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ABSTRACT Fine-grained air quality can provide essential urban environmental information for administra-
tors and residents. With advances in communication and sensing technologies, low-cost portable sensors
installed on vehicles enable high-coverage air quality monitoring. However, data collected by low-cost
mobile sensors may be inaccurate and inconsistent in complex operation environments, which brings the
issue of data uncertainty.Moreover, due to uncontrolled vehicles and human activities, the coverage ofmobile
nodes is dynamic over time, leading to uneven or sparse spatial distribution. To address these challenges,
we propose AQI-M3, a novel framework for fine-grained air quality inference via multi-view learning with
mobile sensingmemory. Specifically, an encoder-decoder structure is applied in the region view formodeling
the spatial dependencies in pollutionmaps.More importantly, sensing gradients are extracted in the trajectory
view to enable the utilization of uncertain mobile sensing data. In addition, a memory network is designed to
capture the spatial patterns from the historical sensing data and provide the global patterns as a complemental
guide to overcome dynamic coverage sampling. Extensive experiments are conducted on three real-world
deployments of hybrid sensing systems with both static and mobile sensors. Experimental results show that
our proposed approach outperforms competitive baselines with 17%∼29% reduction in mean absolute error.
Furthermore, detailed evaluations demonstrate the effectiveness and robustness of the proposed framework
under dynamic coverage.

INDEX TERMS Air pollution, mobile computing, multi-view learning, spatiotemporal memory.

I. INTRODUCTION
Air pollution brings a severe threat to human health. Pro-
longed exposure to polluted air causes respiratory diseases [1]
and further exacerbates infection rates and mortality of other
diseases, such as diabetes [2], coronavirus disease [3], etc.
Therefore, air quality monitoring has become a worldwide
concern. In particular, fine-grained air quality information in
cities can support regulatory policies and health protection.
For city administrators, detailed spatial variations of air qual-
ity can enable accurate emission discovery and traffic control.
For residents, fine-grained air quality information can help
travel arrangements and route planning to reduce exposure
risks.

However, governmental stations for routine air quality
monitoring are rarely adopted for large-scale deployment
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due to the high costs and bulk installations. Recently, IoT
platforms [4]–[8] with low-cost sensors have been widely
deployed as complements to collect high-coverage mon-
itoring data. Nevertheless, some nodes in these systems,
e.g., vehicles, are unavailable at certain times due to envi-
ronmental impacts and human activities [9], [10]. In addi-
tion, the long-term operation of numerous devices remains
costly. For example, periodic calibration must be performed
for low-cost sensors to maintain accurate measurements [7],
[11], [12], resulting in remarkably high maintenance costs
for large-scale systems. Therefore, an inference algorithm is
still necessary to reconstruct fine-grained air quality informa-
tion from existing coarse-grained data, thereby supporting an
accurate understanding of the city environment and reducing
long-term operational costs.

As machine learning algorithms develop and the collected
data grows, data-driven methods [13], [14] have been pro-
posed to model the mapping of available sensing samples to
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target locations. However, these methods suffer from com-
putational complexity when the number of sensors explodes.
Inspired by the image super-resolution studies [15], [16],
reconstruction algorithms for pollution maps are recently
proposed in [6], [9], [17], in which the interest area is treated
as a grid and the sensing concentrations are aggregated as
pixel values. Nevertheless, these methods lack the effective
utilization of fine-grained information from mobile sensing
data due to the gridding operation on the original samples.
Two major challenges still remain in the fine-grained air
quality inference with mobile sensing as follows:

i) Data Uncertainty. On the one hand, mobile sensors
are deployed in complicated environments, e.g., out-
door rooftops and car trunks, which may degrade the
measurement accuracy of low-cost sensors. On the
other hand, the response parameters, such as sen-
sitivity, can be inconsistent due to unsynchronized
calibration between multiple sensors in long-term
operation.

ii) Dynamic Coverage, including uneven and sparse sam-
pling coverage. Many mobile sensors are deployed on
vehicles, e.g., taxis, with uncontrollable routes, caus-
ing uneven distribution issue. For the sparse coverage
problem, a common phenomenon is that most mobile
nodes congregate in busy urban areas during the day,
and stop operations at night.

To address the above challenges, we propose a novel
framework for fine-grained air quality inference via multi-
view learning with mobile sensing memory (AQI-M3) in
this paper. Our proposed framework includes region-view
and trajectory-view learning for modeling data with different
granularity. Under region view, an encoder-decoder structure
is adopted to capture the spatial correlation in pollution maps.
To utilize the mobile sensing data with uncertainty, sensing
gradients are extracted on each mobile device under the tra-
jectory view as current fine-grained spatial patterns. Further-
more, a memory network is designed to exploit the historical
mobile sensing information and provide global spatial pat-
terns related to the context. Finally, the two aspect spatial
patterns are adaptively integrated to guide air quality infer-
ence by reinforcing more informative regions. Therefore,
the dynamic coverage challenge is addressed by introducing
global spatial information. Evaluations on three real-world
datasets show that our proposed framework achieves better
performance and robustness in the air quality inference with
mobile sensing.

The main contributions of this paper can be summarized as
follows:
• We propose a framework with multi-view learning for
air quality inference, in which sensing gradients are
extracted under trajectory view to enable the utilization
of fine-grained mobile sensing data with uncertainty.

