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ABSTRACT The DoA of radio waves is used for many applications, e.g. the localization of autonomous
robots and smart vehicles. Estimating the DoA is possible with a multiport antenna, e.g. an antenna array
or a multi-mode antenna (MMA). In practice, DoA estimation performance decisively depends on accurate
knowledge of the antenna response, which makes antenna calibration vital. As the antenna surroundings
influence its response, it is necessary to measure the entire device with installed antenna to obtain the
installed antenna response. Antenna calibration is often done in a dedicated measurement chamber, which
can be inconvenient and costly, especially for larger devices. Thus, auto- and in-situ calibration methods
aim at making antenna calibration in a measurement chamber redundant. However, existing auto- and in-situ
calibration methods are restricted to certain antenna types and certain calibrations. In this paper, we propose
a Bayesian in-situ calibration algorithm based on a maximum a posteriori (MAP) estimator, which is suitable
for arbitrary multiport antennas. The algorithm uses received signals from a transmitter, noisy external DoA
observations, takes multipath propagation into account and does not require synchronization. Furthermore,
we take an estimation theoretic perspective and provide an in-depth theoretical discussion of in-situ antenna
calibration in unknown propagation conditions based on Bayesian information and the Bayesian Cramér-Rao
bound (BCRB). Extensive simulations show that the proposed algorithm operates close to the BCRB and
the achieved DoA estimation performance asymptotically approaches the case of a perfectly known antenna
response. Finally, we provide an experimental validation, where we calibrate the antenna on a robotic rover
and evaluate the DoA estimation performance using measurement data. With the proposed in-situ antenna
calibration algorithm, DoA estimation performance is considerably improved compared to using an antenna
response obtained by simulation or in a measurement chamber.

INDEX TERMS Antenna calibration, array calibration, Cramér-Rao bound, direction-of-arrival estimation,
multi-mode antenna.

I. INTRODUCTION
Direction-of-arrival estimation of radio signals, also called
radio direction finding, has a long history in both, research
and application [1], [2]. For instance, the DoA is consid-
ered for localization of user equipment in cellular networks
[3], [4], for cooperative localization in wireless networks
[5], [6] and for autonomous driving [7]. Another application
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where DoA proves useful is robotic exploration in scenarios
where global navigation satellite system (GNSS) signals are
not available, e.g. extraterrestrial exploration. In order to con-
trol the robots, their positions and orientations are required
[8], [9]. Positions and orientations can be estimated by using
the time-of-arrival (ToA) and DoA of radio signals [10].

On the antenna side, usually antenna arrays are consid-
ered for DoA estimation [11]. More recently, DoA esti-
mation with a single MMA has been proposed [12], [13].
An MMA consists of a single antenna element, where
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multiple characteristic modes [14], [15] are excited indepen-
dently [16], [17]. Thus, an MMA is a multiport antenna,
where each port has a distinct far-field antenna response.
The different far-field antenna responses of the ports enable
DoA estimation of impinging signals. Examples of MMAs
can be found in [17]–[19]. MMAs are especially promising
for applications with stringent size or shape constraints. For
instance, the structure of a vehicle can be used for radiation
using characteristic modes [20]. Further examples are found
in [21], [22], where the characteristic modes of an airplane
structure are used for DoA estimation.

On the signal processing side, a wide range of DoA esti-
mation algorithms exist, see [1], [2], [23] and the references
therein. DoA estimation algorithms for MMAs are treated
in [12]. However, all of these algorithms have in common,
that they rely on exact knowledge of the antenna response.
Any mismatch between the assumed antenna model and the
real one will impair DoA estimation performance [24].

For that reason, antennas are calibrated, meaning their
antenna response is determined. Usually, antenna measure-
ments are performed in a controlled environment without
multipath propagation, e.g. a dedicated measurement cham-
ber. Themeasured antenna response can then be used for DoA
estimation using wavefield modeling and manifold separa-
tion [25], [26], which provides a mathematical representa-
tion of arbitrary antenna responses. However, as the antenna
surroundings influence the antenna response, it is necessary
to measure the entire device with installed antenna in order
to obtain the installed antenna response. This permits the
usage of compact and cost-effective near-field measurement
chambers. For antennas integrated in e.g. robots, vehicles or
airplanes, antenna calibration in a measurement chamber can
become costly and impractical.

An attempt to avoid antenna calibration in a measurement
chamber are auto- or self-calibration methods, which aim at
estimating the antenna parameters together with the wave-
field or DoA. However, they suffer from a severe limita-
tion. In general, both wavefield and antenna parameters are
not simultaneously identifiable from a collection of received
signal snapshots, unless strong assumptions are made
[27], [28]. For instance, assuming an ideal antenna array,
it is possible to calibrate the gain-phase error of the indi-
vidual antenna elements [29], [30]. An ideal antenna array
consists of omnidirectional or isotropic antenna elements and
its antenna response is defined by the steering vector, i.e. the
geometry of the array. Restricting the antenna to an ideal
uniform linear array (ULA) or uniform circular array (UCA),
the mutual coupling matrix, i.e. a linear transformation of
the antenna response, can be determined [31], [32]. Unifying
gain-phase, mutual coupling and antenna element position
calibration, a MAP formulation for auto-calibration can be
found in [33], and low complexity variants in [33], [34].
They assume, however, that the perturbations of the antenna
response are small or at least not larger than the finite sample
errors. The method from [35] allows large antenna element
position errors, but is still limited to an ideal antenna array.

More recently, sparsity-based approaches have been pro-
posed [36], [37], which outperform conventional approaches.
However, they are limited to ideal, linear arrays. In practice,
errors of the antenna response are not necessarily limited
to gain-phase errors, mutual coupling and antenna element
position errors. Instead, arbitrary nonlinear transformations
of the ideal antenna response can occur, e.g. due to manufac-
turing imperfections and surrounding structure of the instal-
lation [24]. Moreover, the known methods are restricted to
ideal antenna arrays and cannot be applied to other multiport
antennas like an MMA.

In contrast to auto-calibration, in-situ calibration methods
use transmitters in (approximately) known directions to cali-
brate the antenna. In-situ calibration is performed in unknown
propagation conditions and without external synchronization.
In [38], in-situ calibration of mutual coupling and antenna
element positions of an array is introduced. Additionally,
also the power patterns of the antenna elements of an array
can be calibrated [39]. Mutual coupling and antenna element
positions of multiple antenna arrays, which are part of a
localization system, are calibrated in [40]. The in-situ cali-
brationmethods [38]–[40] are restricted to antenna arrays and
specific error models.

Thus, an MMA cannot be calibrated by the known
auto-calibration and in-situ calibration methods from liter-
ature. Furthermore, also for antenna arrays, arbitrary non-
linear errors of the antenna response can occur, e.g. due to
manufacturing imperfections or the influence of the antenna
surroundings. The antenna response errors are not restricted
to gain-phase errors, mutual coupling or antenna element
position errors.

The aim of this paper is to investigate in-situ calibration of
arbitrary multiport antennas. Applying wavefield modeling
and manifold separation, the in-situ calibration of antenna
arrays, collocated antennas, MMAs and other antenna types
is treated in a common framework. By this paper, we consid-
erably extend our early work [41]. The main contributions are
as follows:
• We analyze in-situ calibration of multiport antennas in
an estimation theoretic approach. We derive the recur-
sive BCRB, where we distinguish the cases of known
and unknown propagation channel. The derivation of the
BCRB for the unknown propagation channel is more
complicated, as the Bayesian information matrix (BIM)
without prior is singular. We also introduce a trans-
formed mean squared error (MSE), as the regular MSE
is not a meaningful error metric in this case.

• Based on the derived BCRB, we discuss the antenna
response observability and the qualitative behavior of
the BCRB. We take an estimation theoretic perspective
to investigate the difference between antenna calibration
when the propagation channel is known, like in a mea-
surement chamber, and in-situ calibration in unknown
propagation conditions.

• We introduce an in-situ antenna calibration algorithm
based on MAP estimation, which takes multipath
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propagation into account. The algorithm can esti-
mate arbitrary antenna responses and thus capture
real-world antenna nonidealities including gain-phase
offsets, mutual coupling, etc.

