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ABSTRACT In this paper the sliding mode controller is designed using the reaching law approach. The
system model considers the time-varying uncertainties and the unknown, external disturbances. The main
idea is to guarantee that the state limitations (in form of linear combinations) hold for the whole regulation
process. Moreover, the control signal restriction is taken into account and the chattering on the boundary
of the admissible set is fully eliminated. Furthermore, the controller ensures fast, monotonic and finite-time
convergence of the representative point to the switching hyperplane.

INDEX TERMS Continuous-time system, control signal restriction, state variables limitation, sliding mode
control, reaching law technique.

I. INTRODUCTION
Currently, an increasing number of variable structure control
strategies appear in practical applications [1]–[8]. Across
many different types of these regulation methods the sliding
mode control was demonstrated to be a fine solution to deal
with systems perturbed by unknown disturbances and model
uncertainties. The effectiveness and computational efficiency
of this approach encourage researchers to enhance theory
and find new fields where the sliding mode control can be
implemented [9]–[17].

The origins of this strategy can be found in the work
of Emelyanov [18], where the author made an unexpected
observation that switching between two unstable systems,
can result in a stable one. Next results were presented by
Drazenowić in [19], where she proved that the sliding mode
control is not only robust, but also insensitive to perturbations.
Chronologically the sliding mode control was firstly applied
into the continuous-time systems [20] and then theory was
expanded for discrete-time objects [21].

The idea of the sliding mode control is to drive the rep-
resentative point to the predefined switching hyperplane and
after that establish the stable sliding motion along the men-
tioned manifold until the desired state is reached. Hence,
it is reasonable to distinguish two phases of the regulation
process: the reaching phase and the sliding phase. It is also
important to notice that controller design can be made in
two different ways. We can propose the control input and
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examine the stability in the sliding phase or use the reaching
law (called also approach law). The second method consist
of predetermining the dynamics of the sliding variable and
was firstly introduced by Gao and Hung in [22]. Then, this
approach was studied bymany researchers. As a consequence
over the years plenty of different reaching laws were pre-
sented, offering a wide range of system properties.

