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ABSTRACT In this paper we present a motion planning method for the parabolic airdrop using multirotor
UAVs. The first step is to determine a set of parabolic trajectories that can reach a desired target. Next,
we plan a path to the payload launch point, and based on that path we plan a collision-free trajectory that
safely executes both launch and stopping motions. The described motion planning method is extensively
tested in the simulation environment: by executing many trajectories through repeatability analysis; planning
in a large city-like environment; and planning in a dense office environment. Furthermore, the method
is tested through real-world experiments in indoor and outdoor environments. In both environments,
we performed the repeatability analysis and the obstacle avoidance experiments while delivering the
payload to the target. The video demonstrating our simulation and experimental analyses is available at:
https://youtu.be/HJCH2vJEuuo

INDEX TERMS Unmanned aerial vehicles, motion planning, unmanned autonomous systems.

I. INTRODUCTION
Unmanned aerial vehicles (UAVs) have been around for a
significant time. Their versatility makes them interesting to
the research community, industrial enterprises, small busi-
ness owners, hobby enthusiasts and general public. This vast
interest sparked a huge growth of the UAV market, offering
new models with enhanced capabilities to consumers. The
research community has always been focused on envisioning
and investigating new concepts, propelling the world of UAVs
forward. Consequently, UAVs can be equipped with a broad
sensory apparatus, like cameras, LIDARs, etc., for observing
and obtaining information about the environment. Mounting
manipulators on UAVs gave them the ability to interact and
change the environment, expanding operational capabilities
even further.

Two main branches of these vehicles can be distinguished:
fixed-wing and multirotor aircraft. Each branch has its own
advantages over the other. Fixed-wing vehicles can usually
cover larger distances opposed to multirotors, which makes
them energy efficient. On the other hand,multirotors’ Vertical
Takeoff and Landing (VTOL) capability is a great advantage
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in dense environments, as they don’t require a lot of space
to get airborne. However, this capability comes with a price
because multirotors use a lot of energy just to stay airborne.

The task of precision airdrop is delivering a payload to a
specified target in the environment. These tasks are typically
performed with fixed-wing vehicles from significant heights
and by employing an active payload guidance system. In this
paper, we are taking the inspiration from this task, however,
we apply it to multirotor UAVs. Unlike fixed-wing UAVs,
multirotors work best in cluttered environments, so we focus
on delivering a payload in obstacle-populated environments
which yield much shorter payload trajectories. We compare
our approach to similar examples using multirotors, since
fixed-wing UAVs fall in a completely different range of appli-
cations.

A lot of work has already been done in the field of precision
airdrop. Work of researchers in [3], [4] considers the package
deployment using parachutes while estimating wind condi-
tions to improve the precision. Researchers in [5] provide
a similar approach, but include the aerodynamic properties
of the package in the release point calculation. The work
in [6] presents the Joint Precision Airdrop System (JPAS)
for precise military resupply, and [7] analyzes the optimal
dispersion altitude ofmultiple packages and solves a traveling
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salesman problem with minimizing the risk for ground troops
pickup of packages. Researchers in [8] take it a step further
and propose a guidance system capable of steering a parafoil
in an environment with sparse obstacles, while [9] uses awind
shear model to improve the landing precision of the parafoil.

Parafoils are a good solution in an obstacle-free environ-
ment and are not suitable for dense environments such as
forests, cities, etc. In some cases, a ballistic free fall can
be used to deploy packages. Researchers in [10] are care-
fully calculating the approach for the ballistic airdrop, while
considering the wind speed. Later on, they extended their
approach to an autonomous ballistic airdrop relying on the
wind field and air resistance models in [11]. The work in [12]
revolves around the precise ballistic airdrop based on the
Global Positioning System (GPS).

The common denominator of the methods presented in
above mentioned papers are i) using the fixed-wing aircraft
for the delivery, and ii) the payload is usually released from
a significant height. Although the energy efficiency of the
fixed-wing aircraft enables flying to distant areas, they are
not suitable for flying in cluttered environments. On the other
hand, the agility of small-scale multirotor vehicles is perfect
for parabolic airdrop applications in cluttered environments,
which is the focus of this paper. We investigate a situa-
tion when the released package is considered to traverse a
short distance, for example through a window of a build-
ing. In such a scenario, the UAV needs to execute aggres-
sive and precise maneuvers in order to successfully deliver
the package while avoiding collision with the environment.
UAV control mechanisms for such aggressive and agile
maneuvers are very well established. The work in [13]
presents results with multiple quadrotors juggling a ball
while in [14] an interception trajectory is planned for the
UAV to catch a projectile. Similar approach is reported
in [15], constraining the high order derivatives while plan-
ning a spline trajectory. Researchers in [16] plan aggressive
motions through narrow passages and execute a loop motion
to perch to an object, while the work in [17] considers
aggressive search-based trajectories. Finding the collision-
free feasible path and interpolating such a path with a tra-
jectory has been reported in [18], [19], while researchers
in [20] develop a local planner with the capability to avoid
previously unknown obstacles. The trajectory planning algo-
rithms mostly focus on convex optimization or mixed integer
programming [21]–[23] to ensure smooth trajectories. Apart
from the convex optimization and dynamic programming,
the numerical integration offers a different approach to the
trajectory planning. The work done in [24], [25] develops the
Time Optimal Path Parameterization (TOPP), which relies
on the bang-bang principle on the generalized torque. The
authors have accounted for the numerical instabilities and
singularities, yielding time optimal trajectories in a short
computation time. The approach presented in these papers
is utilized in this work because the widely accepted prac-
tical TOPP implementation reliably plans trajectories while
respecting the provided velocity and acceleration constraints.

FIGURE 1. An illustration of an experiment performed outdoors. The UAV
carries the ball to the release point and executes the stopping motion
afterwards. After the release instance, the free-fall parabolic trajectory
can be observed.

Researchers in [26] focus on indoor firefighting using UAVs
that spray water on the detected fire. They concluded this
approach is inefficient and the fire is not likely to be extin-
guished. Therefore, in futurework they propose using an ejec-
tion mechanism launching fire-extinguishing capsules. This
is in line with our solution, however, we base our approach
on exploiting the UAV dynamics in order to launch the fire-
extinguishing agent. In our previous work, we have been
concentrating on the motion planning for a heterogeneous
aerial-ground team performing delivery missions [27] as well
the as aerial manipulator end-effector motion planning based
on the dynamical model of the system [28].

As for any ballistic airdrop, the projectile has to reach a
certain point and a corresponding velocity in the world frame.
Due to possible proximity to obstacles at the release point,
a UAV has to be capable of aggressive maneuvering in order
to reach the launch point from a particular direction with
a particular velocity in an obstacle-rich environment. From
the trajectory planner perspective, these constraints have to
be satisfied for a successful parabolic airdrop, as well as
pass through a potentially large number of waypoints pro-
vided by the path planner. Although the convex optimization
approaches can directly incorporate these constraints in the
optimization process, their planning time tends to be signif-
icantly higher than the numerical integration due to a large
number of waypoints. Therefore, the TOPP-RA numerical
integration method is augmented within this paper to account
for the parabolic airdrop constraints, while retaining the abil-
ity to plan in a short amount of time. The inspiration for this
work is drawn from the practical use case of extinguishing a
fire and the aim is to develop a trajectory planner capable of
performing the parabolic airdrop.

A. CONTRIBUTIONS
Working in cluttered environments requires careful
consideration to verify an obstacle-free ballistic trajectory.
Therefore, the first contribution of this paper is an algorithm
generating a set of potential ballistic collision-free trajectory
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candidates between the released payload and the environ-
ment. The second contribution is the collision-free trajectory
planning algorithm for the UAV, that builds on top of the
payload trajectory, enabling the UAV to reach the launch
point while avoiding collision and release the projectile with
the proper velocity. We present the results of an extensive
analysis, starting from a realistic simulation environment.
Next, we conducted an experimental analysis starting from an
indoor laboratory environment, building towards experiments
in a relevant outdoor environment. The results obtained from
the simulations and the experiments are compared in terms of
repeatability and precision of the parabolic airdrop, with the
results presented and disseminated in this work.