• We design a novel mobile sensing memory network
to capture global spatial patterns, in which historical
information is effectively utilized to tackle the dynamic
coverage issue of mobile sensing.

• Extensive experiments are conducted on real-world
systems deployed in three cities, demonstrating that
our proposed AQI-M3 obtains better performance and
robustness compared with state-of-the-art methods.

The rest of this paper is organized as follows. Section II
introduces related work on air quality inference meth-
ods and memory networks for spatiotemporal inference.
In Section III, we formulate the air quality inference problem,
present the AQI-M3 framework withmulti-view learning, and
further elaborate the mobile sensing memory in the trajectory
view. Section IV evaluates our algorithm and compares it with
baselines. Finally, we conclude the paper and discuss some
future work in Section V.

II. RELATED WORKS
In this section, we introduce some existing air quality infer-
ence algorithms and memory networks employed in spatio-
temporal inference. Besides, we discuss the comparison
between the existing works and our method.

A. AIR QUALITY INFERENCE IN SENSOR NETWORKS
With the development of Internet-of-Things (IoT) tech-
nologies, wireless sensing systems with static and mobile
sensors are deployed for air quality monitoring, includ-
ing OpenSense [18], AirCloud [13], Gotcha [19], City of
Things [20], and so on. Due to the increasing number of
observed samples collected in these systems, data-driven air
quality inference algorithms have been widely investigated.
OpenSense [18] applies land-use regression (LUR) to model
the correlation between pollution concentrations and exter-
nal factors, which enables inference over uncovered areas.
Similarly, AirCloud [13] employs Gaussian Process Regres-
sion (GPR), considering location information and weather
conditions, to achieve inference on unknown concentrations.
Recently, researchers focus on deep learning techniques due
to their powerful modeling capabilities. The neural attention
model [21] is presented to estimate measurements of target
locations with dynamic weights among multiple monitor-
ing nodes. However, these approaches are applied to static
sensing networks and lack consideration of the information
from mobile sensing. To incorporate mobile sensing samples
into a unified learning framework, some works, e.g., con-
volutional networks [9], [17], ConvLSTM [6], and varia-
tional autoencoder [20], are deployed to perform air quality
inference based on gridded pollution maps. Nevertheless,
the fine-grained information of mobile sensing is still not
efficiently utilized in these algorithms due to the gridding
process.

Therefore, the effective utilization of fine-grained mobile
sensing data for air quality inference remains an understudied
problem in existing works. Different from previous methods,
we adopt a multi-view learning framework in which the grid-
ded pollution map and mobile sensing data are respectively
exploited under the region view and trajectory view. Further-
more, we extract sensing gradients to guide the inference
of pollution maps instead of directly employing the original
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mobile sensing samples, thus addressing the challenge of data
uncertainty.

B. SPATIO-TEMPORAL MEMORY NETWORKS
Memory networks [22] can preserve long-term patterns
from historical data and are therefore widely used in
spatio-temporal inference application, e.g., visual under-
standing [23], [24], traffic prediction [25]–[27], etc. Inspired
by the periodicity and trendiness of urban activities, temporal
memory [26], [28] directly introduces multi-scale spatio-
temporal data to provide historical information for inference.
However, the assumptions of periodicity and trendiness can
not be met in the fine-grained air quality inference problem.
This is because urban air quality depends not only on the
activity within the city, but also on other external factors,
including pollution transport, meteorological conditions, etc.
Besides, spatial memory [23]–[25], [27] is applied in spatio-
temporal prediction, where information from similar regions
is aggregated into location features, and then provided as
supplementary information for inference at each location.
Nevertheless, clustered location features are insufficient to
capture comprehensive and complex urban spatial patterns
for air quality inference.

Unlike previous memory networks, our memory network
can more accurately capture spatial patterns in different con-
texts by introducing external context knowledge related to
air pollution. Moreover, the historical sensing gradient infor-
mation from fine-grained mobile sensing is stored and read
according to external factors, representing the corresponding
comprehensive spatial pattern of pollution.

III. AQI-M3: MULTI-VIEW LEARNING FRAMEWORK WITH
MOBILE SENSING MEMORY
In this section, we first formulate the fine-grained air quality
inference problem mathematically and introduce the pro-
posedAQI-M3 framework in detail. Then, we elaborate on the
mobile sensing memory network in our proposed approach.
Finally, we present the details of model training.

A. PROBLEM FORMULATION
To formulate the problem of fine-grained air quality inference
clearly, we first give some relevant definitions as follows:
Sensing Region. Given an air quality monitoring area,

we can partition it into H × W grids of equal size accord-
ing to the longitude and latitude, where each grid cell
denotes a sensing region. Partitioning with larger H and W ,
which means smaller sensing regions, we can obtain more
fine-grained sensing of air quality.
Pollution Map. The air quality monitoring system consists

of multiple sensors, which are deployed at fixed locations
or on mobile nodes to collect measurements. Thus, for a
particular time slot t , we can reformulate the samples to con-
struct a pollution map denoted as Qt ∈ RH×W

+ , where each
entry qh,w,t is the average value of all pollution concentration
measurements in the sensing region (h,w) at that time slot.

Pollution Trajectory. The mobile sensors in the system
report the pollution concentration with a time stamp and
location coordinates at a specific frequency. Therefore, the
pollution trajectory of the mobile sensor Sn in the time slot t
can be denoted as 2(n)

t = {(x1, y1, v1), (x2, y2, v2), · · · },
where x and y are the longitude and latitude coordinates, and
v is the concentration value of the sample.

