these papers,
though the environmental parameters of each work may be
different. The encryption-based countermeasure [18] uses a
lightweight stream cipher, while the CRP-based authentica-
tion [17] implements some circuits to achieve the challenge-
response protocol. Both countermeasures have an area

overhead of thousands of GEs. The work in [11] includes two
ML-based detectors and one anomaly detector. As we can
see, our work and password-based authentication [13] have
the lowest area cost, followed by the encryption-based coun-
termeasure, the static detector, and the CRP-based authenti-
cation. The ML-based detectors [11] require the most logic
gates and extra memory to store the weights.

VII. CONCLUSION
In this paper, we propose an authentication-based secure
JTAG wrapper. We add a lightweight security circuit and do
not need to modify the original JTAG infrastructure. Our pro-
posed method allows users to access the TDRs when the legal
test data is entered. Furthermore, if attackers shift in illegal
test data, theywill get fake responses. In addition, we generate
a unique, dynamic seed for each test data. Thus we can reach a
high-security level with a short golden key due to the dynamic
nature. We also develop the seed generation algorithm and
the seed generation flow, making the production of seeds
automatic.

The secure architecture contains a test key generator,
a golden key generator, a key comparator, a gating logic,
a fake response generator, and a controller. They require
only 220GEs or 0.49% area overhead for the SCR1 processor.
In addition, we append the seed to each test data, so no
additional pin is required. Also, there is no need to add any
JTAG instruction either. Furthermore, since a fake response
generator is adopted, the attacker cannot tell whether he
receives real or fake data. Moreover, the proposed method
can combine with a PUF key, making it harder for attackers
to attack other chips even if they break a chip successfully.

Therefore, our proposed method can effectively defend
against the brute-force attack, the memory attack, the reverse
engineering attack, and the scan-based side-channel attack
with a small area overhead. To sum up, the proposed secure
JTAG wrapper is a lightweight and secure countermeasure
against JTAG attacks.
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