B. ORGANIZATION
The notation used throughout the paper is given in Table 1.
In section II we derive a mathematical model of a multirotor
UAV with a rigidly attached payload. This is followed by
section III where we formally write the parabolic trajectory
which is the base for path and trajectory planning. The pro-
posed planning algorithm is tested and verified in a simulation
environment, as shown in section IV. Following the simula-
tion, we describe the performed experiments in section V.
Next, we discuss the results obtained from the simulation
and experiments in section VI. Finally, we draw conclusions
in section VII.

II. MATHEMATICAL MODEL
Within this section we derive the mathematical model of a
multirotor with an attached payload. The coordinate systems
and transformations used in modeling are depicted in Fig. 2.
We consider both kinematics and dynamics of such a system
in order to satisfy the payload release conditions, which will
be discussed in the following sections. The notation used in
the paper can be found at the end of the paper in Table 1.

A. KINEMATICS
The inertial frame is denoted with LW while the body fixed
frame is LB. Note that we express all vectors in the inertial
frame. The gravity is observed along the negative zW axis.
We can define the generalized coordinates of the UAV as
q∗B =

[
pTB 2

T
B

]T
∈ R6, where pB =

[
x y z

]T represents
the position of the UAV in the inertial frame and 2B =[
φ θ ψ

]T represents the attitude vector. As the multirotor
UAV is an underactuated system, we cannot control all six
Degrees of Freedom (DoF) simultaneously. Because of that
limitation we denote the reduced generalized coordinates as
qB =

[
pTB ψ

]T
∈ R4. This yields only four controllable

DoF, which are in this case the position of the UAV in the
inertial coordinate frame pb and the yaw angle rotation ψ .
The yaw angle is measured around an intermediate axis which
is parallel to the zw axis and passes through the UAV body
coordinate system origin Lb.

TABLE 1. The notation used throughout the paper.
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FIGURE 2. Coordinate systems and transformations of the UAV with an
attached payload. Lw is the inertial coordinate system, Lb is attached to
the UAV body and Lp is attached to the payload center of mass. Tb

w is the
transformation matrix from the inertial coordinate system to the UAV
geometric center, while Tp

b is the transformation from the UAV geometric
center to the payload geometric center.

The LP coordinate system represents the center of mass of
the payload. We consider the payload to be rigidly attached
below the UAV’s center of mass. The TB

W ∈ R4×4 is the
transformation matrix from the inertial coordinate system to
the UAV geometric center, while TP

B ∈ R4×4 is the transfor-
mation matrix from UAV’s geometric center to the payload
center of mass. To obtain the position and the orientation
of the payload in the inertial coordinate system, one can
simply multiply these two transforms TP

W = TB
W · T

P
B. Given

the desired payload position in the inertial frame, one can
calculate the transformation of the UAV in the inertial frame
with:

TB
W = TP

W · (T
P
B)
−1, (1)

which will allow us to specify the payload launch point in the
inertial frame, while being able to calculate the position and
the orientation of the UAV to satisfy the desired launch point.

B. DYNAMICS
A typical multirotor consists of np rotors placed in a single
plane, where each rotor produces the thrust force Fi =
kF�2

i and moment Mi = kM�2
i . Constants kF and kM are the

propeller thrust and drag coefficients, respectively, while �i
is the rotor velocity. Furthermore, we can define the mass of
the UAV as mUAV, and the inertia matrix around the UAV’s
center of gravity (CoG) as IUAV ∈ R3×3. As the UAV is
considered to carry a payload, we define the payload mass
as mp and its inertia matrix Ip. The payload is considered
to be rigidly attached to the body of the UAV, with some
displacement rp from its CoG. The inertia of the system
changes because of this displacement. Using the parallel axis
theorem, we can write the inertia of the payload around the
UAV’s center of gravity:

IBp = Ip + mp
(
rTp · rp · E3×3 − rp · rTp

)
, (2)

where E3×3 ∈ R3×3 is the identity matrix. The inertia of the
whole UAV-payload system is Is = IUAV + IBp , and the total
mass is ms = mUAV + mp.
To control the four degrees of freedom from qB, we take

inspiration from the work presented in [29] and generalize
the approach. The control inputs can be written as u = K ·
diag(�)·�, where u ∈ R4 consists of roll u1, pitch u2, yaw u3
and thrust u4 inputs, � =

[
�1, �2 · · ·�np

]T is the vector
of rotors’ angular velocities, and K ∈ R4×np is the mapping
matrix that depends on the configuration of the multirotor.
Note that by multiplying diag(�) ·�, the standard quadratic
relation between the control inputs and the rotors’ velocities
is obtained, as shown in [29]. Taking the total inertia of the
system Is and the input vector u into account, we can write
dynamics equations:

Is · ω̇ + ω × Is · ω =
[
u1 u2 u3

]T
mp̈ = R

[
0 0 u4

]T
−mg, (3)

where ω =
[
ωx ωy ωz

]T is the angular velocity vector in
the world frame, p̈ is the linear acceleration in the world
frame, g =

[
0 0 g

]T is the gravity vector with the gravi-
tational constant g = 9.81m/s2, and R ∈ R3×3 is the rotation
matrix from the body frame to the inertial frame.

Having a payload attached to the body of the UAV affects
the overall stability of the system. Researchers in [30] inves-
tigate the influence of a payload attached to a small mul-
tirotor vehicle. Namely, they analyze the linearized system
dynamics in hovering conditions, under PID control rule,
using the Routh-Hurwitz criterion. We were able to apply
the methodology developed in that paper since we use the
cascade PID control structure. In our case, the inner loop
controls the velocity and the outer loop controls the position.
More details about the control structure can be found in our
previous work [31]. Following the aforementioned method-
ology, we obtain the boundary values of the payload mass
mp for which the system is stable. Since the UAV’s intended
mission is dropping the payload, this sudden change in the
overall mass acts as a change of the system state. According
to the hybrid systems theory, we can guarantee that a system
is stable if all states of the system are stable (in our case UAV
with and without payload) and the switching between states is
such that the system is given enough time to stabilize between
switches [32]. As the only switch between the states occurs
when the payload is released, the hybrid system is stable.

III. AIRDROP TRAJECTORY PLANNING
Within this section we describe the planning procedure for
the parabolic airdrop trajectory. We consider the payload to
be rigidly attached to the body of the UAV. Furthermore,
we assume the payload can be detached instantaneously when
triggered. The detached projectile is considered to follow a
parabolic trajectory to the provided target in the environment.
The planner goes through three stages before the collision-
free trajectory is generated: based on the provided target,
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FIGURE 3. An example of parabolic projectile trajectory Tp chosen
among candidates Tp,c . The launch trajectory TL and the stopping
trajectory TS are executed by the UAV.

a parabolic projectile trajectory candidate is calculated defin-
ing the launch point; next, an obstacle free path is planned
to the launch point; and finally, a collision-free trajectory is
planned based on the previously obtained path.

A. PARABOLIC FREE-FALL TRAJECTORY
When a certain projectile motion is observed, it can be
described as a parabolic trajectory. While free falling, the air
resistance force acts on the projectile, and the final trajectory
can be described as ballistic, rather than parabolic. However,
in this paper the speed of the projectile is low and the air
resistance can safely be neglected, which is explained in
detail in Section III-F, so the final trajectory can be observed
as parabolic without any significant impact on the target
point precision. The parabolic trajectory can be characterized
with an initial velocity vector and a launch position, which
allows obtaining the projectile position with respect to time.
Within this section, the goal is to solve an inverse problem:
to determine a set of suitable launch points with some initial
velocities based on the user-supplied target point. An example
can be observed in a manifold of such trajectories, Fig. 3,
depicted with bold red. To start, we derive the parabolic
trajectory equations as a manifold in three dimensions:

xp(t) = xL + v0,p · cos(θp)cos(ψp) · t

yp(t) = yL + v0,p · cos(θp)sin(ψp) · t

zp(t) = zL + v0,p · sin(θp) · t −
g · t2

2
, (4)

where τL ≡ (xL, yL, zL) is the launch point in the world
frame, v0,p is the initial velocity magnitude of the projectile,
θp is the launch angle, ψp is the direction angle, g denotes
gravity magnitude along the zW axis and t is time. After the

release, only the gravitational force acts on the projectile,
giving it the characteristic parabolic trajectory shape.