Then we define the problem of fine-grained air quality
inference as follows: for a certain time slot t , given the
coarse-grained pollution map Qct ∈ RH×W

+ , the correspond-
ing external features et , the pollution trajectory set 2t =

{2
(1)
t , · · · ,2

(N )
t } from N mobile sensors and an upscale

factorm, the objective is estimating the fine-grained pollution
map Qt ∈ RHm×Wm

+ , that is,

Q̂t = argmax
Qt

p(Qt |Q
c
t , et ,2t ). (1)

B. FRAMEWORK OF AQI-M3

1) OVERVIEW
We first present the proposed AQI-M3 framework, as shown
in Fig. 1. The framework adopts multi-view learning scheme,
which consists of two views: region view and trajectory
view. More specifically, under the region view, an Encoder-
Decoder structure is applied to learn spatial dependencies
in pollution map for fine-grained air quality reconstruction.
Besides, there are three main components in the trajectory
view: a Gradient-based Attention Branch to extract the sens-
ing gradient and generate spatial attention from the pollu-
tion trajectory, a Mobile Sensing Memory Net to preserve
global spatial patterns based on auxiliary knowledge, and a
Neural Gating Net to fuse the global information and the
current gradient-based attention. Finally, the spatial attention
obtained under the trajectory view can guide the region-
view learning, by allowing the Encoder-Decoder network to
focus on the high-frequency information in the pollutionmap.
We then introduce the details of multi-view learning in the
framework individually as follows.

2) REGION-VIEW LEARNING WITH ENCODER-DECODER
STRUCTURE
To capture the spatial dependencies in the pollution map,
we adopt an encoder-decoder structure for region-view learn-
ing in the proposed framework. The encoder-decoder network
is widely used in machine translation [29], speech recogni-
tion [30], image restoration [31], image super-resolution [32],
etc. Following some spatio-temporal inference models
[9], [15], we further introduce the residual block into the
encoder-decoder network to infer the fine-grained pollution
maps.

Specifically, we first apply a convolutional layer in
Encoder to extract low-level features:

Fc0 = E0(Qct ), (2)

where E0 denotes the convolutional layer and Qct is the
coarse-grained pollution map. Then, the Encoder gradually
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FIGURE 1. AQI-M3 framework for air pollution inference.

extracts high-level spatial features by R stacked residual
blocks, where a skip connection is applied to provide
lower-level feature information and avoid the gradient van-
ishing problem. The output feature map of the r-th residual
block can be represented by:

Fcr = Er (Fcr−1)+ F
c
r−1, (3)

where Er denotes the convolutional layers in the r-th residual
block and more details of its structure can be found in the
Appendix V. Eventually, the coarse-grained residual feature
is extracted by the Encoder, and then fed into the Decoder to
reconstruct the fine-grained information further.

In the Decoder, we first employ a convolutional layer
D0 with a long skip connection to combine the low-level and
high-level features extracted by the Encoder:

F0 = D0(FcR)+ F
c
0. (4)

Subsequently, the sub-pixel blocks [33] are introduced in
the Decoder to reconstruct the fine-grained information from
the output features of Encoder, in which each block can
convert the input feature map into a 2× upscaling map.
Afterward, a convolutional layer with tanh activation function
maps the feature map to an upscaling residual pollution map,
which is added to the nearest neighbor upsampling of the
coarse-grained map to generate the fine-grained pollution
map.

However, all the samples are aggregated into a grid map
according to their timestamp and coordinates under this
region view, thereby sacrificing the fine-grained sensing
information from large-scale sensors, especially from the
mobile sensors carried by vehicles.

3) TRAJECTORY-VIEW LEARNING WITH GRADIENT INSIGHTS
In order to exploit the abundant information in mobile
sensing, we propose trajectory-view learning with gradient
insights. On the one hand, the mobile sensors can provide

massive samples with high temporal and spatial resolution,
but they also bringmore noise due to the complicatedworking
conditions. Hence, due to their uncertainty, these original
samples cannot be used directly as high-dimensional fea-
tures. On the other hand, the spatial variation of sensing con-
centration in a region contains information about pollution
characteristics of this region and its neighbor, e.g., sudden
fluctuation often means the existence of a nearby pollution
source. Therefore, we introduce the sensing gradient in trajec-
tory view to represent the intensity of this variation, which can
be used to indicate where the more informative regions are.

Specifically, as shown in Fig. 2, our proposed Gradient-
based Attention Branch includes three phases: pollution
trajectory denoising, sensing gradient extraction, and spa-
tial attention generation. First, we adopt the Daubechies
4 wavelet method on each pollution trajectory to reduce
the high-frequency sampling noise from the low-cost sensor.
Then, for a pollution trajectory2(n) through the region (h,w),
we select the first-K and last-K samples in the descending
order of concentration values as the setF(n)

= {f1, f2, · · · , fK }
andL(n)

= {l1, l2, · · · , lK } respectively for the further extrac-
tion, where sample pairs {(f1, l1), · · · , (fK , lK )} can be orga-
nized from the set F and L. And the sensing gradient of each
sample pair can be calculated by:

g(n)k =
cfk − clk
dk

, (5)

where cfk and clk are the pollution concentration of the
k-th sample pair, and dk represents the geospatial distance
between the k-th sample pair. Later, the sensing gradient in
the region (h,w) from trajectory 2(n) can be written as:

