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ABSTRACT In this article, we propose a gradient-based event-driven model predictive control (GEMPC)
algorithm with a state-dependent threshold for nonlinear systems with additive disturbances and input and
state constraints. Firstly, a novel gradient-based event-driven strategy is constructed in the light of the error
gradient between the optimal prediction of the state and the real one, which could ensure the Zeno-free
property via a positive triggering interval. Subsequently, the novel triggering mechanism and the dual-
mode control are combined to establish a GEMPC framework, to further reduce the computing burden
and communication transmission especially when the computational resources are limited. Additionally,
the feasibility of the GEMPC algorithm and the input-to-state practical stability (ISpS) property of the
considered system have been strictly proved in theory. Finally, the simulation comparison results on control
of a perturbed nonlinear system are utilized to show the validity of the GEMPC algorithm.

INDEX TERMS Event-driven control, model predictive control (MPC), gradient-based mechanism,
constrained systems, state-dependent threshold.

I. INTRODUCTION
With the development of wireless technologies and net-
work communications, the cyber-physical system (CPS)
has received significant and increasing attention in recent
years which includes industrial control systems, smart grid
systems, intelligent transportation systems, telemedicine
systems, and so on [1]–[4]. In view of the wide application
of CPS, how to effectively control the networked system has
become of great importance.

In the field of control, model predictive control (MPC) is
an exceedingly efficient advanced algorithm with effective
control effect, due to the advantage of considering the
prospective system actions while effectively dealing with
system constraints [5]–[7]. Nevertheless, the traditional MPC
controller that addresses the optimal control problem (OCP)
at every sampling time may not be tractable because
of the limited communication resources and computing
power of the practical systems. Event-driven control is a
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state-feedback control strategy obtaining growing attention
nowadays. Unlike the time-driven control which needs to
update the control action periodically at each sampling
node, the event-driven control only acts when the expected
control performance cannot be guaranteed, which could sig-
nificantly save the energy consumption and communication
resources [8]–[10].

On account of the above-mentioned statement, there is
an efficient and resource-saving control mode generated by
combining MPC and event-driven control, viz. event-driven
MPC (EMPC), see [6], [11], [12] and references therein. The
authors of [6] reported an intuitive EMPC scheme for nonlin-
ear systems with disturbances where the triggering condition
was constructed in the light of the error gradient between the
predicted state and the actual one, with a time-varying robust
constraint in the OCP. Furthermore, the triggering condition
and robust state constraint were both optimized in [11],
to yield a larger disturbance margin than [6]; a new triggering
condition based on state integration was adopted in [12],
to further reduce the number of times of solving the OCP. For
perturbed nonlinear affine systems, via analyzing the closed-
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loop theoretical characteristic of the system, a self-triggered
MPC (SMPC) based on a zero-order holder was designed
in [13], additionally, Reference [14] extended this method
to a first-order holder and reduced the deviation between
the reconstructed control signal and the optimal control
signal. Different from the aforementioned strategies that
took the optimal cost as the Lyapunov function, the authors
in [15] determined a new EMPC algorithm to solve the OCP,
in which the controller selected a sampling mode for the
transmission, making this method more suitable for practice.
For perturbed nonlinear discrete-time systems, an adaptive
SMPC was proposed in [16], in which the optimal control
sequence and a prediction time gradually decreasing with
time were simultaneously given by solving the OCP, reducing
the average sampling frequency while ensuring a low level
of performance loss. In [17], a dynamic EMPC framework
without terminal constraints was proposed, in which the
prediction horizon shrunk with the system state approached
to the terminal region by addressing the relationship between
triggering rate and measurement frequency. To reduce the
computational burden in MPC, the authors of [18] proposed
a control scheme with the adaptive transmission intervals
via a sample-and-hold way for nonholonomic systems with
multiple constraints. A co-design technique was developed
for event-triggered control andMPC in [19], where triggering
conditions and control inputs were jointly designed to
achieve potentially less conservative results. In [20], two
EMPCs guaranteed that the system state of the closed-
loop system remained in a robust control invariant set and
the recursive feasibility of terminal constraints, respectively,
and in addition, the sample-hold approach was used to
avoid the transmission of continuous predictive control input
trajectories.

Note that for the perturbed systems, input-to-state practical
stability (ISpS) [21] theory is an important mean to discuss
the robust stability of systems, and actually, it is an
extended version of input-to-state stability (ISS) [22]. For
the nonlinear systems with input constraints and additive
disturbances, a quasi-min-max MPC control method was
proposed in [23], and the iterative feasibility of the control
algorithm was realized combined with ISS theory. A class
of bounded economic penalty functions were considered
in [24], in which the ISpS with the upper bound of
economic performance was established by optimizing the
weighted economic and tracking objective functions. The
authors in [25] studied an EMPC problem for perturbed
linear systems with constraints, in which the ISpS property
was guaranteed using the compressed uncertain parameter
set technique. The ISS characteristic of discrete-time per-
turbed nonlinear systems with EMPC scheme was studied
in [26], where an event-driven scheduling scheme was
established in a dual-mode MPC framework. Based on it,
the authors extended the previous work in [27], in which
the EMPCs with fixed and mixed thresholds were developed
respectively, and their ISpS characteristics were analyzed
theoretically.