In the airdrop use case, we consider the target point
τT ≡ (xT, yT, zT) as an input. Based on the target,
we search for a suitable launch point τL candidate within the
manifold (4), as shown on Fig. 3. First we can define the
parabolic trajectory configuration vector as:

Cp =
[
dp hp v0,p θp ψp

]T
, (5)

where dp and hp are horizontal and vertical displacements.
When performing a parabolic airdrop, the UAV must reach
the launch point with certain velocity so that the payload
would execute a parabolic motion. Given the aforementioned
configuration vector Cp and the target point τT, we can write
coordinates of the launch point as follows:

xL = xT − dp · cos(θp)cos(ψp)

yL = yT − dp · cos(θp)sin(ψp)

zL = zT + hp, (6)

and velocity vector:

vL =

v0,p · cos(θp)cos(ψp)v0,p · cos(θp)sin(ψp)
v0,p · sin(θp)

 . (7)

For simplicity and brevity we define the launch point con-
figuration vector asCL =

[
τTL vTL

]T which consists of a point
in space the UAV has to reach for launching the projectile,
alongside a velocity the UAV must ensure for the planned
launch. Note that the launch velocity vL is closely tied with
the launch angle θp. Namely, θp is the angle between the
horizontal and vertical components of the launch velocity.
This way, we can achieve a certain launch angle through the
UAV control by reaching the specified velocity and releasing
the payload at that time.

At this point, the unknown parameters in the equation (4)
are time t = Tp when the projectile reaches the target point
and the height displacement hp = zL − zp(t = Tp). Given
some distance from the target dp, speed v0,p and launch angle
θp one can calculate unknown parameters with:

Tp =
dp

v0,p · cos(θp)

hp = v0,p · sin(θp) · Tp −
gT 2

p

2
, (8)

which allows deriving the launch point τL using equation (4).
Recalling the parabolic trajectory configuration vector CP

from equation (5), we can restrict its members to some inter-
vals. Namely, dp ∈ (dminp , dmaxp ), v0,p ∈ (vmin0,p , v

max
0,p ) and θp ∈

(θminp , θmaxp ) are user defined intervals. The direction angle
interval is constrained to be withinψp ∈ (0, 2π ) whichmeans
the parabola candidates are considered in all directions. Using
equation (8), and based on the aforementioned constraints,
the interval for hp can be obtained. We can further discretize
these intervals with 1dp, 1v0,p, 1θp and 1ψp as steps for
each of the search space variables. By doing so, we obtain
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a discrete search space with a finite number of parabolic
trajectory candidatesTp,c. Each candidate has its own launch
point configuration vector CL and all possible configurations
can be written as a set:

Lp =

{
CL,c |

dp ∈ (dminp , dmaxp ), v0,p ∈ (vmin0,p , v
max
0,p )

θp ∈ (θminp , θmaxp ), ψp ∈ (0, 2π )

}
(9)

B. PATH PLANNING
The main task of the path planner is to find a piecewise
straight line obstacle-free path given the desired waypoints.
We consider the environment to be known, either given
through a known map or obtained by an exploration or map-
ping algorithm, i.e. as proposed in [33]. In order to find an
obstacle-free path in the environment, we employ the well-
known RRT* algorithm [34], although other path planners
can be used as well. Even though the UAV indeed has six
degrees of freedom (DoF), it is an underactuated system
which means we cannot plan for all six DoF simultaneously.
Therefore, we reduce the planning space to four degrees of
freedom as qB =

[
x y z ψ

]T
∈ R4.

As shown on Fig. 3, the UAV has to move from its starting
point τS ≡ (xS, yS, zS), which is the current UAV position,
to the launch point τL. Since the orientation is not relevant for
a successful launch, we set it to the parabola orientationψL =

ψp. The start waypoint wS =
[
xS yS zS ψS

]T
∈ R4 and

end waypoint wL =
[
xL yL zL ψL

]T
∈ R4 are the input

to the path planning algorithm. The output is obstacle-free
piecewise straight path between waypoints:

P =
{
pi | pi ∈ R4, i ∈ (0, 1, . . . ,m− 1)

}
, (10)

where m ≥ 2 is the number of points in the path, and
pi =

[
xi yi zi ψi

]T
∈ R4 denotes the i-th point on the path.

The launch configuration CL requires that both position and
velocity are satisfied at the launch point. However, the RRT*
does not account for dynamics and can only ensure launch
position is reached. To satisfy the velocity condition, we plan
a trajectory based on the path P , obtained by the planner
described in the following section.

C. TOPP-RA TRAJECTORY
To plan dynamically feasible trajectories, we use Time
Optimal Path Parameterization by Reachability Analysis
(TOPP-RA) approach developed within [25]. The approach
works on an n-dimensional problem, given the velocity and
acceleration constraints of each DoF. Since it is based on a
numerical integration approach, the original practical imple-
mentation runs very fast while providing time optimal tra-
jectories. The input to the trajectory planning is the path P
defined in equation (10). The output is a trajectory:

TT =

{
x(t) | x(t) ∈ R3·4, t ∈ (0, tend )

}
, (11)

where x =
[
qTB q̇TB q̈TB

]T is one trajectory point with position,
velocity and acceleration in the generalized coordinates of the
UAV, t is time, and tend the trajectory duration.

The trajectory TT is a stop-to-stop trajectory at this point.
However, one of the requirements from Section III-A is
the velocity at the launch point. Although the TOPP-RA
approach allows for non-zero velocities at both start and end
point, the widely accepted practical implementation struggles
to find a feasible solution in such cases. Through our empir-
ical validation, we discovered that run time of the algorithm
increases with non-zero velocities. Furthermore, the solution
is usually found if provided velocities are close to zero, how-
ever, when an arbitrary velocity was set, the implementation
failed to find a solution in most cases. The reasons why the
aforementioned planner fails goes beyond the scope of this
paper.

Although the TOPP-RA fails when arbitrary non-zero
velocity and acceleration are set at the start or at the end,
it is still a reliable planner. TOPP-RA plans time optimal
trajectories while respecting the given constraints, and does
this in a very short time period for both small and large
environments. Throughout the extensive testing in simula-
tion and experimental environments, the planner never failed
to produce a feasible stop-to-stop trajectory. Furthermore,
in our analysis of the planner so far, it never failed on
high-dimensional problems, i.e. 22 DoF. In such cases, the
planning time only slightly increased when compared to
the UAV-only planning with four DoF. One disadvantage of
the TOPP-RA when compared to the convex optimization
methods is the non-continuity of the high-order derivatives,
such as jerk or snap. Methods from [27], [29] work well
with a small number of points in the path (n < 15) and
with a limited number of DoF. As we use large environments
in following sections, the path planning produces a large
number of waypoints which imposes a significant planning
time for the aforementioned methods. This kind of reliability
and a fast planning time for a large number of waypoints
prompts us to still use the TOPP-RA for the initial trajectory
planning, and achieving non-zero velocity and acceleration at
the launch point is described in the following section.

