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ABSTRACT Automatic extraction of buildings from High-Resolution Remote Sensing (RS) Imagery is
of great practical interest for numerous applications; including urban planning, change detection, disaster
management, estimation of human population, and many other geospatial related applications. This paper
proposes a novel efficient Improved ResU-Net architecture called IRU-Net, integrating spatial pyramid
pooling module with an encoder-decoder structure, in combination with Atrous convolutions, modified
residual connections, and a new skip connection between the encoder-decoder features for automatic
extraction of buildings fromRS images.Moreover, a new dual loss function called binary cross-entropy-dice-
loss (BCEDL) is opted that make cross-entropy (CE) and dice loss (DL) and consider both local information
and global information to decrease the class imbalance influence and improve the building extraction results.
The proposed model is examined to demonstrate its generalization on two publicly available datasets; the
Aerial Images for Roof Segmentation (AIRS) Dataset and theMassachusetts buildings dataset. The proposed
IRU-Net achieved an average F-1 accuracy of 92.34% for theMassachusetts dataset and 95.65% for the AIRS
dataset. When compared to other state-of-the-art deep learning-based models such as SegNet, U-Net, E-Net,
ERFNet and SRI-Net, the overall accuracy improvements of our IRU-Net model is 9.0% (0.9725 vs. 0.8842),
5.2% (0.9725 vs. 0.9218), 3.0% (0.9725 vs. 0.9428), 1.4% (0.9725 vs. 0.9588) and 0.93% (0.9725 vs.
0.9635), for AIRS dataset and 11.6%, 5.9%, 3.1%, 2.7% and 1.4%, for Massachusetts building dataset.
These results prove the superiority of the proposed model for building extraction from high-resolution RS
images.

INDEX TERMS Building extraction, deep learning, encoder-decoder network, atrous spatial pyramid
pooling, remote sensing imagery, cross-entropy and dice loss.

I. INTRODUCTION
With the rapid development of different sensors, the
availability of high-resolution RS imagery is significantly
increased [1]. These valuable data provide a huge potential
for meaningful and accurate terrestrial object interpretation.
Among which, building is one of the most important types of
terrestrial objects and automatic detection of buildings plays
a vital role in a wide range of RS applications, such as urban
planning and reconstruction, change detection, Disaster man-
agement, estimation of human population, 3D city modelling,
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real-estate management, illegal building survey, geographic
information systems, etc. [2]–[4]. Although building detec-
tion can be achievedmanually by human experts, but it is very
time-consuming, labour-intensive and expensive to extract
buildings from RS images. As a result, the traditional image
processing-based method, which is over-dependent upon
manual extraction of features, cannot solve the problems
of large-scale dataset interpretation and does not fulfil
the requirements of nowadays practical applications [5].
Therefore, there are strong efforts to develop automatic,
accurate, and computationally fast methodologies to extract
buildings [6]. However, extracting buildings accurately and
efficiently from RS imagery is still a challenging task with
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several difficulties. The diverse characteristics of building
including colour, shape, size, material, and interference of
building shadows and trees increase difficulty and challenge
for accurate and reliable building extraction [7], [8]. On the
other hand, many objects e.g., roads, parking lots in
high-resolution RS images are highly similar to buildings
in appearance due to low inter-class variance and high
intra-class variance [9]. Therefore, automatic extraction
of buildings accurately and efficiently from RS imagery
remains a challenge that attracts huge research interests [10].
Over the past few years, a variety of methods have been
proposed by researchers to extract buildings from high-
resolution RS images. They can be divided into two groups:
classical image processing-based and Deep Learning-based
methods. In classical image processing-based algorithms,
usually features are extracted manually and they need prior
knowledge which is leading to time-consuming, labour-
intensive, and limits their accuracy [8], [9].