Based on the above review for the design of EMPC, the
main challenging problems are twofold: the first challenge is
the design of a proper triggering condition in a reasonable
form, which should not only be easy to use but also could
save more computing and communication resources without
affecting the control performance; The second challenge is
the theoretical analysis regarding the inter-event time for
EMPC, which could specify the amount of saved computing
and communication resources explicitly for the proposed
EMPC method.

Note that the existing EMPC algorithms did not fully
consider the changing trend of state error, which could
reflect the speed of system state change and reduce the
influence of state mutation. In this paper, a gradient-
based EMPC (GEMPC) is suggested for perturbed nonlinear
systems that could alleviate the computational and com-
munication burden while guaranteeing control performance.
In particular, there is a state-dependent triggering threshold
in the control framework, which could solve the problem
that a fixed triggering threshold may be too conservative
as the actual state approaches or enters the terminal set.
The main contribution and novelty of our proposal could be
summarized as
• Considering nonlinear systems with additive distur-
bances, a GEMPC algorithm is proposed, which deter-
mines the controller update in the light of the error
gradient between the optimal prediction of the state and
the actual one.

• A triggering mechanism containing a state-dependent
threshold is introduced, which could remove the limit on
the upper bound of inter-event time in the conventional
event-driven control, to economize more computation
and communication resources.

• The sufficient conditions are derived to guarantee the
feasibility of the GEMPC framework and the ISpS
characteristic of the considered system. In addition, the
inter-event time allows a lower bound to guarantee the
Zeno-free property.

Note that the main motivation of this work is to improve
the performance of the existing event-triggered MPC by
developing a novel event triggering condition. More specif-
ically, compared with the state of the art event triggered
mechanisms, e.g., [17]–[20], which are almost all based on
the error information at a single time instant, introducing the
gradient of the state error between two consecutive sampling
instants could better characterize the dynamic change of
the controlled system under the event-driven sampling
mechanism, effectively avoid the impact of state mutation
on system performance and quicken the dynamic response
speed such that the closed-loop performance, as well as the
update frequency of the EMPC system, could be significantly
improved; and this has also been illustrated on the simulation
experiments shown in the Simulation section. Besides,
adding the state-dependent threshold in the proposed EMPC
triggering condition is aimed to eliminate the upper limit of
time between events in traditional event-driven control and
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further saves more computing and communication resources,
which becomes another main contribution of the proposed
method over its existing counterparts.

II. PRELIMINARIES
A. NOTATIONS
N (N≥0) and R (R≥0) are the (non-negative) natural integers
and the (non-negative) real numbers sets. Given a matrix E ,
ET represents its transpose, and its maximum and minimum
real parts of eigenvalues are defined as λmax(E) and λmin(E),
separately. For a column vector n, its P-weighted norm is
expressed as ‖n‖P =

√
nTPn, and Euclidean norm is ‖n‖ =√

nTn. Given two sets S1 ⊂ Rn, S2 ⊂ Rn, S1 v S2 means
{s ∈ Rn

|s+ s2 ∈ S1, ∀s2 ∈ S2}, where set operator ‘‘ v′′

denotes the Pontryagin difference.

B. SYSTEM DESCRIPTION
For the following perturbed nonlinear system:

ẋ(t) = h (x(t), u(t))+ δ (t) , t ≥ 0, (1)

with x(t0) = x0, t0 ≥ 0, where u(t) ∈ U ⊂ Rl ,
x(t) ∈ X ⊂ Rk are the control input and the system state,
and δ(t) ∈ W ⊂ Rm is the additive disturbances with the
maximum δ̄ = maxδ(t)∈W ‖δ(t)‖. X, U, W are compact sets
comprising the original point as an inner point.

The corresponding nominal system is described as

ẋ(t) = h (x(t), u(t)) , (2)

with the twice continuously differentiable function
h : Rk

× Rl
→ Rk .

Under the above conditions, system (2) could be linearized
as:

ẋ(t) = Mx(t)+ Nu(t), (3)

in which M = (∂h(x, u)/∂x)|(0,0),N = (∂h(x, u)/∂x)|(0,0).
It should be noted that the controller is devised using the
linearized system (3) is to design the local control gain K in
Lemma 1 later, which is only utilized when the states enter
the terminal set, and when the states are outside the set, the
control signal is obtained by solving the MPC optimization
problem considering the nonlinear system.
Definition 1: A continuous-time function f (x) : R≥0 →

R≥0 is identified as a K-function if: (1) f (0) = 0; (2) it is
monotonically increasing. f (x) is aK∞-function if it satisfies
that f (x) ∈ K and f (x)→∞ as x →∞.
Furthermore, a continuous-time function h(p, q) : R≥0 ×

N≥0 → R≥0 is a KL function if: (1) for a constant p ≥ 0 ,
h(p, q) is strictly decreasing, viz., h(p, q) → 0 as q → ∞;
(2) for a constant q ≥ 0 , h(p, q) ∈ K.
Definition 2: The nonlinear system ẋ(t) = h (x(t), δ(t)) is

considered to be ISpS, if there are functions β ∈ K, γ ∈ KL
and a constant c ≥ 0 satisfy

‖x(t)‖ ≤ γ (‖x0‖ , t)+ β(δ̄)+ c, ∀t ≥ 0. (4)

A standard assumption [5] is provided for (3) as follows.

Assumption 1: There exists a state feedback matrix
K ∈ Rn×m to stabilize the system (3).