An interesting approach to manipulator control was pre-
sented in [23]. In this work the discontinuous part of the input
signal is adaptively selected to minimize chattering while still
ensuring the existence of the sliding mode. Unfortunately, the
results are not general and can be applied only to a link robotic
manipulator dynamics. Moreover, there are no strict limits
imposed on the state variables. Nevertheless, the problem
of constraining the state variables and the control signal
in sliding mode control has been undertaken only by few
researchers [24]–[32]. Unfortunately, all of the works exhibit
some drawbacks. In paper [29] only the third order plant
was taken in account subject to the velocity and acceleration
restrictions. In [28] the nonlinear n-th order dynamical system
was analyzed, however the approach enables constraining
only one of the state variables and the control signal. In the
work [27] a system of arbitrary order is controlled allowing to
limit all of the state variables and control signal. Nevertheless,
the disturbances are assumed to be sufficiently smooth func-
tions, which is not common in practice. Moreover, in [26] the
disturbances and systems uncertainties were assumed to be
zero, which limits the practical applicability. In [30] the lin-
ear servomechanism was controlled, however only the input
constraint was guaranteed. Similarly in [31] the control signal
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was limited for Euler-Lagrange plants. In the paper [32]
authors considered control of the PMSM drive system. The
trajectory was constrained, unfortunately it is not clear how to
generalize the results for any dynamical system. An adaptive
neural network nonsingular sliding mode controller was used
in [33] to tackle the problem of permanent magnet linear
synchronous motor control. The main difficulty in such a
control plant are the unknown parameters of the motor, which
can moreover vary with position. The sliding mode control
paradigm therefore seems the best choice for this task. The
neural network is used to estimate on-line the model parame-
ters, and the adaptive part ‘‘fine-tunes’’ the discontinuous part
of the control signal to minimize chattering. The approach is
then tested on an experimental stand. In [34] a sliding mode
controller for uncertain non-linear time-varying systems is
proposed. A small drawback of the proposed solution is
that the time-varying sliding hyperplane converges asymp-
totically to the desired position, which means that the exact
system dynamics specified by choosing its final orientation
will not be achieved in finite time. Despite of this, the sim-
ulation results confirm some advantages over the previous
control methods, such as slightly faster convergence rate. The
paper [35] proposes a terminal sliding mode controller, used
in tandem with a sliding mode observer, to control second
order systems, such as robot manipulators. Unfortunately, the
constraints of states are not taken into account – the authors
assume that the states are bounded, but do not demonstrate
that their approach in fact ensures this to be true. However,
computer simulations of a PUMA560 manipulator show the
application potential of the method. A survey of sliding mode
control in the presence of constraints is presented in [36].
The drawback of a large part of the described algorithms is
that they take into account either the control signal limit or
the state constraints, and not both of them. Moreover, some
of the proposed solutions allow only to limit the part of the
states, that form a ‘‘chain’’ of integrators, while the others
evolve freely. In [41] the control of a second order integrator
subjected to disturbances is considered. Such a system can
model e.g. mechanical systems, such as joint dynamics in
manipulators. The admissible region (in which the constraints
are not violated) is divided into two regions. If the state is in
one of them, satisfying the constraints in the future evolution
of the trajectory is ensured, from the other one it is not. The
proposed solution allows to limit both the control signal as
well as the two state variables, however it is not entirely clear,
how it could be extended to higher order systems. The authors
propose one such extension, however it allows only to limit
two state variables, irrespective of the order of the system.
An interesting approach for controlling constrained nonlinear
systems is presented in [42]. It not only ensures satisfying
state and input constraints, but it also guarantees, that each
state variable will not change its sign (it is assumed that the
desired state is the origin). The method relies on making the
nonlinear system follow a trajectory of a linear, stable one,
with eigenvalues chosen by the designer. Unfortunately, the
above-mentioned advantageous properties are only achieved,

assuming that the number of states and inputs is identical,
which is very seldom the case.

Therefore, in this paper we examine this issue upon the
perturbed continuous time system with time-varying model
uncertainties and external disturbances (which do not need
to satisfy the matching conditions). We propose a reaching
law that ensures the fastest, monotonic and finite-time con-
vergence of the representative point to the predefined switch-
ing hyperplane, simultaneously limiting state constraints and
control input, extending results obtained in [37]. The novelty
of this paper consists of considering the state constraints
in the forms of linear combinations, fully eliminating the
chattering effect on the boundaries of the admissible set
and increasing the convergence speed by taking into account
maximal impact of model uncertainties at every time instant.
It is also worth to notice that the presented control strat-
egy does not require any additional computer tuning in
comparison to some advanced methods utilizing e.g. neural
networks [38], [39].

This paper is organized as follows. Section 2 contains the
description of the system dynamics and the general con-
troller design, based on the proposed reaching law. Further,
in Section 3, the problem of constraining the state variables
and the control signal is studied. Sliding variable convergence
rates are calculated in such a way to keep the certain restric-
tions from being violated. Section 4 focuses on the control
strategy and the sufficient condition for monotonic and finite
time convergence of the representative point to the switching
hyperplane. Section 5 consists of the simulation example and
lastly Section 6 presents the conclusions.