• Then, we show the effectiveness of the proposed
algorithm by simulations, where the BCRB serves as a
theoretical lower bound on the estimationMSE. Asymp-
totically, the performance approaches the case where the
antenna response is perfectly known.

• Finally, we demonstrate the practical applicability of
the algorithm by an experimental validation. For that,
we perform in-situ calibration of an MMA installed
on a robotic rover. We evaluate a measurement data
set to compare the DoA estimation performance using
the antenna response determined by electromagnetic
(EM) simulation, in a near-field measurement cham-
ber, and with the proposed in-situ calibration algorithm.
By in-situ calibration, the DoA estimation performance
is improved considerably.

The paper is organized in eight sections. In Section II,
we introduce the signal model and briefly introduce wave-
field modeling and manifold separation. In the follow-
ing Section III, we show how the MAP estimator for
in-situ calibration using wavefield modelling is obtained by
Bayesian inference. We further present an algorithm for iter-
atively solving the resulting nonlinear optimization prob-
lem. In Section IV, we derive the recursive BCRB. The case
where the propagation channel is unknown, which is com-
mon in in-situ calibration, receives special attention. The
behavior of the BCRB is discussed qualitatively, providing
valuable intuition. The performance of the proposed algo-
rithm is evaluated in Section V for the cases of one and
multiple impinging signals and compared to the theoretical
limits. In Section VI, we introduce the measurement setup
and evaluate the algorithm with measurement data. Finally,
in Section VII, we briefly discuss alternative approaches in
terms of Bayesian filtering and global optimization and the
case of using a gyroscope as external sensor, before we
conclude the paper with Section VIII.
Notation: Vectors are written in bold lowercase letters and

matrices in bold capital letters. (·)T and (·)H stand for vector
or matrix transpose and conjugate transpose, respectively. 1N
and 0N are vectors of ones and zeros with length N , IN is
an N × N identity matrix and 0N an N × N matrix with
all zeros. ||a|| is the Euclidean norm. Square brackets refer
to an element in a vector [a]i or a matrix [A]i,j. Similarly,
the i-th row [A]i,: or the j-th column [A]:,j of a matrix are
selected. � denotes the Hadamard-Schur product, ⊗ the
Kronecker product and † the Moore-Penrose pseudoinverse.
tr {A} is the trace, A = diag{a} creates a diagonal matrix
and a = vec {A} vectorizes A by stacking its columns.
Re {·}, Im {·} refer to real and imaginary part and arg{.} to the
argument of a complex number. â denotes an estimate of a,
Ex {·} the expectation with respect to (w.r.t.) random variable
x and MSE

{
â
}
the MSE of the estimation. b‖a‖c is the floor

function.

II. MULTIPORT ANTENNA SIGNAL MODEL
We assume that P superposed signals with index p ∈
{1, . . . ,P} with DoAs φ = [φs1, . . . , φ

s
P]
T and ToAs τ =

[τ s1, . . . , τ
s
P]
T arrive at the multiport antenna with M ports.

They originate from the same source, but have different
DoAs, ToAs, amplitudes and phases, which corresponds to
multipath propagation. The antenna is connected to a coher-
ent multichannel receiver with M channels, which operates
snapshot-wise and performs a discrete Fourier transform
(DFT) on the snapshots. The received signal with snapshot
index s ∈ {1, . . . , S} in discrete frequency domain rs(n) =
[r1(n), . . . , rM (n)]T can then be written as

rs(n) =
P∑
p=1

a(φsp)s(n, τ
s
p)α

s
pe

jϕsp + wsr(n), (1)

where n ∈ {1, . . . ,N } is the DFT bin and s(n, τ ) =
s(n)e−j2πτ

n−1
N is a delayed version of the transmitted signal

s(n). We call αsp and ϕ
s
p absolute amplitude and phase of the

p-th signal to distinguish from the relative amplitudes and
phases of the signals at the respective antenna ports. The
model follows the assumption that the signal bandwidth is
small relative to the carrier frequency [1], [42]. We consider
internal receiver noise, such that wsr(n) ∼ CN (0, σ 2

r IM ) is
independent and identically distributed (i.i.d.) circular sym-
metric Gaussian noise.

An arbitrary multiport antenna can be described by its gain
pattern gm(φ) and phase pattern 8m(φ) [42]. The antenna
response am(φ) for ports m ∈ {1, . . . ,M} and DoA φ is then
defined as

am(φ) =
√
gm(φ)ej8m(φ). (2)

Stacking the antenna responses for all ports into a vector
yields the antenna response vector

a(φ) =
[
a1(φ) . . . aM (φ)

]T
. (3)

Wavefield modeling and manifold separation allows to
decompose the antenna response vector (3) into a product of
the sampling matrixG ∈ CM×U , which describes the antenna
characteristics, and a basis vector of order U , b(φ) ∈ CU ,
which is a function of the DoA [25], [26], i.e.

a(φ) = Gb(φ). (4)

It is required that the antenna response is square integrable
and the basis functions of order U are orthonormal on the
manifold φ ∈ [−π, π). Considering azimuth only, a suitable
basis is given by the Fourier functions, which we arrange in
the basis vector

b(φ) =
1
√
2π

ejφu,

u =
⌊
−
U − 1

2

⌋
, . . . , 0, . . . ,

⌊
U − 1

2

⌋
. (5)

The order U of the basis functions can be inferred from the
electrical size of the antenna [25], or from the measurement
noise floor [43].Wavefieldmodeling andmanifold separation
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can be extended to joint estimation of azimuth and eleva-
tion [12], [25], [26]. In that case, spherical harmonics or
2D Fourier functions can be used as basis. For this paper,
we restrict ourselves to azimuth only, noting that the pro-
posedmethods can be extended to joint azimuth and elevation
estimation.

During the process of antenna design, usually an EM simu-
lation is performed. The output of this simulation areQ spatial
samples of the antenna response

eq =
[
eq,1 . . . eq,M

]T (6)

for M ports, DoAs φq and q = 1, ..,Q. In matrix form this
yields

Esim =
[
e1 . . . eQ

]
, (7)

which is proportional to the electric field strength and can be
interpreted as a sampled version of (3). The spatial sampling
grid must be dense enough, such that the spatial sample-rate
criterion according to the Nyquist theorem is fulfilled. A sam-
pling matrix based on the EM simulation data Esim can then
be obtained by the least squares method,

Ĝ
0
sim = EsimBH (BBH )−1, (8)

with B = [b(φ1), . . . , b(φQ)]. However, EM simulation does
not account for manufacturing imperfections. The obtained
sampling matrix Ĝsim will thus deviate from the true G.

To overcome that, it is common to measure the antenna in
a dedicated measurement chamber. This yields another set of
spatial samples Emeas. Similar to (8), the measurement-based
sampling matrix is obtained by

Ĝ
0
meas = EmeasBH (BBH )−1. (9)

In order to reflect the true antenna response of the installed
antenna, the whole surrounding structure must be in place
for the measurement, i.e. the antenna must be measured
in its final installation location. The calibration procedure
can become laborious and costly for large devices. Thus,
we instead propose to calibrate the whole device contain-
ing the antenna in-situ, in order to capture the true antenna
response of the installed antenna.