Since such property can be satisfied for controllable
systems, which are very common, and thus Assumption 1
is not strong and has been used in a large number of
existing works regarding EMPC design [11], [12], [15], [16].
Furthermore, once it is ensured that the considered system is
controllable, the pole placement and linear optimal control
techniques can directly be used to obtain the state feedback
matrix K .

Based on the above discussions, a conventional lemma [6]
is shown as follows:
Lemma 1: Supposing that Assumption (1) is valid for

system (1), given matrices R, Q > 0, there are a matrix P,
and a constant ι, such that:
1) Q∗+(ιI+M+NK )TP+PT(ιI+M+NK ) ≤ 0 permits a

unique solution P > 0 and ι < −λmax(M +NK ), where
Q∗ = Q+ KTRK ;

2) � , {x ∈ Rn
| ‖x(t)‖ ≤ α} is a invariant set with

α > 0;
3) Ḟ(x(t)) ≤ −‖x(t)‖2Q∗ holds for x(t) ∈ �, with

F(x(t)) = ‖x(t)‖2P.
Remark 1: Note that the main purpose of Lemma 1 is to

obtain a number of preliminary properties of the considered
system to facilitate the theoretical analysis of the proposed
GEMPC algorithm, and more specifically, the purpose of
each term could be summarized as follows: The first term
provides a systematic method that can solve offline for the
weight matrix P and will be used to prove the closed-loop
asymptotic stability of the proposed GEMPC algorithm; The
second term defines the terminal invariant set with a radius
α, indicating that the system satisfies the state constraint
x(t) ∈ X in the terminal set and the linear state feedback
control law u = Kx satisfies the control constraint
u(t) ∈ U; The third term guarantees the Lyapunov function of
the system in the terminal set is decreasing, which indicates
that the system is asymptotically stable after the state enters
the terminal set.

For the nominal system (2), there is a standard assump-
tion [6], [28] to analyze the ISpS properties of aperiodic
control.
Assumption 2: h(x, u) with x ∈ X × U, has a Lipschitz

constant Lh and meanwhile, h(x(t),Kx(t)) with x ∈ � × U
has a Lipschitz constant Lk , such that

‖h(x1, u)− h(x2, u)‖ ≤ Lh ‖x1 − x2‖ ; (5a)

‖h(x1,Kx1)− h(x2,Kx2)‖ ≤ Lk ‖x1 − x2‖ . (5b)

Remark 2: Note that the nonlinear system h(x, u) is Lips-
chitz continuous both inside and outside the terminal region
with the Lipschitz constants Lh and Lk respectively. Since the
theoretically analysis of MPC is normally conducted within
the MPC region of attraction [11], [27], and given such a
limited region for the state, the aforementioned Lipschitz
constants can normally be directly calculated following the
method proposed in [27]. Therefore, (5a)-(5b) are standard
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assumptions for the nominal system, and could be found
in [11]–[14] and [26]–[28] and references therein.

III. GEMPC FRAMEWORK
A. OCP FOR GEMPC
For the nonlinear system (1), {tζ }, ζ ∈ N is a time sequence
set at which the OCP is handled, and the OCP is constructed
as:

û∗(t|tζ ) =argmin
û(t|tζ )

J
(
x̂(t|tζ ), û(t|tζ ), H

)
, (6)

s.t. ˙̂x(t|tζ ) = f
(
x̂(t|tζ ), û(t|tζ )

)
,

x̂(tζ |tζ ) = x(tζ ); (7a)

x̂(t|tζ ) ∈ Xt−tζ , ∀t ∈
[
tζ , tζ + H

]
; (7b)

x̂(tζ + H | tζ ) ∈ 2; (7c)

u(t|tζ ) ∈ U, ∀t ∈
[
tζ , tζ + H

]
, (7d)

in whichH is the prediction horizon. û(t|tζ ), x̂(t|tζ ) in system
(7a) are the input trajectory and state signal at instant t
predicted at tζ , ∀t ∈

[
tζ , tζ + H

]
. 2 ⊂ � is denoted for

the terminal set which will be defined in Section IV-A, and
the tightening constraint set Xt−tζ = X v St−tζ , where
St−tζ ,

{
x(t) ∈ Rk

: ‖x(t)‖ ≤ 2δ̄exp{Lh(t − tζ )}/Lh
}
, with

t ∈ [tζ , tζ+H ]. Given such a definition, St−tζ can be obtained
based on the following steps: (1) calculate the Lipschitz
constant Lh via the method mentioned in Remark 2; (2)
determine the disturbance maximum δ̄ following Theorem 2;
(3) obtain the time interval t−tζ according to the specific time
t and then obtain the required St−tζ . The goal of solving the
OCP is finding û∗(t|tζ ) that minimize the penalty function:

J
(
x̂(t|tζ ), û(t|tζ ),H

)
,
∥∥x̂(t + H |tζ )∥∥2P + ∫ tζ+H

tζ

∥∥x̂(t|tζ )∥∥2Q + ∥∥û(t|tζ )∥∥2R dt,
(8)

in which
∥∥x̂(t + H |tζ )∥∥2P and

∥∥x̂(t|tζ )∥∥2Q + ∥∥û(t|tζ )∥∥2R are
terminal and running cost terms, respectively.