II. SYSTEM MODEL
Let us take into consideration the continuous-time, linear
system perturbed by external disturbances and subjected to
time-varying model uncertainties. Thus, the system dynamics
is given by the following equation:

ẋ (t) =
[
A+ Ã (t)

]
x (t)+ bu (t)+ d (t) , (1)

where A is a n × n dimensional state matrix, Ã (t) describes
time-varying model uncertainties, x (t) is a n×1 dimensional
state vector, b = [b1, . . . , bn]T is a vector multiplying scalar
control input u (t) and d (t) is a vector that represents the
external disturbances. Although the perturbations and uncer-
tainties are unknown, we consider that they are bounded for
the whole regulation process: |di (t) | < Di, |̃aij| < vij for
i, j ∈ {1, . . . , n}. In order to group these bounds we introduce
D = [D1, . . . ,Dn]T , V =

[
vij
]
. Next, we define the

sliding variable as s (t) = cT x (t), where cT = [c1, . . . , cn].
Therefore, the switching hyperplane is given by

cT x (t) = 0. (2)

Vector c needs to be chosen in such a manner to ensure cT b 6=
0. Otherwise it would be impossible to design the sliding
mode controller as the control signal would have no impact
on the value of the sliding variable. In order to predetermine
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the evolution of the sliding variable we establish the reaching
law

ṡ (t) = −K sgn [s (t)]+ cT d (t)+ cT Ã (t) x (t) . (3)

were K is a sliding variable convergence rate. In the remain-
der of the paper we will find the maximum value of K to
ensure the fastest convergence of the sliding variable to zero.
Even thought the above approach law contains the external
disturbances and model uncertainties, the controller based on
this law will be free from these unknown influences. It is also
worth noticing that monotonic and finite-time convergence of
the representative point to the switching hyperplance can be
only obtained when a convergence rate K is large enough to
overcome perturbations and uncertainties.

Using the reaching law approach and equations (1), (2) we
obtain the formula for the control signal:

u (t) = −
(
cT b

)−1 {
cTAx (t)+ K sgn [s (t)]

}
. (4)

This control signal will ensure that (3) is satisfied. As it was
mentioned before, the controller does not depend on unknown
terms that are present in the approach law. Furthermore, let us
observe that if condition

−sgn [s (t)] ṡ (t) ≥ λ, (5)

where λ > 0, is met in the reaching phase, then themonotonic
and finite-time convergence of the representative point to the
switching hyperplane is obtained. Taking into account the
form of the reaching law we substitute (3) into (5) getting

K − cT d (t) sgn [s (t)]− cT Ãx (t) sgn [s (t)] ≥ λ > 0. (6)

The maximal possible impacts of the external disturbances
and model uncertainties on the sliding variable are

Dmax = |c1|D1 + . . . |cn−1|Dn−1 + |cn|Dn, (7)

Vmax = [|c1| , . . . , |cn|]V [|x1 (t)| , . . . , |xn (t)|]T . (8)

Therefore, (7), (8) are the worst case scenario values for
cT d (t) sgn [s (t)] and cT Ãx (t) sgn [s (t)], correspondingly.
Thus, the convergence rate needs to guarantee

K − Dmax − Vmax ≥ λ. (9)

during the whole reaching phase. Nevertheless, the exact
moment when the sliding phase begins remains unknown,
due to the presence of perturbation and uncertainties. How-
ever, the finite settling time is not considered in this paper.
To obtain such a system property, it is necessary to select a
nonlinear switching surface.

III. STATE VARIABLES AND CONTROL SIGNAL
CONSTRAINTS
This section will focus on designing the convergence rates
Kαi , i ∈ {1, . . . ,m}, where m is the number of state con-
straints and αi represents the certain linear combination, i.e.

αi (x) = αi1x1+· · ·+αinxn, αij ∈ <. In order to simplify fur-
ther calculations we specify αie = [αi1, . . . , αin]. Therefore,
the admissible set is given as follows

X = {x ∈ <n : ∀i∈{1,...,m}αi (x) ≤ ri, |cT x| ≤ |cT x0|}, (10)

where x0 = x (0). Let us notice that satisfying (9) results in
decreasing the sliding variable, hence it will never exceed its
initial value. However, if the initial state is unknown, then we
define X = {x ∈ <n : ∀i∈{1,...,m}αi (x) ≤ ri}. We assume that
the state constraints result in a compact admissible set.