G(n)
h,w =

∑K (n)

k=1 g
(n)
k

K (n) . (6)

The gridded sensing gradient G can be obtained by apply-
ing an average operation on pollution trajectories in each
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FIGURE 2. Diagram of Gradient-based Attention Branch, which includes
three phases: pollution trajectory denoising, sensing gradient extraction,
and spatial attention generation.

region. Subsequently, the gradient G is concatenated with
the max-pooling output and average-pooling output of the
encoded feature maps FcR, and then fed into an attention
subnet to generate current gradient-based attention matrix G
as:

G = AttSubnet(G,MaxPool(FcR),AvgPool(F
c
R)), (7)

where AttSubnet(·, ·, ·) is the attention subnet and more
details of its structure can be found in the Appendix V.
However, the samples from mobile sensors are usually

dynamic and uneven across regions, so gradient information
of a location may be unavailable at certain times. To avoid
this limitation, we introduce a memory network to utilize
the long-term historical gradient information. The histori-
cal gradient information is queried by the current external
factors, and fused with the current sensing gradient by the
Neural Gating Net. Then Neural Gating Net generates spatial
attention map for the Decoder in region view. Guided with
gradient-based attention map, the backbone network in the
region view can focus on learning the informative regions
in the pollution map. We elaborate on the mobile sensing
memory network design in the following subsection.

C. SPATIAL ATTENTION WITH MOBILE SENSING MEMORY
1) MOBILE SENSING MEMORY NETWORK IN TRAJECTORY
VIEW
To address the dynamic sampling problem mentioned in the
above subsection, we propose a novel Mobile Sensing Mem-
ory Net (MSMN) illustrated in Fig. 3. The spatial pattern of
air pollution are dynamic and related to external factors, such
as weather conditions [34] and human activities [35]. There-
fore, different from the previous work [25], [27], we redesign
a key-value pair scheme in MSMN, including the context
knowledge refined keys ki ∈ RP and the mobile sensing
related values Mi ∈ RH×W . Under the design of the key-
value pair, MSMN consists of four main operations: memory
querying, key refining, value construction, and memory read-
ing. The details of the operations are introduced as follows:

Memory Querying by External Factors. We adopt the
external factors related to the spatial patterns of air pollution
as the original querying input. Each categorical feature in the
external factors is converted into a low-dimensional vector
through the embedding layer. Then, we concatenate them all
together with the other continuous features as the external
feature vector et . The vector et is projected into the same
feature space as key ki by a fully connected layer, and then a
relevant probability can be calculated by:

pt,i = σ (Wet · ki), (8)

where · denotes inner product, W is the parameter matrix of
the fully connected layer, and σ (xi) = exi/

∑
j e
xj .

Key Refining with Context Knowledge. To ensure that the
queried values have higher correlationwith the corresponding
external factors, we introduce a key refining with context
knowledge inMSMN. Specifically, for a memory with d key-
value pairs, we first cluster the external factors into d clusters.
Based on the clustering result, the key refining loss can be
formulated as:

Le = −
∑
t

∑
i

ot,i log(pt,i), (9)

where ot,i is the i-th element in the one-hot encoding ot of the
clustering result at time t .
Value Construction with Sensing Gradient.We adopt cur-

rent gradient-based attention matrix G to construct the values
in the memory, and define a memory construction loss as
follows:

ut = argmax
i

pt,i,

Lm =
∑
t

∥∥Gt − φt �Mut

∥∥
1,1 , (10)

where � is the element-wise multiplication, and φt denotes
themaskmatrix paddedwith 1 in the available sensing region.
In other words, we expect that in the available sensing region,
the memory value matrix under a specific context has a
substantial similarity with the corresponding gradient-based
attention matrix.
Memory Reading with Attention Mechanism. Inspired

by the attention mechanism, we weight each memory value
matrix according to the relevant probability obtained in mem-
ory querying, and the output matrix of memory reading is
defined as follows:

M t =

d∑
i

pt,iMi. (11)

Thus, an attention matrix that reflects the global spatial pat-
tern in the current context can be extracted.

After extracting the attentionmatrixes from current sensing
and global memory, we need to integrate them for compre-
hensive modeling. Considering the dynamic spatial cover-
age of mobile sensing, we propose a Neural Gating Net to
adaptively adjust the importance of different information for
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FIGURE 3. Illustration of Mobile Sensing Memory Net (MSMN), which
consists of four main operations: memory querying, key refining, value
construction, and memory reading.

attention matrixes fusion. For example, the global informa-
tion should be more relied upon when vehicles equipped with
mobile sensors stop operating at night. Specifically, we first
learn a gate matrix by a convolutional layer based on current
gradient-based attentionGt and extracted global memoryM t :

V t = σ (Hc(Gt )+ Hg(M t )), (12)

where σ (·) indicates the sigmoid activation function, Hc and
Hg are the convolution functions performed on the current
and global attention matrixes, respectively. Afterward, the
final spatial attention map can be obtained by a nonlinear
convolutional transformation with a weighted concatenation
of the two types of information. Formally, the transformation
operation is defined as follows:

G̃t = Hσ (V t � Gt ‖ (1− V t )�M t ), (13)

whereHσ denotes the nonlinear convolutional layer with sig-
moid activation function, and (·‖ ·) denotes the concatenation
operation on two tensors.