B. GRADIENT-BASED EVENT-DRIVEN TRIGGERING
MECHANISM
Inspired by the studies in [29] and [11] and our prelim-
inary work [30], a state-dependent triggering mechanism
is proposed in this part, namely the gradient-based event-
driven triggering mechanism. In general, due to the additive
disturbances, the real state x(t|tζ ) and the optimal state
x̂∗(t|tζ ) cannot match with each other. Based on this fact, the
error gradient between the two state trajectories is installed as
the triggering threshold, and different from [6], [11], it has a
state-dependent term. Considering e(t) = x̂∗(t|tζ ) − x(t|tζ ),
the triggering instant could be chosen as:

tζ+1 = inf
t>tζ+γ

{t : ‖e(t)− e(t − ξ )‖=max{µ (‖x(t)‖) , ρ}} ,

(9)

FIGURE 1. The schematic diagram of GEMPC.

where µ (‖x(t)‖) ∈ K∞, ρ = 2δ̄exp{LhθH}/Lh with a
scaling constant θ ∈ (0, 1], and a triggering parameter
ξ ∈ [θH , H ]. Note that the proposed triggering condition (9)
means that the next triggering instant tζ+1 is determined by
the maximum value between the constant threshold ρ and the
state-dependent threshold µ(‖x(t)‖), and in order to facilitate
the implementation of the triggering condition, the upper
bound of ‖x(t)‖ is derived offline for the comparison such
that the online computation of ‖x(t)‖ could be effectively
reduced. Given such a design, the theoretical analysis is
then carried out based on the upper bound of ‖x(t)‖. The
GEMPC framework described in Fig. 1 has the following
basic principle: the sensor periodically measures the system
state and the event trigger determines whether to send
the state data to the remote controller. At each triggering
instant, the controller calculates the predictive control and
state sequences at the same time, and then transmits them
to the actuator and event trigger respectively. Then, when
the event trigger receives a new prediction state sequence
at the triggering time, the triggering condition is updated.
Finally, the actuator aperiodically updates the control input
and transfers it to the controlled plant. Given such an update
strategy, there is no need to solve the optimal control problem
or send the control signal between triggering instants, and
thus, is capable of reducing the online computation and data
transmission of the MPC system.

To ensure the Zeno-free property [31] of the event-driven
control, it is essential to guarantee that there is a positive
interval between inter-event time, which will be discussed via
the following theorem.
Theorem 1: If the triggering instant is obtained via (9),

then the triggering interval will not be less than θH .
Proof: Based on the triggering condition with x(t) ∈ X,

the theorem will be carried out from two cases.
Case i : When ρ > µ (‖x(t)‖), the triggering condition

(9) is converted to tζ+1 = inft>tζ+ξ {‖e(t)− e(t − ξ )‖ = ρ}.
By means of the trigonometric inequality and Lipschitz
continuity in Assumption 2, we can obtain: ‖e(t)‖ ≤
δ̄(t − tζ ) +

∫ t
tζ
Lh ‖e(t)‖ dt , and then ‖e(t)− e(t − ξ )‖ ≤

2δ̄exp{Lh(t − tζ )}/Lh could be got via Gronwall-Bellman
inequality [32]. Obviously, we can get tζ+1 − tζ ≥ θH
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for t = tζ+1, viz., the triggering interval is not less
than θH .
Case ii :When ρ ≤ µ (‖x(t)‖), according to the situation

inCase i, ρ ≤ µ (‖x(t)‖) ≤ 2δ̄exp{Lh(tζ+1−tζ )} for t = tζ+1
obviously holds, viz., the triggering interval is not less than
θH .

To sum up, the threshold is selected as (9) such that
the minimum time interval is θH to ensure the Zeno-free
property.
Remark 3: Unlike earlier EMPC approaches that only

consider the disturbance-based triggering threshold, such
as [6], [11], [12], the state-dependent triggering term
µ(‖x(t)‖) is introduced in this paper. It will make significant
sense since the proposed triggering mechanism could remove
the limit on the upper bound of inter-event time in the
conventional event-driven control, i.e., the intervals may be
larger than H , so as to further economize more computation
and communication resources.

C. GEMPC ALGORITHM
According to the analyses of the aforementioned OCP and
the gradient-based event-driven triggering mechanism, the
dual-mode [33] strategy is adopted to design the GEMPC
algorithm. That is to say, if state does not enter the terminal
set 2, the OCP is solved to get the optimal series; otherwise,
the state-feedback control law is utilized for brevity, and the
whole control process is summarized in Algorithm 1.

Algorithm 1 GEMPC With a State-Dependent Threshold
Require: Terminal set 2; weighting matrices P, Q, R;

prediction horizon H ; penalty function J ; state feedback
matrix K ; triggering thresholds µ & ρ.

1: while x(t) /∈ 2 do
2: if ζ == 0 then
3: Get û∗(t|tζ ) via solving the OCP in (6);
4: end if
5: while tζ+1 is not met do
6: Utilize û∗(t|tζ ) to (1);
7: end while
8: Get û∗(t|tζ ), t ∈ [tζ , tζ + H ] via solving the OCP;
9: ζ = ζ + 1;

10: end while
11: Apply the local controller Kx̂(t|tζ ) to (1);

IV. ANALYSIS
The main theoretical results are given in detailed in this
section, i.e., the feasibility of the GEMPC framework and the
ISpS characteristic of the considered system.

A. FEASIBILITY ANALYSIS
A standard assumption about the terminal set 2 needs to be
presented as a preliminary knowledge before the feasibility
theorem.