III. IN-SITU ANTENNA CALIBRATION ALGORITHM
The log-likelihood function for the received signals, see (1),
is given by

Lrs (φs, τ s,αs,ϕs, σ 2
r , g) = −N ln(πσ 2

r )

−
1
σ 2
r

N∑
n=1

∥∥∥∥∥∥rs(n)−
P∑
p=1

a(φsp)s(n, τ
s
p)α

s
pe

jϕsp

∥∥∥∥∥∥
2

. (10)

In [44] it is shown that the log-likelihood function can be
concentrated to

L̃rs (φs, τ s) =
1
σ 2
r

∥∥∥D⊥rs∥∥∥2 (11)

FIGURE 1. Example in-situ calibration scenario of an antenna on a robotic
rover, where the line-of-sight and two reflected signals, i.e. P = 3 signals
impinge on the antenna to be calibrated. The rover is rotating on the spot.

with D⊥ = D(DHD)−1DH , where D ∈ CMN×P with the
columns p ∈ {1, . . . ,P} given by

[D]:,p = vec
{
a(φsp)s

T (τ sp)
}
, (12)

with the vectors rs =
[
(rs(1))T , . . . , (rs(N ))T

]T and s(τ sp) =
[s(1, τ sp), . . . , s(N , τ

s
p)]

T . Concentrated means that the maxi-
mum of the log-likelihood function w.r.t. the unknown abso-
lute amplitudes, absolute phases and noise variance has
been plugged into the log-likelihood function, such that the
unknown variables are reduced to the ones of interest. The
joint DoA-ToA maximum likelihood (ML) estimator is then
given by

{φ̂
s
ML, τ̂

s
ML} = arg max

φs,τ s
L̃rs (φs, τ s) (13)

and requires knowledge of the true sampling matrixG, i.e. the
true antenna response a(φ), see (4). In practice, the true
sampling matrix G is unknown and only estimated sampling
matrices from EM simulation Ĝ

0
sim or antenna measurement

Ĝ
0
meas are available. Deviations of the estimated sampling

matrix Ĝ
0
from the true sampling matrix G result in a model

mismatch, which impairs DoA estimation performance [24].
To cope with that, we propose a MAP estimator for in-situ

calibration, building on the principles of wavefield modeling
and manifold separation.

An exemplary in-situ calibration scenario is depicted in
Figure 1. We assume that a DoA observation for the first
impinging signal p = 1,

φsobs = φ
s
1 + w

s
φobs
, (14)

is available from an external sensor, which could be
e.g. GNSS real-time kinematic (RTK) in an open-sky sce-
nario. We model φsobs as the true DoA φ

s
1 with additive errors

following a von Mises distribution wsφobs ∼M(0, κφobs ) with
concentration κφobs [45]. The concentration κφobs is expected
to be high, so the distribution can be approximated by a
normal distribution wsφobs ∼ N (0, σ 2

φobs
= 1/κobs), see [45].
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The observed DoA log-likelihood function is then given by

Lφsobs (φ
s
1) = ln p(φsobs|φ

s
1)

= −
1
2
ln(2πσ 2

φobs
)−

1

2σ 2
φobs

(φsobs − φ
s
1)

2. (15)

The observation vector for snapshot s is formed as

zs =
[
rs

φsobs

]
∈ C(MN+1)×1. (16)

In order to account for the sequence of snapshots and consider
prior information in a Bayesian context, from now on we
interpret the sampling matrix G as a random variable. For
notational convenience, we vectorize the sampling matrix

g = vec {G} (17)

and split it into real and imaginary parts,

gRI =
[
gR
gI

]
=

[
Re {g}
Im {g}

]
. (18)

The variables g0 and g0RI are defined analogously. We use
the complex-valued matrix, complex-valued vector or
real-valued vector depending on the context. Empirically,
we have found that typical deviations of the installed antenna
response compared to the antenna response in free-space can
be represented by circular symmetric Gaussian noise on the
sampling matrix elements. Following the Bayesian approach,
the prior probability density function (pdf) of the sampling
matrix elements in logarithm domain is thus

ln p(g0) = −MU ln(πσ 2
g0 )−

1

σ 2
g0

∥∥∥g0 − ĝ0∥∥∥2 , (19)

which is a circular symmetric Gaussian distribution
with mean ĝ0 = E

{
g0
}

and variance σ 2
g0 =

1
MU tr

{
E
{
(g0 − ĝ0)(g0 − ĝ0)H

}}
. Consequentially, we call

Ĝ
0
prior sampling matrix. We further define the state vector

for snapshot s as

xs =
[
gRI
φs

]
∈ R(MU+P)×1 (20)

and the full state vector as

x1:S =
[
gRI
φ1:S

]
∈ R(MU+PS)×1, (21)

with the DoAs for all snapshots φ1:S = [(φ1)T , . . . , (φS )T ]T

with φs = [φs1, . . . , φ
s
P]
T . We assume here that the model

order P is known. In practice, it needs to be estimated, see
e.g. [46]. In order to focus on the antenna calibration aspect,
we also assume that the ToAs τ s are estimated separately.
Under reasonable assumptions detailed in the following and
medium to high signal-to-noise ratio (SNR), independent
estimation of DoAs and ToAs is possible. In [47], the
baseband-carrier correlation is defined in the context of a
Cramér-Rao bound (CRB). When the power spectral density
(PSD) of the signal is symmetric, the baseband-carrier corre-
lation becomes zero, allowing independent estimation of ToA

and DoA. Further support is provided by [8] and the intuition
that under the narrowband assumption, ToA is estimated from
the observation of a delayed baseband signal, while DoA is
estimated from relative amplitudes and phases between the
ports. Another prerequisite for the independence of ToA and
DoA is that the paths are resolvable and the correct model
order is chosen. Using Bayes theorem and the first order
Markov assumption, the posterior pdf is written as

p(x0:S |z1:S ) =
p(z1:S |x0:S )p(x0:S )

p(z1:S )

∝ p(x0)
S∏
s=1

p(zs|xs) p(xs|x(s−1)). (22)

Inserting (16) and (21) and assuming a stationary sampling
matrix, non-informative transition and prior pdfs for φs and
independent noise in (1) and (14) yields

p(x0:S |z1:S ) ∝ p(g0)
S∏
s=1

p(rs, φsobs|φ
s, g)

= p(g0)
S∏
s=1

p(rs|φs, g) p(φsobs|φ
s
1). (23)

We define the function

CMAP(x0:S ) := − ln p(g0)−
S∑
s=1

L̃rs (φs, g)−
S∑
s=1

Lφsobs (φ
s
1)

(24)

which is proportional to the negative posterior pdf in log-
arithm domain. The prior pdf of the sampling matrix in
logarithm domain, ln p(g0), is given by (19). The concentrated
log-likelihood function for the received signals L̃rs (φs, g) is
given by (11), where the sampling matrix elements g are
considered as unknown and the ToAs τ s are omitted. The
log-likelihood function for the observed DoAs Lφsobs (φ

s
1) is

defined by (15). Thus, the maximum a posteriori (MAP)
estimator is given by

x̂1:SMAP = argmax
x0:S

p
(
x0:S |z1:S

)
= argmin

x0:S
CMAP

(
x0:S

)
.

(25)

Solving (25) is a challenging nonlinear optimization prob-
lem with 2MU + PS unknowns. For example, assuming
the parameters considered for the simulations in Sec-
tion V, this would be 1052 unknowns for one imping-
ing signal and 3052 unknowns for three impinging signals.
To solve (25), we use the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) algorithm, which is a quasi-Newton method to solve
unconstrained nonlinear optimization problems [48]. BFGS
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Algorithm 1 In-Situ Antenna Calibration

1: Given ĝ0RI and r
s, φsobs ∀s = {1, . . . , S}

2: Initialize with prior ĝ1RI = ĝ0RI
3: Initialize DoAs φ̂

1
with ML estimator (13)

4: for s = 2 to S do
5: Solve (25) for x̂1:sMAP by BFGS initialized with

x0:sinit =


ĝ(s−1)RI

φ̂
1:(s−1)

φ̂
(s−1)
+ 1P

(
φsobs − φ

(s−1)
obs

)


using gradient (26)
6: end for

requires the gradient of (28), which has the structure

∇CMAP(x0:S ) =



∂CMAP
(
x0:S

)
∂gR

∂CMAP
(
x0:S

)
∂gI

∂CMAP
(
x0:S

)
∂φ1

...

∂CMAP
(
x0:S

)
∂φS


. (26)

The respective partial derivatives in (26) are derived in
Appendix A. For convex functions, global convergence of
Broyden-Fletcher-Goldfarb-Shanno (BFGS) is proven [48].
Problem (25) is nonconvex, but ensuring initialization close
to the solution, local convergence is sufficient. To ensure
close initialization, we propose the sequential procedure out-
lined in Algorithm 1. For s = 1, the samplingmatrix elements
are initialized with the prior and the ML estimator (13) is
applied to obtain an initial estimate of the DoAs φ̂

1
. For

s ∈ {2, . . . , S}, the (BFGS) algorithm is applied to obtain
the estimate

x̂1:sMAP =

[
ĝs

φ̂
1:s

]
. (27)

For each snapshot s ∈ {2, . . . , S}, the estimate of the pre-
vious snapshot is used to initialize the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm for the current snapshot.
By gradually adding more snapshots, the convergence of
the algorithm is improved. To show the convergence of the
proposed method for different antenna responses, extensive
simulation results are presented in Section V.