2) SPATIAL ATTENTION-GUIDED INFERENCE IN REGION
VIEW
With the above fusion of current sensing and global memory,
the spatial attention map can help the Decoder in region
view to comprehensively understand the spatial pattern of
air pollution, thereby guiding the Decoder to focus on the
more informative parts of the pollution map. For example, the
information from regionswith drastic changes in the pollution
concentrations should be emphasized, while some areas with
strong stability should be suppressed. This process can be
summarized as follows:

Q̂t = Um(Qct )+ D(F0)� G̃t , (14)

where the Um denotes the nearest neighbor upsampling with
scaling factor m, D denotes the sub-pixel blocks and subse-
quent convolutional output layers in Decoder, and F0 is the
integration of the low-level and high-level features extracted
by the Encoder in (4).

D. MODEL TRAINING
Finally, we introduce the end-to-end training approach of the
AQI-M3 framework. Since there are no trainable parameters
in pollution trajectory denoising and sensing gradient extrac-
tion, we treat them as preprocessing procedures. Considering
that some regions in the ground-truth pollution map may not
be covered at certain times, we propose the masked mean
absolute error (MAE) as the reconstruction loss function,
which can be defined as follows:

Lr =
∑
t

∥∥∥ ˆ(Qt − Qt )� φt∥∥∥
1,1
, (15)

where φt denotes a binary mask matrix padded with 1 in
available regions of ground truth Qt . Finally, the Adam opti-
mizer [36] is adopted to learn the parameters of the AQI-M3

by minimizing the following loss function:

L = Lr + αLe + βLm, (16)

where Le is the key refining loss defined in (9), Lm is the
memory construction loss defined in (10), and α, β are hyper-
parameters to balance the importance of their corresponding
losses.

IV. EVALUATION
To evaluate the proposed AQI-M3 algorithm, we design a
fine-grained air pollution sensing system with both fixed
and mobile sensors. We conduct extensive experiments over
three datasets collected from real-world deployments, and
further analyze the performance of our proposed method for
air quality inference.

Specifically, we aim to answer the following research ques-
tions through the experiment results:
• RQ1: Whether AQI-M3 can outperform the state-of-the-
art methods for air quality inference with mobile sensing
system?

• RQ2: How do the designed components, e.g., multi-
view learning and mobile sensing memory, in AQI-M3

contribute to the inference performance?
• RQ3: How do the key hyper-parameters, i.e., the number
of memory slots d , loss weights α, and β, in AQI-M3

affect its performance?
• RQ4: Whether the proposed memory mechanism can
better utilize historical information and alleviate the
impact of dynamics coverage in mobile sensory data?

A. SYSTEM DESIGN AND DEPLOYMENT
1) HARDWARE DESIGN AND SYSTEM ARCHITECTURE
We design an integrated air sensing unit to collect air pol-
lution data, which can be installed on both buildings and
vehicles. Fig. 4a shows the internal structure of the sensing
unit, that mainly contains four modules: i) sensing mod-
ule, including four types of gas sensors, a particulate mat-
ter sensor, a temperature sensor and a humidity sensor,
ii) controlling module, that pumps outside air for the sen-
sors in sensing module, iii) communication module, that
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FIGURE 4. Hardware design and system architecture of our fine-grained air quality sensing system. We design a sensing unit that can be deployed
in fixed and mobile mode for data collection. The deployed units transmit the measurements to the cloud server through the 4G network. And the
inference algorithms run on the cloud server based on collected data, further supporting personal and management applications.

FIGURE 5. Typical deployment locations for the air sensing units.

transmits data packet including measurement results, times-
tamps, GPS coordinates and instructions, iv) power mod-
ule, that supplies power for all procedures of the sensing
unit.

As shown in Fig. 4b, distributed air sensing units are
deployed for air quality data collection, and then they transmit
the data packets to the cloud server for storage and further
process. In addition, the system provides a user interface to
display air quality levels from real-time monitoring and fine-
grained pollution maps produced by inference algorithms.
Furthermore, the system supports various personal and man-
agement applications, including route planning without pol-
lution exposure, pollution source location, and traffic control
assistance.

2) REAL-WORLD DEPLOYMENTS
Fig. 5 presents the fixed and mobile deployment modes of
our sensing unit. For the fixed configuration, the rooftop is a
typical deployment location, where the operation condition is
stable and maintenance is convenient. Thus this fixed config-
uration can enable long-term and high-precision monitoring.
Besides, buses, taxis, and environmental cruisers are used
as the carrier of the sensing unit in the mobile configura-
tion. Specifically, buses follow the preset routes, while the

trajectories of taxis and cruisers can be considered random.
All sensing units report monitoring data to the cloud server
every three seconds.

B. EXPERIMENTAL SETUP
1) DATASETS DESCRIPTION
The sensing units are deployed in specific areas of three cities
in China for data collection, including Tianjin, Nanjing, and
Foshan. Table 1 shows the corresponding detailed deploy-
ment time span and spatial coverage, where the number of
sensors is further divided into the number of static sensors
(S) and the number of mobile sensors (M). It can be noticed
that these three areas are located in different provinces, and
the distance between them is more than 700 kilometers.
Therefore, there are different climatic conditions, geograph-
ical features and regional functions in these areas, ensuring
the diversity of experimental data.