Assumption 3 [26]: For x(t) ∈ �, the system (2) will be
steered to the terminal set 2 , {x̂(ω|t) ∈ Rn

| ‖x̂(ω|t)‖ ≤
αf } at ω ≥ t + θH by the state feedback matrix K defined in
Assumption 1, where ω represents the time instant when the
state enters the terminal set 2 with a radius of αf .
Remark 4: Note that Assumption 3 is not exceedingly

strict, and on the contrary, it is conventional in many
literature, such as, for discrete systems [26], [34] and for
continuous systems [15], [27]. In fact, it is an extension of the
local controller defined in Assumption 1, and further explains
the relationship between � and Xt−tζ , i.e., � ⊂ Xt−tζ ,

∀t ∈ [tζ , tζ + H ].
The feasibility is analyzed as follows.
Theorem 2: For system (1), supposing that the OCP is

feasible at t0, and Assumptions 1-3 hold. Then Algorithm 1 is
feasible and x̂(tζ +H |t) ∈ �, ∀t ∈ [tζ , tζ+1] satisfied, if the
maximum value of disturbance satisfies

δ̄ ≤ min
{
δ̄1, δ̄2

}
(10)

with

δ̄1 =
Lh
(
α − αf

)
exp

{
LhH

(
1+max

{
θµ, θ

})}
− exp{LhH}

, (11a)

δ̄2 = Lk
(
α − αf

)
/exp

{
LkH max

{
θµ, θ

}}
, (11b)

in which µ(dx) = 2δ̄exp{LhθµH}/Lh, with a constant
dx ≥ ‖x(t)‖ for x(t) ∈ X.

Proof: A feasible control trajectory candidate ũ(η|t) is
established as follows:

for t ∈ (tζ , tζ + H ],

ũ(η|t) =

{
û∗(η|tζ ), η ∈ [t, tζ + H ]
Kx̂(η|t), η ∈ [tζ + H , t + H ]

; (12)

for t > tζ + H ,

ũ(η|t) = Kx̂(η|t), η ∈ [t, t + H ]. (13)

To prove the theorem, the OCP with a constructed
input candidate ũ(η|t) needs to satisfy the state tightening
constraint x̂(η|t) ∈ Xη−t , the terminal constraint x̂(t+H |t) ∈
2 and the input constraint ũ(η|t) ∈ U, for η ∈ [t, t + H ].

Firstly, we will prove that the x̂(η|t) meets the tightening
constraint x̂(η|t) ∈ Xη−t , ∀η ∈ [t, t + H ].∥∥x(η|t)− x̂∗(η|tζ )∥∥ ≤ δ̄(exp{Lh(η − tζ )} − exp{Lh(η −
t)})/Lh could be got via Gronwall-Bellman inequality.
Constructing that χ1 = x(η|t) − x̂∗(η|tζ ) + χ2, χ2 ∈ Sη−t ,
then we easily have ‖χ1‖ ≤ δ̄(exp{Lh(η− tζ )} + exp{Lh(η−
t)})/Lh ≤ 2δ̄exp{Lh(η − tζ )}/Lh, so χ1 ∈ Sη−tζ . Since
x̂∗(η|tζ ) ∈ Xη−tζ , then we obtain x(η|t) + χ2 = χ1 +

x̂∗(η|tζ ) ∈ X, i.e., x(η|t) ∈ Xη−t , ∀η ∈ [t, t + H ].
Secondly, the terminal constraint satisfaction

x̂(t +H |t) ∈ 2 will be proved from the following two cases.
Case i

(
tζ+1 ≤ tζ + H

)
: It could be deduced that∥∥x̂(tζ + H |t)− x̂∗(tζ + H |tζ )∥∥

≤
∥∥x(t)− x̂∗(t|tζ )∥∥ exp{Lh(tζ + H − t)}. (14)
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Then via trigonometric inequality and the condition (11a),
we get∥∥x̂(tζ + H |t)∥∥ ≤ exp{Lh(tζ + H − t)}

∥∥x(t)−x̂∗(t|tζ )∥∥+αf
≤ α. (15)

Then (15) yields that x̂(t + H |t) ∈ �, ∀t ∈ [tζ , tζ + θH ].
Considering Assumption 3, x̂(t + H |t) ∈ 2, ∀t ∈ [tζ +
θH , tζ + H ] can be got.
Case ii

(
tζ+1 > tζ + H

)
: It has been proven that x̂(t +

H |t) ∈ 2, ∀t ∈ [tζ + θH , tζ + H ]. For t ∈ [tζ + H , tζ+1],
we first analyze the relation between x(t) and x̂(t|tζ ).
Noting that

∥∥x(t)− x̂(t|tζ )∥∥ ≤ Lk ∫ ttζ+H ∥∥x(t)− x̂(t|tζ )∥∥ dt+∥∥x(tζ + H )− x̂(tζ + H |tζ )
∥∥, so we get ‖x(t)‖ ≤ ∥∥x̂(t|tζ )∥∥+

δ̄exp{LkH max{θµ, θ}}/Lk ≤ α with the help of Gronwall-
Bellman inequality and condition (11b), and a similar
corollary is described in detail in [12]. Thus, we yield that
x̂(t + H |t) ∈ �, ∀t ∈ [tζ , tζ + θH ] and x̂(t + H |t) ∈ 2,
∀t ∈ [tζ + θH , tζ + H ] based on Assumption 3.
Thirdly, ũ(η|t) ∈ U, ∀η ∈ [t, t + H ] could be guaranteed

directly since the definition of û∗(η|tζ ) for η ∈ [t, tζ + H ]
and Kx̂(η|t) in Assumption 3.
The proof is completed.