Now, we move to the problem of keeping the state from
exceeding the constraint given by αi (x) ≤ ri. When the
representative point reaches this constraint i.e. αi (x) = ri,
then we need to guarantee α̇i (x) ≤ 0, which is equivalent to
αi (ẋ) ≤ 0. Using the properties of the linear combination and
equation (1) we get

αi (ẋ) = αie
[
A+ Ã (t)

]
x (t)+ αi (d)

−αi (b)
(
cT b

)−1
{cTAx (t)+ K sgn [s (t)]}. (11)

Next, we calculate the biggest possible influence of model
uncertainties on the value of αi (x), getting

Vαi = [|αi1| , . . . , |αin|]V [|x1 (t)| , . . . , |xn (t)|]T . (12)

Let us also introduce a similar denotation for disturbances

Dαi = [|αi1| , . . . , |αin|]D. (13)

After equating the right-hand side of equation (11) to zero,
deriving K and taking into account the unknown influences
we get the convergence rate corresponding to the motion
along the i-th constraint

Kαi = sgn [s (t)] [αi (b)]−1 cT b
[
αieAx (t)+ Dαi + Vαi

]
−sgn [s (t)] cTAx (t) . (14)

Therefore, it is important to assume that αi (b) differs from
zero. Otherwise, it would be impossible to guarantee the
monotonic convergence of the representative point to the
switching hyperplane both with maintaining the considered
constraint. Moreover, from (11) we have that if

sgn
[
αi (b) cT bs (t)

]
= −1 (15)

is true, then decreasing K below (14) will not result in vio-
lating the constraint. However, increasing K above (14) can
result in exceeding the limitation, depending on the influence
of external disturbances and model uncertainties. On the
other hand, when (15) is not true, then we can implement
the biggest convergence rate within the range of the control
signal. Therefore, we denoteKαi = K+αi when (15) is false and
Kαi = K−αi when (15) is true. Let us also notice that sign of
αi (b) cT bs (t) is constant and not zero for the whole reaching
phase.

Moreover, wewill present the convergence rateKu, respon-
sible for maintaining the control signal limitation |u (t) | ≤
ru. From (4) we have

−ru ≤ −
(
cT b

)−1 {
cTAx (t)+ K sgn [s (t)]

}
≤ ru. (16)
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Let us observe, that during the reaching phase the sign of the
sliding variable is constant. Thus, the biggest convergence
rate that guarantees the control signal limitation is

Ku =
∣∣∣cT b∣∣∣ ru − sgn [s (t)] cTAx (t) . (17)

Let us observe that substituting (17) for K in (16) will result
in one of the boundary values of the control signal limitation.
However, the lowest convergence rate in the range of the
control input is

Kminu = −

∣∣∣cT b∣∣∣ ru − sgn [s (t)] cTAx (t) . (18)

Similarly, substituting (18) for K in (16) will result in achiev-
ing the other constraint. Therefore, K must be between (17)
and (18) in order to satisfy the control input restriction.

IV. SUFFICIENT CONDITION AND CONTROL STRATEGY
Previously we calculated convergence rates connected with
all of the constraints, taken separately. In this section we
will demonstrate the and theorems that give the sufficient
condition for the monotonic and finite-time convergence of
the representative point to the switching hyperplane, simulta-
neously satisfying state and control signal limitations.

At first, we need to ensure that the control signal range
is wide enough to enable the monotonic convergence of the
sliding variable to zero, even in the presence of the external
disturbances and model uncertainties. Therefore, we require

Ku − Dmax − Vmax ≥ λ > 0 (19)

for the whole reaching phase.
Theorem 1: To satisfy (19) it is sufficient that∣∣∣cT b∣∣∣ ru ≥ sgn [s (t)] cTAx (t)+ Dmax + Vmax + λ (20)

is true for x (t) in X.
Proof: Using the form of the convergence rate Ku and

the condition (19) we obtain (20). Let us notice that the initial
point is in the the admissible set. Thus, it is sufficient to take
into account only points from X . �
Let us notice that condition (20) will also result in Kminu ≤ 0.