IV. ESTIMATION THEORETIC ANALYSIS
A. INFORMATION FROM OBSERVATIONS
In order to assess the performance of the proposed algorithm,
we derive the BCRB as a theoretical lower bound of the

achievable MSE. It also allows us to gain insights into the
structure of the estimation problem. We start by calculating
the information contained in the observation of a single snap-
shot s about the parameters of interest, defined by the state
vector (21). To consider all unknown parameters, we aug-
ment (21) with the nuisance parameters absolute amplitude
αs = [αs1, . . . , α

s
P]
T and absolute phase ϕs = [ϕs1, . . . , ϕ

s
P]
T

for P multipath signals, see (1), to obtain

x̃s =

xsαs
ϕs

 . (28)

The calculation of the recursive BCRB in Section IV-B
requires to quantify the information contained in zs, the obser-
vation vector of snapshot s in a Bayesian context [49]. Taking
the expectation of the snapshot Fisher information matrix
(FIM) Is w.r.t. the augmented state vector x̃s, we obtain[

Ĩ
s
]
v,w
:= Ex̃s

{
Ezs|x̃s

{
∂ ln p(zs|x̃s)
∂[x̃s]v

∂ ln p(zs|x̃s)
∂[x̃s]w

}}
= Ex̃s

{[
Is
]
v,w

}
. (29)

The snapshot FIM is defined by

[Is]v,w = 2Re

{
∂ Ezs|x̃s {zs}

H

∂[x̃s]v
6z
−1 ∂ Ezs|x̃s {z

s}

∂[x̃s]w

}
, (30)

see [50], with the covariance matrix

6z = diag
{[
σ 2
r 1

T
MN , 2σ

2
φobs

]T}
. (31)

With (16) we obtain

[Is]v,w

=
2
σ 2
r
Re

{
N∑
n=1

∂ Ers(n)|x̃s {rs(n)}
H

∂[x̃s]v

∂ Ers(n)|x̃s {rs(n)}

∂[x̃s]w

}

+
1

σ 2
φobs

Re

∂ Eφsobs|x̃s
{
φsobs

}H
∂[x̃s]v

∂ Eφsobs|x̃
s
{
φsobs

}
∂[x̃s]w

 .
(32)

We continue by partitioning Ĩ
s
defined by (29) into

Ĩ
s
=


Ĩ
s
g Ĩ

s
gφ Ĩ

s
gn

(Ĩ
s
gφ)

T Ĩ
s
φ Ĩ

s
φn

(Ĩ
s
gn)

T (Ĩ
s
φn)

T Ĩ
s
n


= Ex̃


 Isg Isgφ Isgn
(Isgφ)

T Isφ Isφn
(Isgn)

T (Isφn)
T Isn


 . (33)

The first main diagonal matrix block refers to the sampling
matrix elements

Isg =

[
IsgR IsgRgI

(IsgRgI )
T IsgI

]
, (34)
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which are split into real part IsgR and imaginary part IsgI . The
second main diagonal matrix block Isφ corresponds to the
DoAs. The third main diagonal matrix block

Isn =
[

Isα Isαϕ
(Isαϕ)

T Isϕ

]
(35)

refers to the nuisance parameters, which are split into
real-valued absolute amplitudes Isα and phases Isϕ . The off-
diagonal matrix blocks

Isgφ =

[
IsgRφ
IsgIφ

]
, (36)

Isgn =

[
IsgRα IsgRϕ

IsgIα IsgIϕ

]
, (37)

Isφn =
[
Isφα Isφϕ

]
, (38)

correspond to the relationship between sampling matrix and
DoAs Isgφ , the relationship between sampling matrix and nui-
sance parameters Isgn and the relationship between sampling
DoAs and nuisance parameters Isφn, respectively. An exten-
sive derivation of the elements of (34) to (38) is provided in
Appendix B.

B. RECURSIVE BAYESIAN Cramér-RAO BOUND
1) KNOWN PROPAGATION CHANNEL
First we examine the case where the propagation channel,
expressed by the variables αs and ϕs, is perfectly known.
This is not the main case of interest for this paper, but it
can serve as comparison to gain valuable insights. We derive
the equivalent Bayesian information matrix (EBIM) [49],
adopting the notion of equivalent Fisher information matrix
(EFIM) from [51] and extending it to a Bayesian context. The
EBIM contains the Bayesian information for a subset of the
states, while considering the impact of the other states. It is
calculated by applying the Schur complement. In that fashion,
the EBIM for the sampling matrix elements

Jsg,sync = J (s−1)g,sync + Ĩ
s
g − Ĩ

s
gφ

(
Ĩ
s
φ

)−1
(Ĩ
s
gφ)

T (39)

is calculated recursively by adding up the information pro-
vided by the individual snapshots. The recursion of (39) is
initialized with J0g,sync, where the subscript sync refers to the
perfect propagation channel knowledge. With the prior pdf
from (19), J0g,sync =

2
σ 2
g0
I2MU is a diagonal matrix. Without

prior, J0g,sync = 02MU is a zero matrix. We define the MSE of
the sampling matrix elements as the trace of the MSE matrix
divided by the number of complex coefficientsMU ,

MSE
{
ĝs
}
=

1
MU

tr
{
Ez,x̃

{
(ĝs − g)(ĝs − g)H

}}
. (40)

Now we can obtain the BCRB for the known propagation
channel case as a lower bound on the estimation MSE of the
sampling matrix elements,

MSE
{
ĝs
}
≥ BCRBsync(g) :=

1
MU

tr
{(
Jsg,sync

)−1}
, (41)

In a similar way, we can obtain the EBIM for the DoAs,

Jsφ,sync = Ĩ
s
φ − (Ĩ

s
gφ)

T
(
J (s−1)g,sync + Ĩ

s
g

)−1
Ĩ
s
gφ, (42)

which leads to the BCRB on the p-th DoA for the known
propagation channel case,

MSE
{
φ̂sp

}
≥ BCRBsync(φsp) :=

[
(Jsφ,sync)

−1
]
p,p
. (43)

2) UNKNOWN PROPAGATION CHANNEL
The main case of interest for in-situ calibration is when the
propagation channel is unknown. Calculation of the EBIM for
the sampling matrix elements is similar to (39), except that
we now have to take the nuisance parameters αs and φs into
account. We thus obtain the EBIM for the sampling matrix
elements

Jsg = J (s−1)g + Ĩ
s
g

−

[
Ĩ
s
gφ Ĩ

s
gn

] [ Ĩ
s
φ Ĩ

s
φn

(Ĩ
s
φn)

T Ĩ
s
n

]−1 [
(Ĩ
s
gφ)

T

(Ĩ
s
gn)

T

]
. (44)

In the unknown propagation channel case, we have to distin-
guish between the case with prior and without prior.

a: WITH PRIOR
With prior, we have J0g =

2
σ 2
g0
I2MU according to the prior

pdf (19). As J0g is positive definite and by (44), the Schur
complement of the expectation of the FIM, which is positive
semidefinite, is recursively added. Thus, the sampling matrix
EBIM Jsg is positive definite with full rank and we can obtain
the BCRB of the sampling matrix elements by inverting the
EBIM,

MSE
{
ĝs
}
≥ BCRB(g) :=

1
MU

tr
{
(Jsg)

−1
}
, (45)

with the MSE defined by (40). In a similar fashion, we can
obtain the EBIM for the DoAs,

Jsφ = Ĩ
s
φ

−

[
(Ĩ
s
gφ)

T Ĩ
s
φn

] [J (s−1)g + Ĩ
s
g Ĩ

s
gn

(Ĩ
s
gn)

T Ĩ
s
n

]−1 [
Ĩ
s
gφ

(Ĩ
s
φn)