D. SPLINE INTERPOLATION
The aforementioned behavior prompted us to augment
the stop-to-stop trajectory generated by TOPP-RA with a
5th order spline. As this spline has six free coefficients, we are
able to define the position, velocity and acceleration at both
start and the end of the spline. Since the original trajectory
also contains position, velocity and acceleration, this allows
us to replan any segment of the original trajectory with such
a spline. We start with the 5th order spline general equation:

p(t) =
5∑
i=0

ait i, (12)

where ai are free coefficients of the spline.We can also define
a spline configuration vector:

Cs =
[
ps vs as pe ve ae

]T
,
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where subscript s denotes the start point and subscript e
denotes the end point. Free coefficients ai can be uniquely
calculated with:


a0
a1
a2
a3
a4
a5

=



ps 0 0 0 0 0
0 vs 0 0 0 0

0 0
as
2

0 0 0
−10p0
T 3

10pe
T 3

−6vs
T 2

−4ve
T 2

−3as
2T

ae
2T

15p0
T 4

−15pe
T 4

8vs
T 3

7ve
T 3

3as
2T 2

−ae
T 2

−6p0
T 4

6pe
T 4

−3vs
T 3

−3ve
T 3

−as
2T 2

ae
T 2


· Cs,

(13)

where T denotes the spline duration.We also impose dynamic
constraints on the spline as the maximum velocity magnitude
vmax and the maximum acceleration magnitude amax . Since
the 5th order spline also has duration as an unknown param-
eter, we perform an initial guess of the duration with T0 =
|pe − ps| /vmax . Next, we use the equations (12) and (13) to
find maximum velocity magnitude vmax,s and acceleration
magnitude amax,s on this particular trajectory. We optimize
the spline duration T in an iterative manner with:

s = max
{
vmax,s
vmax

,

√
amax,s
amax

}
Ti+1 = Ti · (1+ sgn(s− 1) · α) , (14)

where α is the convergence factor and i is the current iteration
starting from i = 0. The optimization is over when the
derivative ratio factor is within user defined bounds−ε < s−
1 < ε, or the spline duration T does not exceed a user defined
threshold. In our experience, the time threshold condition has
never been triggered and the optimization always converged
within the bound ε. This procedure ensures the splinemeets at
least one dynamical constraint, either velocity or acceleration.

To account for multiple DoFs, we have to extend this
procedure to an n-dimensional problem. As all DoFs have
to be time synchronized, the duration is simply set to the
maximum duration of all DoFs, Ti = max

{
Ti,1,Ti,2 · · · Ti,n

}
.

The derivative ratio factor is the maximum of all DoFs’
factors, s = max {s1, s2 · · · sn}. This allows us to produce an
n-dimensional spline that is within the dynamic constraints of
all DoFs. We employ the described method for planning both
launch and stopping trajectories.

1) LAUNCH TRAJECTORY
As the initial trajectory TT from equation (11) plans stop-to-
stop motion, we need to ensure the required velocity at the
launch point. Moving backwards along the initial trajectory,
we can replace a portion of the initial trajectory with a spline
trajectory that satisfies the launch velocity. Fig. 4 depicts how
the launch trajectory is chosen.

FIGURE 4. An illustrative example of replacing a portion of the initial
trajectory TT with a launch spline trajectory TL chosen between
candidates TC. Points denoted as xr represent the candidate spline
starting points. After supplying the target point τt, the launch point τl is
determined based on the payload parabolic trajectory Tp. The trajectory
is then planned from the starting point τs which is the current position of
the UAV.

Moving backwards along the initial trajectory TT, we cal-
culate its cartesian length using a line integral formula:

lT =
∮ T2

T1

√
x2(t)+ y2(t)+ z2(t)dt, (15)

where we integrate between T1 and T2. Every 1lT meters,
we take a point xr on the initial trajectory and plan a launch
trajectory candidate Tc from that point to the launch point
xL =

[
qTL q̇TL q̈TL

]T where qL =
[
τTL ψp

]T , q̇L = [
vTL 0

]T
and q̈L = 04×1. Note that in this particular case, T2 is the
trajectory end time and T1 is the time when we reach the
point xr . Using the procedure from Section III-D, we plan a
candidate launch trajectory from xr to xL, which is immedi-
ately checked for collision. If the trajectory is collision-free,
the candidate becomes a part of the launch candidates set
SL. Integrating backwards continues until the user specified
spline length limit L, or the end of the initial trajectory is
reached.

Let lc be the length of each launch trajectory candidate Tc,
obtained through equation (15), and li be the length of the
initial trajectory portion TT that the candidate trajectory
replaces. The criterion for selecting the most appropriate
launch trajectory is a length ratio:

rl = lc/li (16)

The candidate with the ratio closest to one is chosen as
the launch spline that is incorporated into the initial tra-
jectory. A careful reader should note that this ratio is not
monotonically decreasing or increasing because it depends
on the selected launch point configuration CL. The resulting
trajectory is the launch trajectory TL. If there is no feasible
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launch trajectory, the launch point candidate is discarded and
the process is repeated with a new candidate.

2) STOPPING TRAJECTORY
As the UAV reaches the launch point with some non-zero
velocity, it will execute some stopping motion. If neglected,
this motion could potentially hit an obstacle, which is not
a desired behavior. To account for that, we plan a stopping
trajectory TS between the launch point xL and the resting
point xR =

[
qTL 01×4 01×4

]T , using the spline trajectory
described in the previous section. Unlike the launch trajec-
tory, we plan the stopping trajectory for each axis separately.
This is possible because we do not require all degrees of free-
dom reaching the resting point simultaneously. In turn, this
slightly different approach yields amore aggressive trajectory
since all degrees of freedom will reach a dynamic constraint.
Thus, the final trajectory path length will be shorter which
shortens the stopping motion.

One can observe that the resting point position is the launch
position, while velocity and acceleration at the end are set
to null vectors to ensure hovering. After the trajectory is
planned, it is checked for collision and the launch point is
dismissed if the stopping trajectory is not collision-free.

E. PLANNING OVERVIEW
To summarize, we give a brief overview of thewhole planning
procedure described within previous subsections. First we
obtain a finite set launch point candidatesLp, which provides
points in the world frame together with the velocity for the
parabolic airdrop. Iterating through Lp, we check whether
the parabolic trajectory for the current candidate is collision-
free, if so we plan a collision-free path to that particular
point. The trajectory is planned in three phases described
in previous text. First, a stop-to-stop TOPP-RA trajectory
TT is planned based on path P obtained in section III-B.
Next, a portion of this trajectory is replaced with the launch
trajectory TL in order to satisfy velocity and acceleration
constraints at the launch point. Finally, a stopping trajectory
TS is concatenated to the launch trajectory to account for
the UAV stopping motion. Naturally, all the aforementioned
trajectories are collision-free and are discarded otherwise.
The aforementioned search is performed sequentially, iterat-
ing through Lp. As soon as the first collision-free trajectory
T is found, the search is finished and other candidates are
not evaluated. The full planning procedure is captured within
Algorithm 1.

1) IMPLEMENTATION NOTE
Throughout this and previous sections we refer to
the collision-free path and trajectory. In this paper, the
OctoMap [35] representation of the environment is used. The
OctoMap consists of voxels that can be occupied or free, and
it is essentially a spatial discretization of the environment
with various resolutions. It offers a simple and fast interface
to check the voxel state. The UAV is represented with a

Algorithm 1: Path and Trajectory Planning Overview

PlanAirdropTrajectory (Lp, qB):
inputs : Launch configuration set Lp,

UAV pose qB
output: Trajectory T
forall CL ∈ Lp do

/* Plan path, equation (10) */
P = planPath(CL, qB);
/* Plan trajectory, equation (11)

*/
TT = planToppraTrajectory(P);
/* Section III-D1 */
TL = planLaunchTrajectory(TT, vL);
/* Section III-D2 */
TS = planStoppingTrajectory(TL);
T = concatenateTrajectories(TL, TS);
if isCollisionFree(T ) then

return T ;
else

continue searching;
end

end
end

fixed size bounding box when checking for collisions. The
dimensions of the bounding box are larger than the UAV
itself to account for safety margins in the planning procedure.
The bounding box is then spatially discretized and each point
obtained in such a way is checked for the collision. If any
point is indeed colliding with the environment, the given
UAV configuration is not feasible. The collision checking
is performed within the RRT* path planning algorithm to
produce collision-free piecewise-straight line paths, and it is
also performed on the planned trajectory since it can deviate
from the underlying path.