Secondly, we have to guarantee analogous property also for
the convergence rates connected with the state constraints:

K−αi − Dmax − Vmax ≥ λ > 0, (21)

i ∈ {1, . . . ,m}.
Theorem 2: To satisfy (21) it is sufficient that∣∣∣[αi (b)]−1 cT b∣∣∣ (αieAx (t)+ Dαi + Vαi)

≥ sgn [s (t)] cTAx (t)+ Dmax + Vmax + λ (22)

is true for i ∈ {1, . . . ,m}, when Kαi = K−αi , αi (x) = ri and
x (t) is in X.

Proof: Using (15) we can rewrite the above condition as

sgn [s (t)] [αi (b)]−1 cT b
(
αieAx (t)+ Dαi + Vαi

)
≥ sgn [s (t)] cTAx (t)+ Dmax + Vmax + λ. (23)

After moving all terms of this inequality to the left-hand side
and using the definition for Kαi we obtain (21). �
The similar condition for K+αi is not required, because then

we can increase the convergence rate up to convergence rate
Ku. However, this implies the need of

Ku ≥ K+αi , (24)

otherwise there would not exist any value K which satisfies
both control input and i-th state variable input.
Theorem 3: To satisfy (24) it is sufficient that

|αi (b)| ru + αieAx (t)+ Dαi + Vαi ≥ 0 (25)

is true for i ∈ {1, . . . ,m}, when Kαi = K+αi , αi (x) = ri and
x (t) is in X.

Proof: At first, we subtract from both sides of above
inequality the term αieAx (t)+Dαi+Vαi and then wemultiply
by |αi (b)|−1

∣∣cT b∣∣ obtaining∣∣∣cT b∣∣∣ ru≥− ∣∣∣[αi (b)]−1 cT b∣∣∣ (αieAx (t)+ Dαi + Vαi) . (26)

Subsequently, using the fact that (15) is false we have∣∣∣cT b∣∣∣ ru
≥ sgn [s (t)] [αi (b)]−1 cT b

(
αieAx (t)+ Dαi + Vαi

)
. (27)

Taking into acocunt the forms of convergence rates Ku
and Kαi we subtract from both sides the expression
sgn [s (t)] cTAx (t) getting (24). �
Lastly, we need to ensure that it is possible to maintain

multiple state constraints simultaneously. Therefore, on the
intersection of i-th and j-th state constraints it is necessary to
guarantee

K−αi ≥ K
+
αj

(28)

Otherwise, at least one restriction would be violated.
Theorem 4: To satisfy (28) it is sufficient that

|αi (b)|−1
[
αieAx (t)+ Dαi + Vαi

]
+
∣∣αj (b)∣∣−1 [αjeAx (t)+ Dαj + Vαj] ≥ 0 (29)

is true for i, j ∈ {1, . . . ,m}, i 6= j, when αi (x) = ri, αj (x) =
rj and x (t) is in X.

Proof: At first, we multiply both sides of above inequal-
ity by term

∣∣cT b∣∣ and then subtract the element connected
with j-th index, obtaining∣∣∣[αi (b)]−1 cT b∣∣∣ [αieAx (t)+ Dαi + Vαi] ≥

−

∣∣∣[αj (b)]−1 cT b∣∣∣ [αjeAx (t)+ Dαj + Vαj] (30)

If Kαi = K−αi and Kαj = K+αj , then we have
that sgn

[
αi (b) cT b

]
= sgn [s (t)], sgn

[
αj (b) cT b

]
=

−sgn [s (t)]. Therefore,

sgn [s (t)] [αi (b)]−1 cT b
[
αieAx (t)+ Dαi + Vαi

]
≥ sgn [s (t)]

[
αj (b)