The dataset of each city contains two parts: air pollution
data from our sensing units and meteorological data from
official weather stations.

a: AIR POLLUTION DATA
Benefiting from our distributed sensing units with fixed and
mobile deployment, we can obtain fine-grained concentration
values of seven types of pollutants as shown in Table 1.
We focus on one type of these pollutants, PM2.5, for perfor-
mance evaluation, which is an important factor in determining
air quality levels and affecting human health according to the
World Health Organization (WHO) [37].

All sensors have been calibrated in the laboratory before
system deployment, and we also conduct in-field recalibra-
tion during the data collection. Therefore, we can assume that
the accuracy of all sensors is consistent, so that samples from
different sensors can be treated equally in the subsequent
processing. Then, the raw air pollution data can be further
preprocessed in the following two steps:
• denoising: In order to reduce the high-frequency noise
in actual operation, especially the impact of physical
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TABLE 1. Details of the real-world datasets collected from three cities.

environment fluctuations during the node movement,
we apply Daubechies 4 wavelet over the raw measure-
ment of each sensor.

• gridding: The measurements from different sensors are
aggregated to a grid according to their sampling time
and location, and then the concentration of each region
in the grid is assigned with the aggregated mean con-
centration. The time interval of aggregation is set to
60 minutes. The grid parameter we set here is 20 × 20,
and then we perform downsampling on grid maps to
10 × 10 as the coarse-grained inputs to evaluate the
inference performance.

With these settings, the inferred pollution map results have
a granularity of about 200 meters to 300 meters, which can
support street-level applications.

b: AUXILIARY FACTORS
Meteorological data is obtained from an open API of Dark
Sky.1 As shown in Table 1, we select five factors related to
pollution patterns, including temperature, humidity, visibility,
wind speed and wind direction. Besides, the factors related to
human activity, i.e., day (of the week) and hour (of the day),
can be extracted from the timestamp of sensor recordings.

2) COMPARED BASELINES
We consider two groups of competitive baselines for perfor-
mance comparison as below.

a: BASELINES WITHOUT ST MEMORY
• Inverse Distance Weighting (IDW): IDW [38] is a pop-
ular spatial interpolation method for air quality infer-
ence. This method considers the distance between the
observed and the predicted sample for calculating inter-
polation weights.

• Gaussian Process Regression (GPR): GPR is a Bayesian
machine learning approach that is widely used in air
quality inference [13], and we adapt it for the spatiotem-
poral dependencies modeling as a competitive baseline.

• ConvLSTM: ConvLSTM [39] is an effective deep learn-
ing model for spatial-temporal inference. ConvLSTM
can capture the complex nonlinearity in both spatial and
temporal dependencies.

1https://darksky.net/dev

• SRResNet: SRResNet [15] is a deep learning model
based on convolutional network integrating the resid-
ual structure, which is considered as an effec-
tive spatial-temporal inference method in some
works [9], [40].

b: BASELINES WITH ST MEMORY
• ST-ResNet: ST-ResNet [28] utilizes both short-term and
long-term information to model the spatial correlation.
This model is also a deep learning model based on
convolutional network and residual structure.

• STMN: Spatial-Temporal Memory Network [26]
improves ST-ResNet by introducing ConvLSTM to cap-
ture spatial and temporal dependencies together.

• MetaTP: MetaTP [27] proposes an external memory net-
work to leverage the global temporal and spatial pattern,
and we adapt it into a multipoint version for gridded
spatial data inference in our evaluation.

3) EVALUATION METRICS
We adopt the following three metrics to evaluate the perfor-
mance of our proposed algorithm:
• Root Mean Squared Error

RMSE =

√√√√ 1
N

N∑
t=1

∥∥∥Q̂φt − Qφt ∥∥∥2F ,
• Mean Absolute Error

MAE =
1
N

N∑
t=1

∥∥∥Q̂φt − Qφt ∥∥∥1,1 ,
• Mean Absolute Percentage Error

MAPE =
1
N

N∑
t=1

∥∥∥(Q̂φt − Qφt )� Qφt
∥∥∥
1,1
,

where N is the total number of testing samples, φ represents
the binary mask operation based on ground truth, Q̂

φ

t denotes
the inferred fine-grained air quality map with non-zero mask
at t-th time slot, and Qφt denotes corresponding ground truth.

4) IMPLEMENTATION DETAILS
Our implementation is based on TensorFlow 2.3.0, and all
neural network models are trained using an Nvidia GTX
Titan X GPU with 12 GB memory. The codes of baseline
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TABLE 2. Performance comparison under the task of inferring pollution map from 10× 10 to 20× 20 (upscale factor m = 2) with 5 repeated trials.

methods are from the original papers or public resources.
In our experiment, Adam [36] optimizer with the learning
rate of 0.001 is used for model training, and the batch size
is fixed on 32 for all methods. To be fair, we set the number
of stacked residual blocks R = 16 for all deep convolutional
models and train all ANN-based models for 200 epochs with
early stopping. Moreover, the mean absolute error (MAE) is
adopted as the loss function for the optimization. The size of
the convolution kernel is set to 3 × 3 in all residual blocks
of the region-view module. Besides, convolution layers with
1 × 1 kernels are used in the spatial attention subnet of
the trajectory-view module. Furthermore, the channel size of
hidden convolution layers in region view and trajectory view
is set to 64 and 32, respectively. For the categorical auxiliary
features, including day, hour, and visibility, we embed them
to R2, R3, and R3 respectively. Additionally, the dimension
of the key in the memory network is set to 16 based on the
cross-validation results.