T

]
(46)

and the respective BCRB

MSE
{
φ̂sp

}
≥ BCRB(φsp) :=

[
(Jsφ)

−1
]
p,p
. (47)

b: WITHOUT PRIOR
Without prior, i.e. J0g = 02MU , one can make an important
observation when computing (44) recursively. No matter how
many snapshots are added, Jsg will always be rank deficient
by two. The reason is that in the unknown channel case, the
absolute amplitude and phase of the antenna response are not
observable. DoA estimation relies on relative amplitudes and
phases, therefore absolute offsets do no harm [52]. Still, the
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non-observability of absolute amplitude and phase implies
that by in-situ antenna calibration, instead of the true antenna
response, only an antenna response which is equivalent for
DoA estimation can be estimated. Thus, the power pattern of
the equivalent antenna response does not necessarily repre-
sent the antenna gain. Furthermore, the non-observability of
absolute amplitude and phase has implications on the estima-
tion theoretic analysis. Since Jsg is rank deficient, inversion is
not possible. To be able to calculate a BCRB, we set explicit
constraints on the sampling matrix in the form

f (G) = 0, (48)

see [53]–[55]. For instance, amplitude and phase could be
constrained by

f1(G) =
1

2πM

∫ π

−π

M∑
m=1

|[Gb(φ)]m| dφ − 1 = 0, (49a)

f2(G) =
1

2πM

∫ π

−π

M∑
m=1

arg{[Gb(φ)]m}dφ = 0. (49b)

Since the constraints can be written in the form (48), we can
apply the Moore-Penrose to obtain a meaningful BCRB for
the constrained problem [53]–[55]. The BCRB for the sam-
pling matrix elements is thus calculated as

MSE′
{
ĝs
}
≥ BCRB′(g) :=

1
MU

tr
{
(Jsg)

†
}
. (50)

However, the regular MSE (40) is not useful in this case any-
more, as absolute amplitude and phase offsets would count
as errors. Instead, in order to calculate a meaningful MSE
for ĝs, we have to make sure that its absolute amplitude and
phase match the true g, see [54]. This can be achieved by a
transformation. We multiply ĝs by the complex coefficient
(ĝs)†g to obtain the transformed MSE,

MSE′
{
ĝs
}

=
1
MU

tr
{
Ez,x̃

{(
ĝs(ĝs)†g− g

) (
ĝs(ĝs)†g− g

)T}}
.

(51)

The EBIM for the DoAs is also calculated with the pseudoin-
verse as

Jsφ = Ĩ
s
φ −

[
(Ĩ
s
gφ)

T Ĩ
s
φn

]
×

[
J (s−1)g + Ĩ

s
g Ĩ

s
gn

(Ĩ
s
gn)

T Ĩ
s
n

]† [
Ĩ
s
gφ

(Ĩ
s
φn)

T

]
, (52)

leading to the BCRB for the p-th DoA

MSE′
{
φ̂sp

}
≥ BCRB′(φsp) :=

[
(Jsφ)

−1
]
p,p
. (53)

C. QUALITATIVE BEHAVIOR OF THE BCRB
Before discussing the BCRB, we want to gain further insight
into the behavior of the sampling matrix EBIM Jsg. Since J

s
g

is a real-valued symmetric matrix, an eigendecomposition

Jsg = Q3QT (54)

FIGURE 2. Eigenvalues of Js
g for unknown propagation channel with prior.

The two smallest eigenvalues are marked with circles and crosses.

FIGURE 3. BCRB for estimating the elements of the sampling matrix G
without and with prior information on G and without and with known
propagation channel.

with an orthonormal basisQ and a diagonal matrix3 contain-
ing the eigenvalues λ1, . . . , λi, . . . λ2MU can be performed.
Figure 2 shows the evolution of the resulting eigenvalues
for a single realization in the unknown channel case with
prior. The assumed parameters are stated at the beginning of
Section V-B, but are not important for a qualitative assess-
ment. As can be seen, all eigenvalues start off at 2/σ 2

g0 =

22.22, corresponding to the information provided by the
prior. Since E

{
φsobs − φ

(s−1)
obs

}
= 1◦, see the beginning of

Section V-B, one full 360◦ turn corresponds to approximately
360 snapshots. During the first full turn, all eigenvalues
except two increase quickly, which means a large informa-
tion gain. After the first full turn, they increase slowly. Two
eigenvalues however stay at their initial value 2/σ 2

g0 = 22.22.
As discussed in the last section, these two eigenvalues corre-
spond to the non-observable absolute amplitude and phase.
In the case without prior, the two eigenvalues would be zero,
hence the pseudoinverse must be applied in (50) and (52).
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FIGURE 4. BCRB for the estimation of φs
1 without and with prior

information on the sampling matrix G and without and with known
propagation channel. CRB for known antenna response, i.e. known G,
is plotted for comparison.

Having discussed the sampling matrix EBIM, we now
want to assess the BCRB behavior qualitatively to gain some
insight into the problem at hand. For that we have a look at
the BCRBs of the sampling matrix elements g for the case of
a single impinging signal, plotted in Figure 3. First we focus
on the known propagation channel case. The known channel
BCRBwithout prior has a steep decrease until the completion
of the first full 360◦ turn after approx. 360 snapshots. The
known channel BCRB with prior first decreases slowly, then
we see a steep drop around the completion of the first full
turn. In this region, the known channel BCRB without prior
approaches the known channel BCRB with prior. Obviously,
it is vital that the full manifold is covered. Once the full
manifold has been observed, the prior is not useful anymore.
After the first full turn, both known channel BCRBs decrease
slowly with increasing number of snapshots. Here we only
see an improvement due to averaging over noisy observations.
Now we take at look at the unknown propagation channel
BCRBs. The unknown channel BCRB without prior shows a
similar behavior as the one for the known channel. However,
for the known channel case, the BCRB is almost one order
of magnitude lower. The unknown channel BCRB with prior
starts off next to the known channel one, but only slightly
decreases during the first full turn and then reaches a floor.
As we have seen in Figure 2, when s→∞, two eigenvalues
of Jsg will remain 2/σ 2

g0 , corresponding to the non-observable
absolute amplitude and phase, while all other eigenvalues
increase. Correspondingly, the two dominant eigenvalues of
(Jsg)

−1 will be σ 2
g0/2. In the limit, we thus have

lim
s→∞

BCRB(gs) = lim
s→∞

tr
{
(Jsg)

−1
}

MU
=

σ 2
g0

MU
. (55)

For the parameters chosen here, see Section V-B, we have√
σ 2
g0/MU = 0.05, which is exactly the floor value of

the unknown channel BCRB with prior from Figure 3.

As discussed in Section IV-B2, the BCRB (45) refers to
the regular MSE (40), where absolute amplitude and phase
offsets defined by the prior count as errors. It is thus not a
useful bound to asses the estimation quality of the sampling
matrix elements. In contrast, for the case without prior

lim
s→∞

BCRB′(gs) = lim
s→∞

tr
{
(Jsg)

†
}

MU
= 0. (56)

The true antenna response is constant over time and can
thus be estimated perfectly with an infinite number of obser-
vations. Still, it is not obvious what a certain error in the
estimation of the samplingmatrix elements ĝsmeans for DoA
estimation.

Therefore, in Figure 4 we have a look at the BCRB of the
DoA φ̂s1. All BCRBs start at σφobs . Initially, the observed DoA
is more accurate than the estimated DoAs from the received
signal with the prior sampling matrix Ĝ

0
. The unknown

channel BCRBwithout prior decreases steadily, until the first
turn has been completed after approx. 360 snapshots, then
decreases slowly. The known channel BCRB without prior
shows a similar behavior, but exists only for s ≥ 70, when the
EBIM (42) is full rank. In contrast to that, both BCRBs with
prior undergo a quick decrease during the first few snapshots.
Themodel parameters, which are observable by a single snap-
shot, are adjusted during these first few snapshots, e.g. ampli-
tude and phase offsets of the different ports. These parameters
are not contained in the model explicitly, but are covered by
the elements of the sampling matrix G. After approximately
one full turn, the BCRB without prior approaches the BCRB
with prior. For comparison, the snapshot DoA estimation
CRB for known antenna response is plotted. It is slightly
direction-dependent, thus snapshot-dependent. After one full
turn, the BCRB for a known propagation channel is very
close to the snapshot CRB for the case where the true antenna
response is known. This is expected, as long as the manifold
is sampled dense enough, the SNR of the received signal is
high enough and σφobs is not too large. Note that the known
antenna response CRB is not a lower bound for the BCRB,
as it does not consider φobs, i.e. the BCRB could also be
lower. Still it is a good indicator to show when performance
is close to optimum. The BCRB without channel knowledge
does not fully approach the known antenna response CRB,
but comes close after 1000 snapshots. For more accurate
observable DoA, i.e. smaller σφobs , or more snapshots, it can
also approach the known antenna response CRB.