2) COMPUTATIONAL COMPLEXITY DISCUSSION
As we already mentioned and summarized in Algorithm 1,
there are several aspects of the planning procedure, each with
its own computational complexity. The procedure runs an
exhaustive search iterating through C l and it terminates after
the first collision-free trajectory is found. In each iteration,
four algorithmswith different computational complexities are
executed:

1) RRT* path planning. According to [36], the com-
putational complexity of the RRT* algorithm is
O(n log n), where n denotes the number of samples
for a fixed environment. For more open and sparsely
populated environments, such as the city example
in Section IV-B, the number of samples is relatively
small. For more complex environments, such as the
office example in Section IV-C, the number of samples
is greater due to narrow passages.

2) TOPP-RA trajectory planning. In [25], researchers
report the computational complexity of O(mN ), where
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m denotes the number of inequalities that have to be
solved at each of N discretization points. As the under-
lying path gets longer, the number of discretization
points is higher so longer trajectories tend to have
higher computational time.

3) Stopping trajectory. The spline planning algorithm is
discussed in Section III-D and is an iterative sub-
gradient method. This class of optimization methods
is similar to the steepest descent methods, however,
it can operate on a non-differentiable objective func-
tion as the one used in this paper. Time required to
solve the problem depends on the initial and final
dynamical conditions. For the stopping spline, it will
depend on the launch point configuration. The com-
putational complexity of the subgradient method is
an open research problem in computer science, and
therefore goes beyond the scope of this paper.

4) Launch trajectory. The same procedure as for the stop-
ping spline is used to plan the launch spline. The differ-
ence lies in calling the spline planning method multiple
times as candidate points xr are determined on the
TOPP-RA trajectory. Indirectly, themethod depends on
the environment configuration since a more complex
environment will produce a more challenging TOPP-
RA trajectory, and TOPP-RA trajectory dictates the
initial conditions.

The computation time for each part of the planning algo-
rithm is given in Section VI.

F. NEGLECTING AIR RESISTANCE
To treat the payload trajectory as parabolic rather than bal-
listic, we provide an analysis on how much air resistance
influences the trajectory. In this paper, we consider releasing
a spherical payload. The drag force of a sphere is given with:

Fd =
1
2
ρairv2Cd (Re (v, r))A, (17)

where ρair = 1.1839 kg/m3 is the air density, v is the projec-
tile speed,Cd is the drag coefficient of the sphere that depends
on the Reynolds number Re, r is the radius of the sphere, and
A = r2π is the sphere projection area perpendicular to the
velocity direction.

The Reynolds number depends on the speed and the radius
of the sphere, and can be expressed as:

Re(v, r) =
ρairvr
3µair

, (18)

whereµair = 1.837 ·10−5Ns/m2 is the dynamic air viscosity.
As the drag coefficient Cd depends on the Reynolds number,
we use the equation 7 of the work in [37] to obtain the drag
coefficient.

Based on system and task specific limitations, we consider
the following constraints: the initial horizontal velocity mag-
nitude of the released object is vh < 5m/s; the maximum
height between the release point and the target is 1z < 10m;
the radius of the object is within interval 0.04m < r < 0.25m;

and themass of the object is within the interval 0.3kg < mp <
3kg. Furthermore, if the object is released horizontally, the
maximum speed will be achieved at the target. The maximum

speed can be obtained with vmax =
√
v2h + 2g1z, where

g denotes gravitational acceleration. Plugging all the above
assumptions in equations (17) and (18), we obtain the interval
for the Reynolds number of 1278 < Re < 7987 and finally
for the maximum drag force 0.0007N < Fd < 0.0147N .

As the drag force of the sphere depends on the speed, it will
increase as the object accelerates. To be on the safe side,
we can assume the worst case scenario in which the force
along the whole path is constant and equals the maximum
drag force at the impact. Taking the mass of the payload into
account and relying on the fact that the path traversed under

constant acceleration equals 1s = 0.5 ·
Fd
mp

t2, we obtain the

maximum deviation of the object with respect to the target of
1smax = 0.005m. The obtained maximum deviation is neg-
ligible, especially considering the fact that the assumptions
that led to the maximum deviation are favoring the worst case
scenario. Therefore, we can safely neglect the air resistance
when accounting for the ballistic free fall trajectory.

IV. SIMULATION
To examine and validate the proposed parabolic trajectory
planning approach, we created a realistic simulation envi-
ronment in the Gazebo simulator within the Robotic Oper-
ating System(ROS). We model the UAV as a single rigid
body with rotational joints attached to each of the UAV’s
arms. Rotational joints are simulating the propeller dynam-
ics through rotors_simulator [38], a widely used public
package. The projectile model is a simple ball with mass
and radius as parameters. To pick up and release the pro-
jectile, we use the storm_gazebo_ros_magnet [39] pack-
age that simulates a permanent dipole magnet. In order
to release the projectile, we adapted the package to func-
tion as an electromagnet with a ROS topic for toggling
it on and off. The full implementation can be found
at https://github.com/larics/storm_gazebo_ros_magnet/tree/
melodic_electromagnet_dev.

We validate this approach in several distinct environments
in order to test all aspects of the planning algorithm.

A. PARABOLIC TRAJECTORY ANALYSIS
In this subsection we consider planning a trajectory in an
obstacle free environment. This allows us to concentrate on
the planned and the executed parabolic trajectory of the pro-
jectile. The ball radius is set to rb = 0.1m and the target
position is τT ≡ (0, 0, 0.1). The target z axis coordinate is
set to the ball radius because the measurement of the ball’s
position is obtained at its center. To analyze this behavior,
we planned trajectories for n = 150 parabola configuration
vectorsCp. These configurations were obtained by all combi-
nations of the height displacement hp ∈ {1.0, 1.5, . . . , 4.5}m,
the initial velocity magnitude v0,p ∈ {1.5, 2.0, . . . , 3.5}m/s
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FIGURE 5. An example of various planned parabolic trajectories Tp and
executed Tp,e.

and the launch angle θp ∈ {0, 7, 14, 21}◦. The distance from
target dp is calculated using equation (8), and the parabola
yaw angle is kept at zero for simplicity. Each trajectory was
then executed in 10 trials to obtain the average Root Mean
Square Error (RMSE) and distance to the target values. Some
examples of such trajectories can be observed in Fig. 5. Note
that to better visualize the experiment, we constrained the
planner to the x − z plane. The overall success rate in an
obstacle-free environment was 1104/1500. Note that the suc-
cess here is determined the same as in Section IV-C, all trials
with the impact point within dt = 0.375m are considered to
be successful.

To calculate the average RMSE between the planned and
executed parabolic trajectory, we use the Hausdorff distance
from each point on the planned trajectory to the executed
trajectory. Using this method, the obtained error averages at
RMSEp = 0.2046m. The other criterion we considered was
the distance from the target. The distance from the target
averages at davg = 0.2717m with the maximum of dmax =
0.9065m and the median value of dmed = 0.2481m. This is a
relatively small error which allows us to consistently perform
a very precise parabolic airdrop.

Apart from analyzing the RMSE of the projectile trajec-
tory, we also analyzed the executed trajectory performance.
Throughout all the experiments, the velocity and acceleration
constraints were kept the same, given within Table 2. The
table reflects constraints for all three stages of the trajectory
planning: the approach trajectory TT planned with TOPP-
RA; the launch trajectory spline TL; and the stopping trajec-
tory spline TS. Consequently, we analyze the RMSE of all
three trajectory stages separately. We calculated the average
RMSE for all conducted airdrops at RMSET = 0.1299m,
RMSEL = 0.1123m, RMSES = 0.0795m. The RMSE
difference between the three stages of the trajectory occurs
due to different planning approaches and constraints imposed
upon the trajectory. Note that the stopping trajectory has
slightly higher constraints in order to stop the UAV more

TABLE 2. Velocity and acceleration constraints for all three segments of
the planned trajectory. TT denotes the approach trajectory, planned
through TOPP-RA. TL denotes the launch spline and TS denotes the
stopping spline. All values are in standard SI units: v [m/s], a[m/s2],
ω[rad/s] and ω̇[rad/s2].