C. EXPERIMENT RESULTS
1) OVERALL PERFORMANCE (RQ1)
We conduct experiments for performance comparison of dif-
ferent methods under the task of inferring the pollution map
from 10 × 10 to 20 × 20. Each experiment is repeated five
times independently, and the average results are shown in
Table 2 as overall performance. Moreover, we summarize
several important observations from the results as below.

First, AQI-M3 outperforms competitive baseline meth-
ods in three cities, demonstrating the effectiveness of our
AQI-M3 in different geographical and meteorological areas.
The results show the generalization capability of our pro-
posed inference method for different deployment scenarios.
Second, compared with some deep network methods without
spatio-temporal memory, i.e., ConvLSTM, SRResNet, the
baselines with spatio-temporal memory (ST-ResNet, STMN,
MetaTP) do not yield significant performance improvements.
The result indicates that neither conventional temporal nor
spatial memory can effectively extract and preserve reusable
patterns for air pollution inference. This could be attributed to
the fact that pollution patterns are strongly relevant to external
factors in addition to inherent spatio-temporal characteristics.
Our proposed memory network combines spatio-temporal

information from historical mobile sensing and external con-
textual knowledge, which can provide more accurate and
comprehensive information on pollution patterns. Third, the
performance improvement of AQI-M3 under the Foshan
dataset (24%∼35%) is more significant than the datasets
from other cities (8%∼28%). The possible reason is that,
as shown in Table 1, there are fewer mobile sensors deployed
in Foshan compared to other cities, and thus the uneven dis-
tribution of sensing data is more severe. Under such circum-
stances, our proposed mobile sensing memory network can
provide the pollution patterns in the corresponding context as
a global information supplement, bringing a more significant
performance improvement.

2) ABLATION STUDY (RQ2)
To fully investigate the effectiveness of core components
in AQI-M3, we conduct several ablation studies on its four
variants with one of these components removed:
• Sensing Gradient: We remove the sensing gradient
extraction from the trajectory-view learning, in other
words, the gradient G in equation (7) is removed.

• Memory Network: We remove the mobile sensing mem-
ory from trajectory view, which means that global
spatio-temporal pattern information is eliminated.

• Spatial Attention: We remove the spatial attention guide
mechanism, and instead directly treat the sensing gradi-
ent as part of the encoder input.

• Trajectory View: We remove the entire trajectory-view
learning, thus only the encoder-decoder network in the
region view is retained for inference.

We compare the inference performance of AQI-M3 and the
above variants, and the results are presented as box plots
in Fig. 6. We have several findings from these ablation
experiments. First, removing trajectory-view learning causes
significant performance degradation. This is because the
trajectory view introduces fine-grained mobile sensing data
that can greatly enhance the ability of air pollution patterns
modeling, which demonstrates the effectiveness of multi-
view learning. Second, applying the memory network to
provide global information for inference is essential. The
reason is that the memory network can store different pollu-
tion patterns from historical data, thus alleviating the spatial
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FIGURE 6. Performance boxplot of ablation studies on different datasets
with 5 repeated trials.

distribution unevenness of mobile sensing data. Third, the
sensing gradient extraction under the trajectory view is neces-
sary for improving the inference performance. This is because
extracting sensing gradients on trajectories can help to tackle
the uncertainty of the original samples while exploiting the
fine-grained information. Fourth, the spatial attention guiding
is also helpful for air quality inference. It is because the atten-
tion weights generated from sensing gradients encourage the
model to focus on learning informative regions.

3) PARAMETER SENSITIVITY ANALYSIS (RQ3)
To analyze the parameter sensitivity of the proposed model,
we explore the influence of several critical hyper-parameters,
including the number of memory slots d , the loss weight α
and β in equation (16).

a: NUMBER OF MEMORY SLOTS
Fig. 7 shows the performance variations with different d for
three datasets. From the figure, we can see that the number
of memory slots d , which determines the memory size and
represents the number of global pollution patterns, affects
the performance of the model on all datasets. On the one
hand, the performance deteriorates when the memory size
is too small, because an undersized memory may introduce
blended information of different patterns. On the other hand,

FIGURE 7. Performance w.r.t. memory slot size d on different datasets.

FIGURE 8. Performance w.r.t. loss weight α on different datasets.

FIGURE 9. Performance w.r.t. loss weight β on different datasets.

the model performance also degrades when the memory size
is too large. The possible reason is that an excessive memory
may try to store much redundant information thereby leading
to overfitting. Another finding is that the optimal memory
size for Foshan is smaller than that of other cities, which may
be because there are fewer pollution patterns in the Foshan
dataset due to its less data volume.

b: LOSS WEIGHTS FOR JOINT OPTIMIZATION
Fig. 8 presents the performance change with different α under
β = 10−4. It can be noticed that α can affect the inference
performance only in the Foshan dataset. Since the external
context changesmuchmore slowly than fine-grained air qual-
ity, e.g., the same weather condition may last more than one
day, the external factor data is sparse in the Foshan dataset due
to its shorter time span. Therefore, a moderate loss weight α
may be preferable to mitigate the underfitting and overfitting
of the memory network. For the loss weight β, Fig. 9 shows a
slight fluctuation of the model performance with different β,
which indicates that the model is not sensitive to β in all
datasets, as this term in loss function only aims to store
historical information into memory.
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FIGURE 10. Average sampling coverage over the day in the Foshan
dataset.