B. STABILITY ANALYSIS
We will prove the ISpS characteristic of the system under the
proposed GEMPC controller in detail in this section.

The penalty function J (x(t), ũ(η|t)) is specified as a Lya-
punov function 4(x(t)). Before proving the main content of
stability, a theorem about two Lyapunov functions4(x(a; t)),
4(x(b; t)) is proposed as an essential precondition, in which
x(a; t), x(b; t) are two state with a, b ∈ [tζ , tζ+1] and
x(a; tζ ) = x(b; tζ ).
Theorem 3: For system (2), given two Lyapunov functions

4(x(a; t)), 4(x(b; t)) satisfying x̂(a; tζ + H |t), x̂(b; tζ +
H |t) ∈ � for t ∈ [tζ , tζ + H ] and x̂(a; t), x̂(b; t) ∈ � for
t ∈ [tζ + H , tζ+1], then the following inequality could be
derived:

4(x(a; t))−4(x(b; t)) ≤ ε (‖x(a; t)− x(b; t)‖) , (16)

with K−functions

ε(η)

= max{ε1(η), ε2(η)}, (17a)

ε1(η)

= (
2dxλmax(Q)

(
exp{Lh(tζ + H − t)} − 1

)
Lh

(17b)

+
2αλmax(Q∗)exp{Lh(tζ + H − t)}

(
exp{Lk (t − tζ )} − 1

)
Lk

+2αexp{Lh(tζ + H − t)+ Lk (t − tζ )})η,

ε2(η)

= (
2αλmax(Q∗) (exp{LkH} − 1)

Lk
+ 2αexp{LkH})η. (17c)

Proof: This theorem will be proved in two cases.

Case i
(
tζ+1 ≤ tζ + H

)
: According to (8), we know that

4(x(a; t))−4(x(b; t))

≤

∫ tζ+H

t

(∥∥x̂(a; η|t)∥∥2Q − ∥∥x̂(b; η|t)∥∥2Q) dη
+

∫ t+H

tζ+H

(∥∥x̂(a; η|t)∥∥2Q∗ − ∥∥x̂(b; η|t)∥∥2Q∗) dη
+
∥∥x̂(a; t + H |t)∥∥2P − ∥∥x̂(b; t + H |t)∥∥2P . (18)

For η ∈ [t, tζ + H ], it could be derived that∫ tζ+H

t

(∥∥x̂(a; η|t)∥∥2Q − ∥∥x̂(b; η|t)∥∥2Q) dη
≤ 2dxλmax(Q)

∫ tζ+H

t
exp{Lh(η − t)}dη ‖x(a; t)− x(b; t)‖

≤
2dxλmax(Q)

(
exp{Lh(tζ + H − t)} − 1

)
Lh

×‖x(a; t)− x(b; t)‖ , (19)

in which dx is defined in Theorem 2.
For η ∈ [tζ + H , t + H ], according to (14) we have that∫ t+H

tζ+H

(∥∥x̂(a; η|t)∥∥2Q∗ − ∥∥x̂(b; η|t)∥∥2Q∗) dη
≤ 2αλmax(Q∗)exp{Lh(tζ + H − t)}

×

∫ t+H

tζ+H
exp{Lk (η − tζ − t)}dη ‖x(a; t)− x(b; t)‖

≤
2αλmax(Q∗)exp{Lh(tζ + H − t)}

(
exp{Lk (t − tζ )} − 1

)
Lk

×‖x(a; t)− x(b; t)‖ . (20)

For the third term, according to x̂(tζ + H |t) ∈ �, we have∥∥x̂(a; t + H |t)∥∥2P − ∥∥x̂(b; t + H |t)∥∥2P
≤ 2αexp{Lh(tζ + H − t)+ Lk (t − tζ )} ‖x(a; t)− x(b; t)‖ .

(21)

Combining (19)-(21), we know that ε1 could be presented
as (17b).
Case ii

(
tζ+1 > tζ + H

)
: The difference between

4(x(a; t)) and 4(x(b; t)) could be derived as:

4(x(a; t))−4(x(b; t))

≤

∫ t+H

t

(∥∥x̂(a; η|t)∥∥2Q∗ − ∥∥x̂(b; η|t)∥∥2Q∗) dη
+
∥∥x̂(a; t + H |t)∥∥2P − ∥∥x̂(b; t + H |t)∥∥2P . (22)

For η ∈ [t, t + H ], we know∫ t+H

t

(∥∥x̂(a; η|t)∥∥2Q∗ − ∥∥x̂(b; η|t)∥∥2Q∗) dη
≤ 2αλmax(Q∗)

∫ t+H

t
exp{Lk (η − t)}dη ‖x(a; t)− x(b; t)‖

≤
2αλmax(Q∗) (exp{LkH} − 1)

Lk
‖x(a; t)− x(b; t)‖ . (23)
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Similar to (21), we get∥∥x̂(a; t + H |t)∥∥2P − ∥∥x̂(b; t + H |t)∥∥2P
≤ 2αexp{LkH} ‖x(a; t)− x(b; t)‖ . (24)