FIGURE 6. Planned and executed trajectories of the UAV for a parabolic
airdrop task. The projectile trajectory, given in magenta, is depicted for
clarity.

aggressively. The obtained RMSE indicates the UAV follows
the trajectory in a precise manner, which in turn ensures the
precise parabolic airdrop.

B. LARGE-SCALE ENVIRONMENT
After the consistent parabolic airdrop was achieved,
we turned to planning in a large scale city-like environment.
The choice of such an environment is driven by the practical
use case: delivering and deploying a fire extinguishing ball to
a building on fire. To clarify, a fire extinguishing ball contains
a dry powder which disperses in contact with the flame. Since
we use OctoMap [35] as a map representation, we assume a
known map of the city. In a real world scenario such a map
can be obtained through cadastral urbanmaps or built through
mapping procedures, however, this goes beyond the scope
of this paper. The RRT* planner uses the OctoMap as an
environment map and plans an obstacle free path as described
in Section III-B. An example of the trajectory planned in the
city environment is shown on Fig. 7. The city environment
is scaled down for clarity, but from the perspective of the
planner it still retains the same level of complexity as a full
scale environment. The scaled down environment is roughly
the size 100m× 100m× 40m.
The start point of the UAVwas set to the far side of the city

in order to test the planner’s ability to find a feasible trajectory

36916 VOLUME 10, 2022



A. Ivanovic, M. Orsag: Parabolic Airdrop Trajectory Planning for Multirotor Unmanned Aerial Vehicles

FIGURE 7. Several examples of executed trajectories in a large-scale city
environment. The UAV navigates through the city, reaches the launch
point and releases the ball into a building of interest.

navigating through the city. We performed 40 trials aiming to
deliver the ball into the building. For consistency, we chose
to deliver through the same window. The average planned
trajectory length for the city environment is lT = 167.79m.
The average RMSE for the city environment is very similar to
the one obtained in Section IV-A, and averages at RMSET =
0.1086m, RMSEL = 0.1402m and RMSES = 0.0614m. The
system was able to deliver the ball through the window in
34/40 instances. However, the executed parabolic trajectory
has a slightly poorer performance opposed to Section IV-A.
The parabola error averaged at RMSEp = 0.1557m, aver-
age distance to target is davg = 0.2896m and maximum
distance to target is dmax = 0.3275 and the median of
dmed = 0.2917m. This kind of performance is expected
since the RRT* algorithm plans a different path for each
experiment, and the resulting launch trajectory is therefore
different in each instance. Nevertheless, the high precision
of the parabolic airdrop is evident from the high rate of
successful deliveries.

C. DENSE INDOOR ENVIRONMENT
To push the limits of the method, we tested it in a dense
indoor environment. Namely, we chose an office space layout
with several rooms and a common place, depicted on Fig. 8.
As in the city example, we assume a known map of the
environment. Having such an environment also puts high
requirements on the maneuverability and control of the UAV,
since it has to navigate through doors and abruptly stop if
the projectile was released close to an obstacle, i.e. parabolic
airdrop through a door. The planner’s task is to find a feasible
parabolic airdrop candidate such that the UAV does not crash
into obstacles while launching the projectile in a precise
manner. The planner was tested in a series of experiments
where the ball was delivered into each room of the office for
20 times. Note that the RRT* obtains a different path each
time it is called.

Since the planned stopping trajectory was consistently not
feasible due to crashing into the wall above the door of an
office, we needed to take a slightly different approach for
the launch and stopping trajectories. Namely, we introduce

FIGURE 8. Executed ball trajectories for launching the ball into each
room of the office environment.

a non-zero acceleration aL at the launch point τL. This accel-
eration is a scalar that is spanned in the x-y plane opposite
to the planned direction of the ball and is given by q̈L =[
−aLcos(ψp) −aLsin(ψp) 0 0

]T. Setting any acceleration at
the launch point does not affect the planned parabolic trajec-
tory because at the instance of release the only force acting on
the ball is the gravity. For the office environment the launch
acceleration was set to aL = 1.5 m/s2. This method enabled
the UAV to start decelerating even before it releases the ball
and the resulting stopping trajectory had no contact with the
wall. Furthermore, the acceleration constraint for the stopping
trajectory was slightly increased to ax = 4.0m/s2 and ay =
4.0m/s2, in order to avoid contact with the environment. The
average planned trajectory length for the office environment
is lT = 38.35m.
The obtained average RMSE of the executed trajectories

is similar as in Section IV-A, a total of 120 trajectories
(20 trials per room in the office) were performed. The
resulting performance is: RMSET = 0.0894m, RMSEL =
0.1522m, RMSES = 0.0728m. The obtained average
parabola error is RMSEp = 0.4167m, the average dis-
tance to target is davg = 0.4723m and the maximum dis-
tance to the target is dmax = 0.9936m, and the median of
dmed = 0.4389m. We attribute this decrease in precision
to the tight environment and the increase in dynamical con-
straints. On the other hand, in 87/120 cases the ball ended
up in an office as planned. We would like to point out that in
an average case of davg = 0.4723m the numbers suggest that
the systemmisses the office. However, this is not entirely true
because the distance to target when the miss occurs is larger
than the average. The median at dmed = 0.4389m provides
a deeper insight on the performance which complements the
greater success rate than the average suggests.

To further test the method, we performed a series of
experiments aiming for a bucket placed in one room of the
office, totaling in 40 more trials. The radius of the placed
bucket is rbucket = 37.5cm and the ball radius was set to
rball = 0.1m. With such parameters the system was able
to successfully throw the ball in the bucket 26/40 times.
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TABLE 3. Average execution times of different planning procedure steps.
All times are expressed in seconds. Note that RRT* step does not occur in
an empty environment, thus, the planning time is zero.

The trajectory tracking errors averaged at RMSET =

0.0872m, RMSEL = 0.1405m, RMSES = 0.0646m. The
obtained average parabola error is RMSEp = 0.2643m,
the average distance to target is davg = 0.3076m and the
maximum distance to the target is dmax = 0.7914m, and the
median of dmed = 0.2837m.

D. ALGORITHM RUNTIME
Within section III-E, a discussion on computational complex-
ity is given. As the planning procedure has been tested in the
simulation, the planning time of each part is recorded and is
shown in Table 3. The RRT* planning step does not occur in
case of an empty environment, which yields the zero planning
time. As the office environment is more complex than the
city environment, the RRT* planning time is longer due to
a greater number of steps. On the contrary, the planning time
of TOPP-RA is lower in the office environment than the city.
This is the direct consequence of the longer path in the city
environment, which increases the number of discretization
points when planning the TOPP-RA trajectory. The stopping
spline planning time varies only a little between the environ-
ments. This is attributed to the fact that the planning time
depends only on the initial and final conditions, which are
not greatly different between environments. Lastly, the launch
spline planning time is longer in office and city environments
since it replaces a portion of the TOPP-RA trajectory which
dictates the initial conditions. In both office and city envi-
ronments, path planning induces complex trajectory shapes,
which affect initial dynamic conditions of launch splines,
making it challenging to optimize launch splines.

V. EXPERIMENTAL RESULTS
After analyzing the system’s performance in the simulation
environment, we started with the extensive experimental ver-
ification of the proposed method. The experiments were con-
ducted using two UAVs with different characteristics in both
indoor and outdoor environments. The goal in both cases was
to drop a ball into a box, and we performed repeatability
experiments without obstacles and a series of experiments
with obstacles.

Both UAVs were equipped with the devised magnetic grip-
per. To release the projectile at the specific instant, we opted
for an electromagnetic principle gripper with Groove Elec-
tromagnet. This particular electromagnet is compatible with
Arduino boards and has the peak attraction force of 10N ,
operates on U = 5V voltage and I = 400mA current

while active. To increase the payload capability and secure
the projectile in flight, we attached two electromagnets to
a flat board and interfaced them with the Arduino Nano
board. To communicate with the UAV’s onboard computer,
we utilized the rosserial_arduino library which enabled us
to toggle the magnetic gripper via a ROS topic.