V. SIMULATION RESULTS
A. SIMULATION SETUP
Now we evaluate the proposed in-situ antenna calibration
algorithm by simulation and assess its effectiveness by
comparison to the theoretical limits derived in Section IV.
To demonstrate that the proposed algorithm works for arbi-
trary antenna responses, we perform 500 Monte Carlo runs,
where for each run we randomly generate a new antenna
response. Starting point for the random antenna response
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FIGURE 5. Simulated RMSE for estimating the elements of the sampling
matrix G defined by (51) (transformed MSE′) and by (40) (regular MSE).
BCRBs without and with prior are plotted for comparison.

generation is a UCAwithM = 4 antenna elements and radius
R = 0.9/(4 sin(π/M )), which is described by

am,UCA(φ) = ej2πR cos(φ−2π
m
M ), (57)

aUCA(φ) =
[
a1,UCA(φ) . . . aM ,UCA(φ)

]T
, (58)

see [1]. We evaluate (58) at a regular angular grid φ1, . . . , φQ
with Q = 360,

EUCA =
[
aUCA(φ1) . . . aUCA(φQ)

]
, (59)

to obtain the UCA sampling matrix

GUCA = EUCABH (BBH )−1 (60)

with U = 9 basis functions analog to (7) and (8). Then, for
each Monte Carlo run a random sampling matrix is generated
by distorting the UCA sampling matrix

G = GUCA +WG (61)

with circular symmetric Gaussian noise

WG =
[
w1
g . . . wUg

]
, (62a)

wug ∼ CN (0, σ 2
g IM ), (62b)

with σg = 0.3. The outlined procedure models deviations of
the installed antenna response of a real-world UCA compared
to the ideal UCA antenna response (58). Such deviations
occur e.g. due to manufacturing imperfections, mutual cou-
pling and the influence of the antenna surroundings.
Ĝ
0
is obtained for each run by sampling the prior pdf (19)

with σg0 = 0.3. Furthermore, we assume S = 1000 snap-

shots, SNR =
α21
Nσ 2r

∑N
n=1 s

∗(n)s(n) = 10 dB and σφobs = 2◦

for the observable DoA φobs. For the evolution of the DoAs,
we assume φsp = φ

(s−1)
p + us with us ∼ U(0◦, 2◦), where

U(., .) is a uniform distribution.

B. SINGLE IMPINGING SIGNAL
First, we focus on a single impinging signal P = 1.
Figure 5 shows the simulated root-mean-square error
(RMSE) for estimating the elements of the sampling
matrixG. We compare the untransformed RMSE of the MAP
estimator defined by (40) to the BCRB with prior (45). The
two curves overlap and decrease during the first full turn,
before they flatten out. As discussed for Figure 3, their behav-
ior is explained by the absolute amplitude and phase offset
defined by the prior, which adds to the RMSE. In contrast
to that, a useful error metric is the transformed RMSE curve
calculated by (51). At the beginning, its behavior is similar
to the other RMSE curve, however towards the end of the
first full turn, approaching s = 360 snapshots, it decreases
much more and gets close to the BCRB without prior. The
BCRB without prior is not a lower bound for the estimator
with prior. However, as Figure 5 shows, after one full turn
the information gathered from the observations is much more
valuable than the prior, such that the two curves are close to
each other.

Next, we have a look at the RMSE of the DoA estimate

φ̂s1, which is plotted in Figure 6. The prior sampling matrix

Ĝ
0
does not reflect the real sampling matrix very well, hence

the initial estimation error is constrained by σφobs . After few
snapshots, the RMSE drops quickly. As stated in Figure 6,
certain parts of the sampling matrix G can be observed on a
snapshot basis. After that, the error decreases slowly, until the
first turn is completed. Around that point, the error decreases
quickly again. For increasing s, it slowly approaches the snap-
shot CRB for the known antenna response. As discussed in
Section IV-C, the snapshot CRB is not a lower bound for the
BCRB, but nevertheless an indicator of good performance.

For the final application, the observable DoA φobs will not
be present. Of major interest is thus, how good DoA estima-
tionwith the ‘‘trained’’ samplingmatrix Ĝ

s
performs.We thus

simulate DoA estimation for a discrete set of DoAs φq with
q ∈ {1, . . . ,Q} and Q = 72 spanning a regular grid over the
manifold. Figure 7 shows the RMSE over this grid, where for
each snapshot the estimated sampling matrix Ĝ

s
, obtained by

Algorithm 1, is used. The snapshot CRB for known sampling
matrix is plotted as benchmark. With the original setting of
σφobs = 2◦, sub-degree accuracy is achieved after a full turn.
After that, the RMSE decreases slowly. For comparison, the
whole simulation is also performed with σφobs = 0.5◦. In this
case, the snapshot CRB is almost reached after one turn.
To conclude, the accuracy of the observable DoA decisively
determines the performance.

C. MULTIPLE IMPINGING SIGNALS
To assess how the in-situ calibration algorithm performs in
the face of multipath propagation, we now assume three
impinging signals P = 3. The first signal has SNR =
15 dB, the other two 3 dB less. The signals arrive from fixed
locations φs2 = φ

s
1 + 45◦ and φs3 = φ

s
1 + 90◦ with ToAs τ2 =

τ1 + 48 ns and τ3 = τ1 + 96 ns. The first DoA is observable
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FIGURE 6. Simulated RMSE for the estimation of φs
1. BCRB and snapshot

CRB with known antenna response are plotted for comparison.

FIGURE 7. Simulated DoA estimation RMSE. The mean is taken over the
manifold, i.e. over q = 1, . . . ,Q DoAs φq lying on a regular grid. CRB for
known antenna response is plotted for comparison.

from another sensor with σφobs = 0.5◦. Figure 8 shows the
RMSE for the DoAs φ̂s1, φ̂

s
2 and φ̂

s
3, as well as the respective

BCRBs and snapshot CRBs for known antenna response. The
behavior of φ̂s1, which is observable by φsobs, is similar to
Figure 6. The estimation accuracy of φ̂s2 and φ̂

s
3 relies entirely

on an accurately estimated sampling matrix Ĝ
s
. Both φ̂s2 and

φ̂s3 start off with an RMSE above 10◦, which quickly goes
down to a few degrees. The result is in line with the findings
for Figure 6, that some components of the antenna response
or the sampling matrix can be observed by single snapshots.
After the first full turn, the RMSE of φ̂s2 and φ̂

s
3 is close to the

respective snapshot CRB. The snapshot CRBs for φ̂s2 and φ̂
s
3

are higher than for φ̂s1, as the SNR is 3 dB lower.
The proposed in-situ calibration algorithm performs well

for this artificial multipath sceario. An important prereq-
uisite in practice is a correct model order estimation [46]
and separability of the signals from the different propagation

FIGURE 8. Simulated RMSE for the estimation of φs
1, φs

2 and φs
3. BCRBs

and snapshot CRBs with known antenna response are plotted for
comparison.

paths in at least either DoA or ToA domain. Given that these
conditions are fulfilled, we conclude that the algorithm is
suitable to perform in-situ calibration in multipath scenarios.

VI. MEASUREMENT RESULTS
A. MEASUREMENT SETUP
We have performed measurements to assess the practical
applicability of the in-situ calibration algorithm. The antenna
to be calibrated is anMMA, specifically a dielectric resonator
antenna with four modes, which are excited independently.
It is an in-house development from the German Aerospace
Center (DLR), for details please see [56]. We have chosen
U = 13 basis functions, see (5), for the manifold separation
in (4).