Then (17c) can be derived via (23) and (24).
According to the aforementioned two cases, Theorem 3 has

been proven.
The ISpS characteristic of the system under the proposed

GEMPC controller is described via the following theorem.
Theorem 4: Supposing that Assumptions 1-3 and the

conditions in Theorem 2 are valid, then the system (1) is
ISpS, i.e., there are a KL−function γ , a K−function β and a
constant c ≥ 0 satisfy

‖x(t)‖ ≤ γ (‖x0‖ , t)+ β(δ̄)+ c, ∀t ≥ 0. (25)

Proof: For Lyapunov function 4(x(t)), we know that

4(x(t)) ≥ γ1 (‖x(t)‖) , (26)

where γ1 (‖x(t)‖) = λmin(Q)
(
‖x(t)‖2

)
, x(t) ∈ X is a

K∞− function with ‖x(t)‖.
According to Theorem 3, we get that

J
(
x̂(t),Kx̂(t),H

)
≤ ‖x(t)‖2 , x(t) ∈ 2. (27)

Considering (26), (27) and the boundedness of set X, it can
be concluded that

4(x(t)) ≤ γ2 (‖x(t)‖)+ c1 (28)

in which γ2 (‖x(t)‖) =
α2v

α2f

‖x(t)‖2 with a constant αv > αf

is a K∞−function with ‖x(t)‖ and c1 = supx(t)∈X |4(x(t))−
J
(
x̂(t),Kx̂(t),H

)
|.

Consider two Lyapunov functions 4(x̂(t)) and
4(x̂(t +1t)).
Case i : If [t, t +1t] ⊂ [tζ , tζ + H ], we get

4(x̂∗(t+1t|tζ ))−4(x̂∗(t|tζ )) ≤−
∫ t+1t

t

∥∥x̂∗(η|tζ )∥∥2Q dη,
(29)

and then we know

D+4(x̂∗(t|tζ )) = lim
1t→0+

4(x̂∗(t +1t|tζ ))−4(x̂∗(t|tζ ))
1t

≤ −
λmin(Q)α2f

α2v

(
4(x̂∗(t|tζ ))+ c1

)
. (30)

Case ii : If [t, t +1t] ⊂ [tζ + H , tζ+1], we get

4(x̂(t +1t|tζ ))−4(x̂(t|tζ )) ≤ −
∫ t+1t

t

∥∥x̂(η|tζ )∥∥2Q∗ dη,
(31)

and we know

D+4(x̂(t|tζ )) ≤ −λmin(Q∗)4(x̂(t|tζ )). (32)

Based on the comparison principle [35] with (30) and (32),
we know that

4(x̂(t|tζ ))

≤ exp{−min{
λmin(Q)α2f

α2v
, λmin(Q∗)}(t − tζ )}4(x(tζ ))+ c1.

(33)

Combining Theorem 3 and (33), we obtain

4(x(t)) ≤ exp{−min{
λmin(Q)α2f

α2v
, λmin(Q∗)}t}4(x0)+ c1

+ε (‖e(t)‖) . (34)

According to (9), (26) and (33), we know that

‖x(t)‖ ≤ γ (‖x0‖ , t)+ β(δ̄)+ c, (35)

in which

γ (‖x0‖ , t)

= γ−11 (exp{−min{
λmin(Q)α2f

α2v
, λmin(Q∗)}t}γ2 (‖x(t)‖));

(36a)

β(δ̄)

= γ−11

(
ε
(
2δ̄exp{LhHmax{θ, θµ}}/Lh

))
; (36b)

c

= γ−11 (c1) . (36c)

According to Definition 2, system (1) is ISpS in X.

V. SIMULATION VERIFICATION
In this section, two examples are given to verify the
effectiveness of the proposed algorithm.

A. EXAMPLE 1
The simulation of the proposed GEMPC framework on a
classical nonlinear system [5], [11], [36], and the comparison
with traditionalMPC as well as EMPC [11] are provided. The
nonlinear system with additive disturbances is shown as:

ẋ1(t) = x2(t)+ u(t) (ϑ + (1− ϑ)x1(t))+ δ(t),

ẋ2(t) = x1(t)+ u(t) (ϑ − 4(1− ϑ)x2(t)) , (37)

where the parameter ϑ ∈ (0, 1) is chosen as 0.6. The
input constraint is u(t) ∈ [−2, 2] and the state constraint
is x1(t), x2(t) ∈ [−1.2, 1.2]. The weight matrices in (8)

are chosen as R = 0.5, Q =

[
0.2 0
0 0.2

]
, and P is

calculated as
[
3.8546 1.8546
1.8546 3.8546

]
based on the feedback matrix

K = [1.5570 1.5570] in the Theorem 3. The Lipschitz
constants are set as Lh = 1.5, Lk = 3.0. The parameters of
invariant set and terminal set are α = 0.3435, αf = 0.1223.
The parameters related to the GEMPC controller are set to
H = ξ = 1.0s, θ = 0.2, θµ = 0.4. The total simulation time
is 10s, and the sampling period is set to 0.05 s. The initial state
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TABLE 1. Disturbance upper bounds comparison.

FIGURE 2. Comparison of x1(t).

FIGURE 3. Comparison of x2(t).

x0 = (−1,−1), and the disturbance δ(t) = 0.009 × sin(t)
with the upper bound δ̄ = 0.0090 which is calculated via
Theorem 2.