]−1 cT b [αjeAx (t)+ Dαj + Vαj] . (31)
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Lastly, subtracting from both sides sgn [s (t)] cTAx (t) and
using the forms of the the convergence rates Kαi ,Kαj we get
condition (28). �
Further step is to demonstrate the control strategy, i.e. the

methodology of selecting the convergence rate, depending on
the current state. Our aim is to achieve the fastest, monotonic
and finite-time convergence of the representative point to
the switching hyperplane simultaneously ensuring state and
control signal constraints.
Theorem 5: If conditions (20), (22), (25), (29) hold, the

control strategy:

1) when the state is inside the admissible set or on the
boundary/boundaries for which (15) is false, select
convergence rate Ku,

2) otherwise, set K = min{Ku,K−αi1 ,K
−
αi2
, . . . ,K−αil }, for

those K−αj for which αj (x) = rj,

ensures the fastest, monotonic, finite time convergence of the
representative point to the sliding hyperplane, simultaneously
satisfying state and control input constraints αi (x) ≤ ri,
|u (t) | ≤ ru.
When the sliding motion begins the convergence rate must

be selected large enough to match the maximal possible
influences of external disturbances and model uncertainties
on the sliding variable i.e. K ≥ Dmax + Vmax.
It is worth noticing that the presented control strategy has

an advantage over a common regulation method to just react
in emergency when the boundary is reached. By verifying
the sufficient condition the designer will know in advance
whether any limitation will be violated.

In the end, we will present the technique to fully eliminate
the chattering effect that can occur on the boundary of the
admissible set [41], [42]. The mentioned chattering is a result
of switching between Ku and certain Kαi , caused by the fact
that convergence rate Kαi is designed with a safety margin.
This margin is necessary, because we cannot predict the
influence of the external disturbances, so we need to consider
the worst possible case. Nevertheless, this will usually result
in pushing the representative point back into the interior of
the admissible set. As a consequence the convergence rate Ku
will be selected, bringing the state back onto the constraint.
Therefore, the chattering will occur. To avoid this problem
we can implement a smooth transition between Ku and K−αi
near the constraint, by using for example the following con-
vex combination: αi(x)+ε−ri

ε
K−αi +

ri−αi(x)
ε

Ku, when αi (x) ≥
ri − ε. The selection of ε is arbitrary, however it should be a
relatively small number compared to ri. When αi (x) ≥ ri−ε
holds for multiple constraints we take into account the one in
which K−αi is minimal.
To be clear, let us point out that the above chattering

elimination approach is used to deal with the chattering
only on the boundary of the admissibly set, and not dur-
ing the sliding phase. In order to reduce the chattering on
the switching hyperplane, one of the known approaches can
be applied. We have not done this, to focus on the main
results.

FIGURE 1. State trajectory.

FIGURE 2. Control signal.

V. SIMULATION EXAMPLE
In this section the theoretical considerations will be verified
by the numerical example. The model parameters, describing
the system dynamics, are:

A =

 0 1 0
0 0 1
−6 0 −6

 , b =

 1
2
12

 , c =

 10
0.5
0.1

 ,
Ã =

 0 0 0
0 0 0

0.1 sin (10t) 0.2 sin (20t) 0.3 sin (30t)

 ,
d (t) =

[
5 (−1)b10tc 5 sin (10t) 5 sin (20t)

]
. (32)

Calculating the greatest possible influence of the external
disturbances on the sliding variable we get: Dmax = 53.

The switching hyperplane parameters were chosen is such
a way to ensure cT b 6= 0 and guarantee the stable sliding
motion. What is more, we require that the following con-
straints hold for the whole regulation process: 0.5x2 (t) −
x3 (t) ≤ 100, 3x2 (t) + x3 (t) ≤ 50, −3x2 (t) + x3 (t) ≤ 50,
|x1 (t) | ≤ 1.2, |u(t)| ≤ 50 . Therefore, α1e = [0, 0.5,−1],
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FIGURE 3. First state variable.