The MMA together with an assembly is mounted onto
a robotic rover shown in Figure 9a. The robotic rover is
part of a fleet, which is used for navigation and exploration
experiments at DLR, see [10] and the references therein. Part
of the assembly is also a Universal Software Radio Peripheral
(USRP) N310, a host computer, a Wi-Fi transceiver, batteries
and two GNSS RTK receivers. The assembly can optionally
be mounted on a turntable, see Figure 9b. The commercial
multi-sensor RTK system [57] provides a reference for posi-
tion and orientation. Internally, fusion of GNSS and inertial
observations is performed. The output of the commercial
RTK system, together with the known anchor node positions,
is used to calculate the observable DoA φsobs for the in-situ
calibration algorithm.

For the physical layer signaling, we use our in-house
developed DLR Swarm Communication and Navigation sys-
tem [10], [58]. The system parameters are 1.68 GHz car-
rier frequency, 31.25 MHz sampling rate and orthogonal
frequency-division multiplexing (OFDM) with fast Fourier
transform (FFT) length 1024. The transmitted signal is a
Zadoff-Chu sequence of length N = 463, which is mapped
onto 925 subcarriers by occupying every second subcarrier.
The occupied bandwidth is thus≈ 28.2MHz. Channel access
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FIGURE 9. Assembly with installed MMA, multichannel SDR USRP N310,
host computer and two-antenna RTK receiver for position and attitude
reference.

FIGURE 10. Aerial view of the experiment site with three anchor nodes
and the assembly mounted on the turntable.

is realized by a self-organizing time-division multiple access
(TDMA) scheme with 100 ms round-trip schedule. The trans-
mit power for this experiment is −15 dBm.

The system is implemented as software-defined radio
(SDR). For the single channel nodes, GNU Radio and Ettus
Research B200mini devices are used. ForMMAs, DoA infor-
mation is in general contained in both magnitude and phase of
the received signal, see (2) and [12]. Thus, a phase-coherent
multichannel receiver is required and the phase and ampli-
tude imbalances between the channels need to be corrected.
We use the USRP N310 from Ettus Research. The local oscil-
lator (LO) is provided by an external frequency synthesizer,
which enables phase coherency for all four channels [58].

B. IN-SITU ANTENNA CALIBRATION
For the in-situ calibration, the assembly is mounted on the
turntable, see Figure 9b, and placed in between the three
anchor nodes. An aerial picture of the experiment site is
shown in Figure 10. Two full turns of the turntable are

FIGURE 11. Power pattern and phase pattern of ports 1-4 of the MMA
obtained by EM simulation, in a near-field measurement chamber and by
the in-situ calibration Algorithm 1.

performed. During this time, a total of S = 2264 snapshots,
consisting of 767 from A1, 750 from A2 and 747 from A3
are received. These are used to run the in-situ calibration
Algorithm 1 in post-processing.

Figure 11 shows three different antenna responses as power
and phase patterns of the MMA. The first antenna response is
obtained by EM simulation, where the antenna alone is simu-
lated in free space. The second antenna response is obtained
by measurement with an MVG Starlab near-field measure-
ment system. For the phase patterns, but less pronounced also
for the power patterns, a difference is visible between sim-
ulated and measured patterns. In addition to manufacturing
tolerances, this is explained by the fact that the mounting
structure and the radome of the manufactured antenna were
not considered by the simulation. The third antenna response
is the result of the in-situ calibration Algorithm 1. It is closer
to the measured than to the simulated antenna response. Still,
notable differences are apparent.

C. EVALUATION
In the end, the main interest is the DoA estimation perfor-
mance. To evaluate that in a fair manner, we use a different
data set. To record the evaluation data, the MMA assembly
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FIGURE 12. Map of the evaluation scenario. A1, A2 and A3 are static
anchor nodes; the robot started driving in the lower left corner.

was mounted on a robotic rover, see Figure 9a. The robot was
driving in-between and around the three anchor nodes with
an average velocity of 0.3-0.6 m/s. A map of the track and
the anchor nodes is shown in Figure 12. Starting point for
the robot is in the lower left corner. During the 7 min 50 s
long track, 4450 snapshots were received fromA1, 4336 from
A2, 4170 from A3, and recorded. Based on this data, the
signal DoA is estimated in post-processing by the ML esti-
mator (11) and (13) with the respective antenna response,
i.e. a(φ) = Ĝ

0
sim b(φ) for the simulated antenna response,

a(φ) = Ĝ
0
meas b(φ) for the antenna response measured in the

near-field chamber and a(φ) = Ĝ
S
MAP b(φ) for the antenna

response obtained by the in-situ calibration Algorithm 1.
Figure 13 shows the absolute DoA estimation error |φ̂ML−

φ| for the signals received from A2 over time. When the
antenna response from EM simulation is used, error peaks
above 20◦ are visible. Using the antenna response from
the near-field measurements, the error peaks are reduced to
around 10◦ to 15◦. With the antenna response obtained by the
proposed in-situ calibration algorithm, the estimation error is
reduced further. In this case, the error peaks top out at 10◦, but
are mostly lower. The experiment area was bumpy grassland.
While moving, the robot was shaking to some extent. This
could explain the spiky behavior of the estimation error.

For a more detailed analysis, Figure 14 shows the empir-
ical cumulative distribution functions (CDFs) of the DoA
estimation error w.r.t. anchor nodes A1, A2 and A3. Again
we distinguish between the three different antenna responses.
When the measured antenna response is used, 90% of the
measurement errors w.r.t. A2 and A3 are below 7.9◦ and
8.8◦, respectively, compared to 4.6◦ and 4.5◦ for the antenna
response from in-situ calibration. The signals from A1 show
higher estimation errors. Here the 90% values are 10.4◦ for
the measured antenna response compared to 7.2◦ with in-situ
calibration. Using the proposed in-situ calibration algorithm
results in better performance compared to EM simulation or

FIGURE 13. Absolute DoA estimation error with respect to anchor node
A2 using the antenna response from EM simulation, measured in a
near-field chamber and obtained by the in-situ calibration Algorithm 1.

FIGURE 14. Empirical cumulative probability of the DoA estimation error
for the three anchor nodes A1, A2, A3 using the antenna response from
EM simulation, measured in a near-field chamber and obtained by the
in-situ calibration Algorithm 1.

a near-field measurement of the antenna. Thus, we conclude
that the in-situ antenna calibration algorithm proposed in
Section III works well in practice.

VII. DISCUSSION
A. BAYESIAN FILTERING
Instead of estimating the full posterior (23) at once, a com-
mon approach is to estimate it recursively over time as in
Bayesian filtering. For the in-situ calibration problem stud-
ied in Section III, Bayesian filtering is challenging. Due to
the large number of unknown variables, particle filtering
approaches are not well suited, as they suffer from the curse
of dimensionality. Additionally, the problem is highly non-
linear. Empirically, we have found that the extended Kalman
filter (EKF) diverges due to the high nonlinearity. Perform-
ing Gauss-Newton iterations during the update step of the
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filter, as in the iterated extended Kalman filter (IEKF) [59],
improves the situation. As long as σφobs was not too large, the
IEKF did not diverge.

B. GLOBAL OPTIMIZATION TECHNIQUES
Algorithm 1 is a straightforward approach and was found to
converge for both, simulated and measurement data. How-
ever, its complexity grows with the number of basis func-
tions U , with number of impinging signals P and with
the number of snapshots S. Often, in-situ calibration algo-
rithms are applied to recorded data in post-processing, as in
Section VI. For post-processing, computational complexity
or execution times are usually not critical and are thus not
a focus of this paper. In the case where complexity does
matter, one could instead try solve for a batch of snapshots or
even all snapshots at once. Due to the high nonlinearity and
many local minima of the cost function, this is challenging.
However, instead of using BFGS as in Algorithm 1, one could
try to apply a global optimization algorithm [60].