Note that the disturbance upper bounds are listed in Table 1
under the same parameter configurations, indicating that
Algorithm 1 has a greater anti-disturbance margin than [11].
In all figures, standard MPC, EMPC in [11] and Algorithm 1
are represented by green, blue and red lines, respectively. The
comparison of state trajectories x1(t) and x2(t) are described
via Fig. 2 and Fig. 3. Besides, Fig. 4 expresses the control
signal under three control strategies. It is observed that,
under the control of GEMPC algorithm, the state signal x(t)
and the control input u(t) can satisfy the constraints just as
the existing works. It is also worth mentioning that due to
the state-dependent threshold and the consideration of the

FIGURE 4. Comparison of u(t).

FIGURE 5. Comparison of triggering instants.

gradient of the state error in the proposed event triggering
condition, the state mutation is effectively reduced and
therefore the fluctuation of the input signal could relatively
smaller than that of the existing methods. Fig. 5 reveals the
comparison of triggering instants between EMPC [11] and
Algorithm 1 where the time when the ordinate is 1 indicates
that the OCP needs to be solved again. It is reflected that our
proposal has a larger triggering interval and a fewer triggering
time than EMPC, which is clearly illustrated by the data in
Table 2, i.e. Algorithm 1 reduces the optimization times by
93.5% compared with periodic MPC and 45.8% compared
with EMPC [11]. It could be concluded that our proposal
can save quite a few computing and communication resources
while not negatively affecting control performance.

B. EXAMPLE 2
The cart-damper-spring system is the most common mechan-
ical vibration system, which is widely used in real life, such
as buffer in automobile damping device, damper in building
seismic device, and so on. To make the validation more
practically convincible, a cart-damper-spring system [6],
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TABLE 2. Comparison of solving times of OCPs.

FIGURE 6. Comparison of displacements under MPC, EMPC [12] and
GEMPC.

[12], [37] is considered in this section, whose dynamic
equation is shown as follows:ẋ1(t) = x2(t),

ẋ2(t) = −
k
m
e−x1(t)x1(t)−

ν

m
x2(t)+

u(t)
m
+
δ(t)
m
,

(38)

where x1(t), x2(t) are the displacement and velocity of the
cart, and the mess is m = 1.25kg. u(t) is the input signal
bounded by [−1.5, 1.5]. The nonlinear spring is with a factor
k = 0.9N/m, and damper parameter is ν = 0.42N · s/m.
The Lipschitz constants are computed as Lh = 1.4 and Lk =
2.6. Given the weight matrices Q = [0.2 0; 0 0.2] and R =
0.5, it can be concluded that K = [−0.4454, − 1.0932] and
P = [0.2927 0.2026; 0.2026 0.3565] following Lemma 1.
The invariant set and the terminal set are set as� = {x ∈ Rn

|

‖x(t)‖ ≤ 0.5320} and 2 = {x ∈ Rn
| ‖x(t)‖ ≤ 0.2725}, i.e.,

α = 0.5320, αf = 0.2725. The parameters are set as ξ =
1s, θ = 0.2, θµ = 0.4, δ(t) = 0.005× sin(t). The prediction
horizon is chosen to H = 1.6s and the total simulation time
is 10s. The starting point is x0 = [1,−0.6] and the target is
the origin.

Based on the above parameters, the comparison results
of the time-driven MPC, EMPC [12] and the proposed
GEMPC are provided via Figs. 6-9. Fig. 6 and Fig. 7
show the comparisons of the displacements and velocities
of the cart, and Fig. 8 describes the comparison of control
signals. It can be seen that the control performance of the
GEMPC is basically comparable to that of the other two
MPC strategies. Besides, according to Fig. 9, we know
that with similar control performance, the number of times

FIGURE 7. Comparison of velocities under MPC, EMPC [12] and GEMPC.

FIGURE 8. Comparison of control signals under MPC, EMPC [12] and
GEMPC.

TABLE 3. Comparison of times of solving OCPs.

GEMPC solves the OCP is substantially reduced relative
to EMPC in [12]. In order to visualize the advantages of
the proposed algorithm, the relevant data are presented in
Table 3, indicating that compared with the time-driven MPC
and EMPC in [12], the updated time of Algorithm 1 could be
reduced by 93.5% and 52.6% respectively.

Furthermore, please note that compared with other types
of computational efficient controller, e.g., [38]–[41], the
proposed method may not achieve the best performance
in terms of the computing burden, but as the proposed
GEMPC is able to handle explicitly the input and state
constraints, it would still be of certain significance for some
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FIGURE 9. Comparison of triggering instants under EMPC [12] and
GEMPC.

control systems with physical constraints, e.g., quadruple
tank process systems, mobile robot systems and continuous
stirred tank reactors.

VI. CONCLUSION
In this work, we suggest a GEMPC algorithm for nonlinear
systems with additive disturbances, in which the error
gradient between the optimal prediction of the state and the
actual one is specified as the triggering condition. Moreover,
the triggering threshold is designed with a state-dependent
item rather than a fixed value one, to further alleviate the
computational and communication burden. Subsequently, the
Zeno-free property, the algorithm feasibility and the ISpS
property of the considered system are studied theoretically.
In the end, the simulation and comparison results demonstrate
the effectiveness of the proposed GEMPC framework. The
potential future research directions mainly involve extending
the proposed method to handle other more complex systems,
e.g., distributed systems subject to additive noise. Besides,
as cyber security problem of event-based control system
becomes more and more important recently, extending the
proposed method to tackle with different cyber-attacks, e.g.,
FDI attack, is another promising future research direction.
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