FIGURE 4. Sliding variable.

α2e = [0, 3, 1], α3e = [0,−3, 1], α4e = [1, 0, 0], α5e =
[−1, 0, 0] and r1 = 100, r2 = r3 = 50, r4 = r5 = 1.2,
ru = 50.
Our purpose is to drive the state to the sliding hyperplane

monotonically and in finite-time. Moreover, we will ensure
that all previously mentioned constraints hold for the whole
regulation process. The initial point has been selected on
the boundary of X in order to present the properties of our
controller: x1 (0) = −1, x2 (0) = 42.86, x3 (0) = −78.57.
First of all, let us observe that taking into account the initial
state all conditions in theorems from the previous section are
met for this model.

Fig. 1 depicts the evolution of the second and the third
state variables. The triangle presented in this figure repre-
sents the linear combinations of respective state constraints.
We can observe that at the beginning of the control process
the representative point glides along the surface represented
by −3x2 (t) + x3 (t) ≤ 50. This is a result of apply-
ing the convergence rate close to the K−α3 . The real imple-
mented convergence is given by the following combination:

FIGURE 5. Control signal [41].

αi(x)+ε−50
ε

K−α3 +
50−α3(x)

ε
Ku, where threshold ε was select

as 0.001. As a consequence the chattering was eliminated in
the reaching phase, which can be seen on Fig 2. The control
signal value at the beginning of the regulation process is the
result of maintaining the state on one of the constraints. The
observable chattering phenomena of the control signal is the
effect of sliding motion and it can be reduced for example
by replacing the signum function by saturation. The first
state variable evolution was shown at the Fig. 3. We can
notice that for the whole regulation process the constraint
|x1 (t) | ≤ 1.2 holds. Due to the fact that the matching
conditions are not assumed to be true, the state error would
not converge to zero, which can be noticed from figure 3.
Moreover, from Fig 4. we have that that monotonic, finite
time convergence of the representative point to the sliding
hyperplane was achieved and the consecutive stable sliding
motion was obtained, which demonstrates the robustness to
unknown terms (external disturbances and parameters uncer-
tainties) during the sliding phase.

Let us compare our results with the results obtained in [41].
The strategy proposed in [41] was presented for the double
integrator case, however the idea can be extended tomatch the
system considered in the simulation example. The controller,
that corresponds to the one proposed in [41], behaves as
follows: switch between the minimal admissible value and
maximal admissible value, i.e. −ru, ru, if the state is on the
limit or when the sliding hyperplane is reached. Therefore,
in the considered case, when the initial point is placed at
the constraint, the chattering effect will occur for the whole
regulation process, which can be verified at Fig. 5. The
other figures are practically the same as for the proposed
solution. As we mentioned before, our approach eliminates
the chattering on the state constraints. The chattering that is
the result of applying the control strategy presented in [41]
can be omitted only if the state would reach the sliding
hyperplane before any constraint is reached. However, this is
not ensured.
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VI. CONCLUSION
This paper considered the problem of keeping state con-
straints (in forms of linear combinations of state variables)
both with control signal limitation in the sliding mode con-
trol. The continuous-time model took in consideration the
unknown, external disturbances and time-varying uncertain-
ties. We analyzed the impact of these unknown terms on
the dynamics of the obtained control system. The approach
law was applied to design the sliding mode controller, which
results in much greater control over the state dynamics in the
reaching phase. Then, the regulation strategy was presented
to establish the manner of selecting the convergence rate in
every situation. As a consequence the fastest, monotonic and
finite time convergence of the representative point to the pre-
defined switching hyperplane in the presence of mentioned
constraints was obtained. The sufficient condition ensuring
these properties was stated and formally proved. Moreover,
the technique to fully reduce the chattering on the boundary
of the admissible set was demonstrated. Our next goal is to
extrapolate this methodology also to nonlinear systems.
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