A. INDOOR LABORATORY ENVIRONMENT
In the indoor environment we use the AscTec NEO hexa-
copter. The dimensions of the UAV are 0.45m×0.45m×0.3m
and the mass is m = 2.68kg, with maximum payload of
mp = 1kg. It is equipped with the AscTec Trinity flight
controller and the Intel NUC onboard computer. The com-
munication between the flight controller and the onboard
computer is carried out through a serial port. Furthermore,
the flight controller runs the low-level attitude control law
and the onboard computer is running a high level model
predictive based position control described in [40]. The NEO
hexacopter is endowed with the aforementioned magnetic
gripper, which is mounted 10.5cm below the geometric center
of the UAV. The target for the indoor experiments was a box
of dimensions 0.33m× 0.28m× 0.23m that was fixed to the
ground.

The laboratory is equipped with the Optitrackmotion cap-
ture system. This system is used to provide position and orien-
tation feedback to the UAV. The static map of the environment
can be observed on Fig. 9. Since the real world UAV and the
laboratory environment differ from simulation, we employed
a different set of constraints, as shown in Table 4.

TABLE 4. Velocity and acceleration constraints for all three segments of
the planned trajectory for the AscTec NEO UAV. TT denotes the approach
trajectory, planned through TOPP-RA. TL denotes the launch spline and
TS denotes the stopping spline. All values are in standard SI units:
v [m/s], a[m/s2], ω[rad/s] and ω̇[rad/s2].

1) REPEATABILITY
Within the first set of experiments we tested the parabolic
airdrop over n = 20 straight-line trajectories with various
parabola configuration vectors Cp. The main point of these
experiments was to inspect the repeatability of the AscTec
NEO. The system was able to deliver the ball into the box
on the floor in 16/20 instances. The trajectory tracking errors
averaged at RMSET = 0.1720m, RMSEL = 0.2909m and
RMSES = 0.1465m. Unlike in the simulation environment,
we were unable to measure the projectile position after the
release instance. Nevertheless, the parabolic trajectory can be
reconstructed with the position and velocity at the moment
of release by employing equation (4). The duration of the
parabolic trajectory can be approximated when the height
of the projectile reaches the target height. Note that this
reconstruction depends on the measured state of the UAV
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FIGURE 9. An OctoMap representation of the indoor environment with
several planned trajectories for obstacle avoidance. The orange cubes
represent positions of Optitrack cameras. Note that the obstacle in the
middle was removed for repeatability experiments.

and can be prone to errors. On the other hand, we report that
the reconstructed parabolic trajectory outcome(hit or miss) is
consistent with the observed one. The error of the projectile
parabolic trajectory averaged at RMSEp = 0.1494m, the
average distance to target is davg = 0.1885m, the maximum
distance to target is dmax = 0.3357m and the median of
dmed = 0.1880m.

2) OBSTACLE AVOIDANCE
To test the planner’s ability to avoid obstacles, we set an
obstacle in the middle of our indoor lab, Fig. 9. Using the
planning framework described in Section III, the objective
was to navigate around the obstacle and drop the ball at the
designated target. The system performed n = 12 trajectories
with the identical starting point and various parabola config-
uration vectors Cp. Several examples of such trajectories are
depicted on Fig. 9. Note that all trajectories navigate around
the left side of the obstacle. This behavior is intentional due
to safety, since the operator is located on the right side of the
obstacle.

The system managed to hit the box in 11/12 instances and
the overall trajectory tracking errors averaged at RMSET =
0.0751m, RMSEL = 0.1975m and RMSES = 0.1632m.
We reconstructed the projectile parabolic trajectory with the
samemethod described in the previous section. The parabolic
trajectory error averaged at RMSEp = 0.2080m, the average
distance to target is davg = 0.2273m, the maximum distance
to target is dmax = 0.3286m and the median of dmed =
0.2410m. These results are very similar to the ones obtained
in the repeatability analysis, which indicates that the system
is able to consistently track the planned trajectories.

B. OUTDOOR ENVIRONMENT
For the outdoor environment, we use a large-scale carbon-
fiber quadcopter, custom built by the company Kopterworx.

The dimensions of the quadcopter are 1.2m × 1.2m ×
0.45m and the mass is m = 9.5kg including all electronics
and batteries. The propulsion system is composed of four
T-motor P60 KV170 motors with folding 22.4 × 8.0 pro-
pellers capable of producing maximum thrust of 68N . The
vehicle is equipped with a Pixhawk 2.1 flight control unit
running the Ardupilot flight stack, and the SpektreWorks
Kore v1.3.1 power board. Similar to the AscTec NEO, the
onboard computer is also an Intel NUC that communicates
with the flight controller through a serial interface. Further-
more, we attached a Velodyne Puck LITE LiDAR and LPMS
CU2 IMU used for mapping and localization.

The onboard computer runs LinuxUbuntu 18.04with ROS
installed and runs all the necessary software. The control
structure is a standard PID cascade loop with inner loop con-
trolling the velocity and outer loop controlling the position.
The output of the high-level controller consists of attitude
roll and pitch angles, yaw rate, and thrust, which are sent to
the flight controller. We use the Cartographer Simultaneous
Localization and Mapping (SLAM) algorithm for obtain-
ing the position and orientation, which are fused with the
IMU data through Kalman filter to estimate both position
and velocity used for feedback. Apart from the feedback,
the Cartographer submap clouds are used to generate the
OctoMap occupancy grid of the environment. In our previous
work [31], we have compared three different SLAMmethods
on feedback quality and trajectory tracking and have chosen
the Cartographer for this paper. The detailed hardware and
software description of our system can be found in the previ-
ously cited paper. Note that we do not use the GPS for outdoor
experiments as we want to ensure our system works in GPS-
denied environments.

The outdoor environment is roughly the size of 50m ×
80m×15m, depicted on Fig. 10.We limit themaximumheight
of the UAV to 8m because we want to force the path planning
algorithm to steer around the obstacles, and not above them.
As we do not have the map of the outdoor environment,
we have to build it because the planning algorithm depends
on it. Within this work, we opted for manual flight to explore
the environment. On the other hand, it is possible to employ
environment exploration methods, such as the one presented
in [41], but this goes beyond the scope of this paper. The
target is a wooden crate of size 1.3m × 1.0m × 0.7m placed
on the ground. As the Kopterworx UAV differs from the
AscTec NEO, we impose a different set of constraints given
within Table 5.

1) REPEATABILITY
Similar as in Section V-A1, we tested the system’s repeatabil-
ity on n = 56 straight-line trajectories with various parabola
configuration vectors Cp. An illustrative example of the out-
door experiment can be seen on Fig. 1. The system performed
successful parabolic airdrops in 39/56 instances. The overall
trajectory tracking errors averaged at RMSET = 0.1901m,
RMSEL = 0.2595m and RMSES = 0.1531m. Using
the method described in Section V-A1, the reconstructed

VOLUME 10, 2022 36919



A. Ivanovic, M. Orsag: Parabolic Airdrop Trajectory Planning for Multirotor Unmanned Aerial Vehicles

FIGURE 10. An OctoMap representation of the outdoor environment with
several planned trajectories for the obstacle avoidance. This map was
built by manually flying through the environment.

TABLE 5. Velocity and acceleration constraints for all three segments of
the planned trajectory for the Kopterworx UAV. TT denotes the approach
trajectory, planned through the TOPP-RA. TL denotes the launch spline
and TS denotes the stopping spline. All values are in standard SI units:
v [m/s], a[m/s2], ω[rad/s] and ω̇[rad/s2].

parabolic trajectory performance averaged at RMSEp =
0.5124m, average distance to target is davg = 0.6191m and
maximum distance to target is dmax = 1.8303m and the
median of dmed = 0.5256m. Due to a series of unpredictable
disturbances such as wind gusts, LiDAR beam reflections,
etc., as well as due to the fact that only onboard sensors
have been used for localization and mapping, the quality
of obtained results is slightly decreased compared to indoor
experiments.