C. SENSOR BIAS
For the measurement results presented in Section VI, φobs
was obtained by GNSS RTK. When no GNSS reception is
possible, other sensors need to be considered for φobs. Often
gyroscopes are used to determine turn rates, which can be
integrated to angles relative to a known initial direction.
Especially for compact and low-cost microelectromechanical
system (MEMS) gyroscopes, the measurements are not only
corrupted by zero-mean Gaussian noise, but additionally suf-
fer from a sensor bias. This sensor bias is not constant, but is
drifting over time [61]. If a MEMS gyroscope is considered
to obtain φobs, a potential approach could be to include an
appropriate model for the sensor bias, see e.g. [62], into the
state vector.

VIII. CONCLUSION
In this paper, we present an algorithm to perform in-situ
calibration of an arbitrary multiport antenna using wavefield
modeling and manifold separation. We derive the MAP esti-
mator to jointly estimate the sampling matrix together with
the DoAs using the received signals and a noisy, external
sensor. We also analyze in-situ antenna calibration from an
estimation theoretic perspective. For this purpose, we derive
the BCRB, which also serves as a benchmark for the algo-
rithm. For the unknown propagation channel case with prior
sampling matrix, the EBIM is full rank, but the resulting
BCRB bounds the regular MSE, where absolute amplitude
and phase offsets of the antenna response count as errors. The
regular MSE is thus not a meaningful error metric for the
sampling matrix. In contrast, for the unknown propagation
channel case without prior sampling matrix, the EBIM is
rank deficient. We show that a meaningful BCRB can be
obtained by the pseudoinverse, which bounds the transformed
MSE, where absolute amplitude and phase offsets of the
antenna response are compensated. Extensive simulations
are performed and compared to the BCRB to show the

effectiveness of the proposed algorithm.We also show that by
in-situ calibration, the DoA estimation performance asymp-
totically approaches the case where the antenna response
is perfectly known. The algorithm can cope with multipath
propagation, given the correct model order and resolvability
of the paths. To proof the practicability, measurements with
an MMA mounted on a robotic rover have been performed.
When the proposed in-situ calibration algorithm is applied,
DoA estimation accuracy is improved by 30% to 50% com-
pared to calibration in a near-field measurement chamber.

APPENDIX A GRADIENT OF MAP COST FUNCTION
The elements of the MAP cost function gradient (26) are
given by

∂CMAP(x0:S )
∂gR

=
−1
σ 2
r

S∑
s=1

∂L̃rs (φs, g)
∂gR

+
gR − g

0
R

σ 2
g0

, (63)

∂CMAP(x0:S )
∂gI

=
−1
σ 2
r

S∑
s=1

∂L̃rs (φs, g)
∂gI

+
gI − g

0
I

σ 2
g0

, (64)

∂CMAP(x0:S )
∂φs

= −


∂L̃rs (φs, g)

∂φs1
...

∂L̃rs (φs, g)
∂φsP

+
 1

σ 2
φobs

(φs1 − φ
s
obs)

0P−1

 .
(65)

Deriving the likelihood function (11) w.r.t. the complex
matrix D,

∂L̃rs (φs, g)
∂D

= −2
(
D⊥r− r

) (
rHD(DHD)−1

)
, (66)

from which we extract the p-th column

∂Dp =

[
∂L̃rs (φs, g)

∂D

]
:,p

, (67)

and applying the chain rule we obtain (68) to (70).

∂L̃rs (φs, g)
∂gR

=

P∑
p=1

Re
{(
b∗(φp)sH (τp)⊗ IM

)
∂Dp

}
(68)

∂L̃rs (φs, g)
∂gI

=

P∑
p=1

Im
{(
b∗(φp)sH (τp)⊗ IM

)
∂Dp

}
(69)

∂L̃rs (φs, g)
∂φp

= Re
{
∂DHp vec

{
G
∂b(φp)
∂φp

sT (τp)
}}

(70)

APPENDIX B DERIVATION OF FIM ELEMENTS
To derive the elements of the FIMs (34) to (38), we use
matrix and vector notation and write the expectation of (1)
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in different forms,

Ers(n)|x̃s
{
rs(n)

}
=

P∑
p=1

a(φsp)s(n, τ
s
p)α

s
pe

jϕsp

= A(φs)C(αs,ϕs)s(n, τ s)

=

(
(B(φs)C(αs,ϕs)s(n, τ s))T ⊗ IM

)
(gR + jgI)

=

(
(C(αs,ϕs)s(n, τ s))T ⊗ G

)
vec

{
B(φs)

}
=

(
sT (n, τ s)⊗ A(φs)

)
vec

{
C(αs,ϕs)

}
, (71)

where we define

A(φs) = GB(φs) ∈ CM×P, (72)

B(φs) =
[
b(φs1) . . . b(φsP)

]
∈ CU×P, (73)

C(αs,ϕs) = diag
{[
αs1e

jϕs1 . . . αsPe
jϕsP
]}
∈ CP×P,

(74)

s(n, τ s) =


s(n, τ s1)
...

s(n, τ sP)

 ∈ CP×1. (75)

With the signal covariance matrix

Rs =
1
N

∑
n∈Nsc

s(n, τ s)sH (n, τ s) (76)

and the Jacobian matrices (77) to (79).

Bφs :=
∂ vec

{
B(φs)

}
∂φs

∈ CP×P (77a)

[
Bφs

]
p,p =

∂b(φsp)

∂φsp
, p ∈ {1, . . . ,P} (77b)

Cαs :=
∂ vec {C(αs,ϕs)}

∂αs
∈ CP2×P (78a)

[Cαs ]P(p−1)+p,p = ejϕp , p ∈ {1, . . . ,P} (78b)

Cϕs j :=
∂ vec {C(αs,ϕs)}

∂ϕs
∈ CP2×P (79a)

[
Cϕs j

]
P(p−1)+p,p = αpe

jϕp , p ∈ {1, . . . ,P} (79b)

Using the appropriate forms of (71) and the Kronecker prod-
uct property

(A⊗ B)H (C ⊗ D) = AHC ⊗ BHD, (80)

the elements of (34) to (38) are given by (81) to (94).

IsgR = IsgI =
2N
σ 2
r
Re{B(φs)C(αs,ϕs)Rs

×CH (αs,ϕs)BH (φs)⊗ IM } (81)

IsgRgI =
2N
σ 2
r
Im{B(φs)C(αs,ϕs)Rs

×CH (αs,ϕs)BH (φs)⊗ IM } (82)

IsgRφ =
2N
σ 2
r
Re{(B∗(φs)C∗(αs,ϕs)R∗s

×C(αs,ϕs)⊗ G)Bφs} (83)

IsgRα =
2N
σ 2
r
Re{(B∗(φs)C∗(αs,ϕs)R∗s

⊗A(φs))Cαs} (84)

IsgRϕ =
−2N
σ 2
r

Im{(B∗(φs)C∗(αs,ϕs)R∗s

⊗A(φs))Cϕs} (85)

IsgIφ =
2N
σ 2
r
Im{(B∗(φs)C∗(αs,ϕs)R∗s

×CT (αs,ϕs)⊗ G)Bφs} (86)

IsgIα =
2N
σ 2
r
Im{(B∗(φs)C∗(αs,ϕs)R∗s

⊗A(φs))Cαs} (87)

IsgIϕ =
2N
σ 2
r
Re{(B∗(φs)C∗(αs,ϕs)R∗s

⊗A(φs))Cϕs} (88)

Isφ =
2N
σ 2
r
Re{BHφs (C

∗(αs,ϕs)R∗s

×C(αs,ϕs)⊗ GHG)Bφs} +
[
1/σ 2

φobs
0

0 0

]
(89)

Isφα =
2N
σ 2
r
Re{BHφs (C

∗(αs,ϕs)R∗s

⊗GHA(φs))Cαs} (90)

Isφϕ =
−2N
σ 2
r

Im{BHφs (C
∗(αs,ϕs)R∗s

⊗GHA(φs))Cϕs} (91)

Isα =
2N
σ 2
r
Re{CH

αs

(
R∗s ⊗ AH (φs)A(φs)
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Cαs} (92)

Isαϕ =
−2N
σ 2
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Im{CH
αs

(
R∗s ⊗ AH (φs)A(φs)
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Cϕs} (93)

Isϕ =
2N
σ 2
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(
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)
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