FIGURE 11. Uneven sampling distribution at different times in the Foshan
dataset (Nov.22, 2018).

4) CASE STUDY (RQ4)
To further verify the effectiveness of the memory network
under sampling with dynamic coverage, we conducted a
case study on the Foshan dataset. Fig. 10 shows the average
sampling coverage of the Foshan dataset at different times
over the day. It can be noteworthy that the valley of coverage
emerges near lunch and dinner time due to the break of staff.
Fig. 11 shows the uneven spatial distribution of sampling
frommobile sensors under real-world deployment at different
times on November 22, 2018, both under sparse coverage
(Fig. 11a) and dense coverage (Fig. 11b).

We compare the inference MAE of AQI-M3 and four
baselines for each operation hour of this day, including the
interpolation algorithm (IDW), the deep-learningmodel with-
out global memory (ConvLSTM), the deep model with global
memory (MetaTP) and the variant of our proposed model
without memory network (Non-Mem). First, our proposed
AQI-M3 obtains the best performance and the least variation
at all times under the uneven sampling distribution.Moreover,
the performance of both the conventional deep model Con-
vLSTM and the modelMetaTP with spatio-temporal memory
degrades severely during the time periodwith sparse coverage
(e.g., 11am to 2pm). However, our proposed model shows
a significant performance improvement compared to them
under sparse coverage. Meanwhile, the results of Non-Mem
vs. AQI-M3 further demonstrate the enhancement from the
memory mechanism leveraging historical information during
sparse sampling. In summary, the case study shows that our

FIGURE 12. Performance comparison of five methods over time in the
Foshan dataset (Nov.22, 2018).

AQI-M3 has better inference accuracy and robustness in sens-
ing systems with dynamic coverage.

V. CONCLUSION
In this paper, we propose a novel framework AQI-M3 for
fine-grained air quality inference, which can enhance the
learning capability on mobile sensing data via the multi-view
learning and global memory. Mobile sensing brings two crit-
ical challenges for inferring air pollution: the uncertainty
of collected data and the dynamic coverage of sampling.
To address these challenges, we employ sensing gradients
extraction under trajectory view to effectively utilize mobile
sensing data with uncertainty; we develop a memory network
to capture global spatial patterns from historical data and
overcome the issue of dynamic sampling coverage.Moreover,
spatial attention is applied to further guide learning on highly
informative regions, integrating current sensing information
and global spatial patterns. To evaluate the performance of
our proposed approach, we conduct extensive experiments on
real-world sensor systems deployed in three cities, consisting
of air sensing units in static and mobile configurations. The
evaluation results show that the proposed method achieves
about 17%∼29% MAE reduction compared to competitive
baselines in different cities. Furthermore, the detailed evalua-
tions also demonstrate the robustness of AQI-M3 under both
uneven and sparse coverage.

In the future, there are some topics that we can inves-
tigate further. Inspired by trajectory learning for human
activities [41], [42], we can extend the sensing gradient
extraction to higher-dimensional information learning on
the fine-grained pollution trajectories. Another aspect is
that we can try to introduce advanced graph learning on
static and mobile sensors, such as graph neural networks
[43], [44], to enable the collaborative inference of nodes with
different uncertainty, thus further improving the inference
performance.

APPENDIX A. DETAILED LAYOUT OF RESIDUAL BLOCK
AND ATTENTION SUBNET
A. DETAILED STRUCTURE OF RESIDUAL BLOCK
We utilize residual blocks with learnable parameters to repre-
sent equation (3) for feature extraction in AQI-M3. To further
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illustrate the main component, i.e., residual block, used in the
Encoder and attention subnet, we present its detailed layout
in Fig. 13a. Following the previous work in [15] and [9],
we introduce two convolutional layers with Batch Normal-
ization [45] in the block. Moreover, the Parametric Rectified
Linear Unit (PReLU) [46] is employed in the intermediate to
serve as a nonlinear activation function.We set the kernel size
of the residual blocks to 3×3 in Encoder. Therefore, a larger
receptive field can be obtained in the deeper stacked residual
blocks, which can capture the citywide spatial dependencies.
In addition, skip connections in these blocks provide features
at different spatial scales and avoid gradient vanishing. For
fairness, we adopt the same residual block structure in all the
convolution-based baseline methods.

FIGURE 13. Detailed layout of two main components in AQI-M3,
i.e., residual block and attention subnet.

B. DETAILED STRUCTURE OF ATTENTION SUBNET
The attention subnet is designed to map the sensing gradients
into an attention matrix, which is formulated in equation (7).
We introduce here the detailed structure of the attention sub-
net as shown in Fig. 13b, which consists of an input convolu-
tional layer, a residual block mentioned above, and an output
convolutional layer sequentially, where all kernel sizes are set
to 1×1. The sensing gradients are concatenated together with
the max pooling and average pooling results of the pollution
map as the subnet input. By this a nonlinear transformation of
the subnet, the information from the sensing gradients and the
pollution maps are combined in each local sensing region to
generate the attention matrix. Meanwhile, the residual block
in the subnet can provide information at different levels.
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