2) OBSTACLE AVOIDANCE
The obstacle avoidance experiment, together with the envi-
ronment map, can be seen on Fig. 10. In this experiment,
the UAV navigated around trees in the middle of the envi-
ronment, with the mission to deliver the ball into the box.
We performed the obstacle avoidance experiment for
n = 6 trajectories and the successful delivery was achieved
in 3/6 trajectories. The trajectory tracking performance
averaged at RMSET = 0.3642m, RMSEL = 0.4650m
and RMSES = 0.3561m. Using the method described in
Section V-A1, the reconstructed parabolic trajectory perfor-
mance averaged at RMSEp = 0.8844m, the average distance
to target is davg = 1.0962m, the maximum distance to target
is dmax = 1.6499m and the median of dmed = 1.0833m.
The main difference between the obstacle avoidance and

repeatability experiments is the randomness introduced by the
RRT* path planning algorithm. All of these factors affected
the overall performance of the system, however, the system
managed to successfully deliver the ball in multiple instances.

VI. DISCUSSION
In both simulation and experimental verification, the same
tests were performed to analyze the system’s performance.
The combined results can be observed in Table 6, and the
statistical box-and-whiskers plot is shown on Fig. 11. The
presented data shows a lot of similarities with the indoor
experiments, confirming the realistic character of the simula-
tion environment. The only part where the simulation under-
performs is the success rate of delivering the ball to the bucket
in the office environment. This was the most challenging
simulation task because the RRT* algorithm had to plan the
path through the environment and into the room where we
placed the bucket. The resulting path occasionally featured
some sharp turns near the end of the trajectory which directly
impacts the launch trajectory. Nevertheless, the system per-
formed very well in the simulation environment.

Furthermore, the difference in the performance between
the simulation and the real world can also be attributed to
different types of vehicles and feedback used in certain tasks.
We would like to point out that the target position was in
both cases measured by a human operator, and this mea-
surement error is embedded in the final result. The Opti-
track system provides a very precise feedback opposed to
the Cartographer SLAM feedback. These factors mainly
influence the difference in the performance between indoor
and outdoor environments. The AscTec NEO was used in
the indoor environment. The vehicle itself can perform quite
agile and aggressive maneuvers through the on-board attitude
controller and the position MPC. The trajectory tracking
RMSE for the indoor scenario is similar to ones reported in
the literature. Researchers in [42] report RMSE of 17.53cm
for a circular trajectory and 11.27cm for a lemniscate trajec-
tory. In [43] a RMSE of 16.8cm is reported for a trajectory
without jerk and snap tracking. In both cases experiments
were conducted indoors with the Optitrack motion capture
system as feedback. The results indicate precise trajectory
tracking which is the main factor for high success rate.

The outdoor experiments have the lowest success rate even
though the target was the largest among all performed tests.
Fig. 11 shows how the outdoor system has higher uncertainty
than all others. However, there are several factors one has to
take into account. This is the most challenging environment
of all because the localization is done only with the onboard
sensors. Furthermore, the map of the environment is a-priori
unknown and must be built online. This map is then used
in the planning procedure, as well as for determining the
position of the target. All these factors contribute to the uncer-
tainty and thus the success rate. One can observe a slightly
higher drop in success rate for outdoor obstacle avoidance.
This behavior is somewhat expected since this is the most
challenging task imposed on the system. The main difference
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TABLE 6. This table contains data from all conducted simulation and real-world experiments in one place. We also show the success rate in percentages
for easier comparison. Apart from the success rate, the measurement unit for all other fields is meter m.

FIGURE 11. Box-plot of the data obtained through the simulation and the experimental analysis. The top plot shows the distance from the target. The
middle plot shows the RMSE of trajectories for all the conducted tests. Note that we show three stages of the trajectory planning. For each test, the left
bar is the TOPP-RA trajectory, the middle bar is the launch spline and the right bar is the stopping trajectory. The bottom plot shows the RMSE between
the planned and the executed parabolic trajectories.

when compared to the outdoor repeatability analysis is the
loop closure along the relatively longer trajectory which the
Cartographer SLAM performs during the flight. These loop
closures are shifting the map of the environment, and there-
fore the target box, which decreases the success rate of the
airdrops. One can argue that the system can take advantage
of hovering when performing the drop, especially in case
of outdoor experiments where no obstacles were around the
target. However, the aim of these experiments is to obtain
real-world data to assess planner and overall system perfor-
mance, keeping in mind the initial intention to deliver the fire
extinguishing agent through window or door. Nevertheless,
the system managed to perform the parabolic airdrop in most
of the experiments.

A. SOURCES OF UNCERTAINTY
We would like to point out that there are several more signif-
icant sources of uncertainty that affect the executed parabola
in both simulation and experiments. First, there is feedback
noise which directly affects the position and the velocity at
the launch point. Second, higher velocity and acceleration
specified at the launch point will result in a more challenging
trajectory with a slightly higher error when reaching the
desired launch configuration. Third, the planner assumes zero
pitch angle at the launch point. However, this will not be
the case while executing the trajectory. Due to the payload
displacement from the UAV center of mass TP

B, the non-zero
pitch angle while executing the trajectory is introducing the
error in the payload position. Fourth, the planner also assumes
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zero angular rates at the launch point which will not be the
case due to disturbances and localization errors. Angular
rates result in some tangential velocity, thus increasing the
uncertainty of the payload velocity. Fifth(simulation only),
due to the coupling between the ball and the UAV induced
by the magnetic force of the simulated magnet, the release
position and the release velocity of the ball differ from the
planned ones. Small errors at the release point consequently
result in errors at the impact point which then differs from the
target point.

All of the aforementioned reasons will result in some error
in the launch point configuration because they affect initial
conditions of the release, and ultimately decrease precision
towards the target point. Through our extensive simulation
and experimental analyses, we observed the cumulative effect
of these uncertainties through presented performance indi-
cators. Even though uncertainties have some effect on the
overall results, it is still possible to achieve a successful
parabolic airdrop even in outdoor environments.

VII. CONCLUSION
Within this paper we have developed a motion planning
method for the parabolic airdrop using multirotor UAVs.
Based on the supplied target point, the algorithm searches for
a suitable launch point and plans an obstacle free trajectory
with information when to release the payload. The method
itself is not computationally expensive which makes it suit-
able for the on-board computer implementation. Therefore,
the method was extensively verified in both simulation and
experimental environments. The verification process revealed
the high precision and success rate of our approach. The
comparison between the classic precision airdrop and our
approach would be unfair due to different types of vehicles,
difference in the release altitude, and the potential use of
steering devices after the release. Therefore, we compared the
trajectory tracking RMS of our approach with available state-
of-the-art approaches to the trajectory tracking of rotorcraft
vehicles.

These results show the potential of applying our approach
in the real-world scenarios, such as deploying an extinguish-
ing ball into a fire or delivering packages. Such real-world
applications come with a set of challenges. Namely, the sys-
tem can encounter various disturbances, SLAM inaccuracies
due to agile maneuvers and potential smoke, which conse-
quently lead to amap inaccuracy. These uncertainties can lead
to a higher target miss rate, however, we embedded some of
them into our analysis within this paper. Although the target
point is currently measured and supplied by the operator,
a target detection method can be applied depending on the
target type. This widens the use of this method even further
as the system has the potential to autonomously detect the
target and deploy the payload. It is also worth noting that the
parabolic airdrop planning pipeline presented in this paper
does not account for dynamic obstacles, which are likely to be
present in a real-world fire extinguishing scenario. However,
since TOPP-RA has a short execution time it is possible to

plan a stop-to-stop trajectory to avoid an obstacle and use the
developed spline methodology to account for initial velocity
and acceleration. This is beyond the scope of this paper, but
it is considered for future work.

To further augment the functionality of this method, our
future work includes specifying the rotational velocity at
the launch point. Given some displacement of the payload
from the UAV body, the rotational velocity will result in a
linear tangential velocity, which increases the overall launch
velocity. We also plan to explore some sort of a spring loaded
ejectionmechanism that can increase the launch velocity even
further. Both of these augmentations have the potential to
significantly increase the required distance from the target,
making the airdrop safer because there will be no need for
such aggressive maneuvers near obstacles.

The video demonstration of this work can be found in [44].
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