Classical building extraction techniques exploit the char-
acteristics of the texture, spectrum, geometry, edge, and
shadow [11]–[18] as feature descriptors for buildings extrac-
tion from RS images. Since these features vary under
different illumination conditions, sensor types and building
architectures, traditional methods can resolve only particular
issues with specific data. Therefore, fusing data sources, such
as multi-spectral images with either stereo Digital Surface
Models (DSMs) or light detection and ranging (LiDAR)
DSM or synthetic aperture radar (SAR) [19] were reported
in [20]–[23] to distinguish non-building areas that are
highly similar to buildings to increase the accuracy of
building extraction. More recently, several machine learning
techniques have been introduced for pixel-wise classification
such as Support Vector Machines [24], K-Means [25],
Adaptive Boosting [26], Random Forests [27], and Con-
ditional Random Fields (CRFs) [28]. Some algorithms
utilized specific criteria of building appearances like the
uniform spectral reflectance values using morphological
building/shadow index and mutual information [29]–[31].
These approaches rely heavily onmanually extracted features
which usually change with the application area and fail
to detect buildings with other objects having a similar
appearance like roads in RS images.

Based on recent advances, Deep Learning (DL) [32] is
proving to be a very successful set of tools for several
image understanding tasks, segmentation, classification tasks
and other applications including RS image analysis [19].
Convolutional Neural Networks (CNNs) [33], [34] are one
of the most successful DL architectures. Mnih [35] first
introduced the CNNs for building extraction which set
remarkable progress in computer vision and photogrammetry
research. Recently, CNNs have made great achievement in
a wide variety of image segmentation task and is proving
prominent models in remote sensing applications [33].
Various CNN architectures for automatic building extraction
have been adopted in the literature. In the early phases,
the patch-based CNN models such as GoogleNet [36],

Visual Geometry Group (VGG) [37], AlexNet [38], Deep
Residual Network (ResNet) [39], and DenseNet [40] have
outperformed traditional machine learning methods on seg-
mentation and classification applications. Some researchers
also utilized patch-based CNNmethods to segment buildings
in RS images and achieved improved performance [41].
However, the patch-based method needs overlapping patches
to predict each pixel, which causing redundant computations.
However, because of the inability to preserve the spatial
information of contextual features and consistency, patch-
based CNN models are not the optimal solution for building
segmentation [42].

Whereas early works mainly use patched-based CNNs,
Fully Convolutional Network (FCNs) [43] based approaches
[44]–[46] are often used for building extraction from RS
images and achieve reliable results with high accuracy.
In FCN, fully connected layers are replaced by up-sampling
layers so that the output preserves spatial information
of contextual features [43]. Zou et al. [45] proposed a
Hierarchically Fused FCN (HF-FCN) which approached a
strategy by hierarchically fusing the information from the
multi-scale receptive fields of the network built on the basis of
VGG-16 architecture for robust building extraction. However,
HF-FCN is a FC network applied to every pixel individually
and it significantly enlarges the number of parameters in the
neural network. The employment of pooling layers causes the
loss of detailed information also.

Over the past few years, many FCN-based variants
have been proposed to achieve more accurate segmentation
results. The SegNet [47] and U-Net [48] are two classic
models with symmetric encoder-decoder structures, which
were both regarded as effective architectures due to their
capabilities of recovering semantic details. Wang et al. [8]
propose a novel network ENRU-Net, composed of a U-shape
encoder-decoder structure and an improved non-local block
named asymmetric pyramid non-local block (APNB) for
accurate building extraction from high- resolution aerial
imagery. Li et al. [10] proposed a U-Net-based semantic
segmentation method for building footprints extraction
from high-resolution multispectral satellite images using
the SpaceNet building dataset and Multi-Source GIS Data.
Abdollahi et al. [49] integrated semantic edge informa-
tion and segmentation information for building extraction
from aerial images using U-Net. However, lack of global
information limits the performance for building extraction
task proposed in [8] and [49]. The model fails to detect
small size buildings due the scale invariance of buildings
under many complex scenarios. Bittner et al. [50] proposed
a methodology using FCN architecture to automatically
generates a binary building mask out of a Digital Surface
Model (DSM). In this study, the FCNs were trained on
set of patches which needs overlapping to predict each
pixel, which caused redundant computations. Moreover,
the model is not optimal because of the inability to
preserve the spatial information of contextual features and
consistency.
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However, the FCNs and other encoder-decoder architec-
tures, like the Seg-Net [47] or DenseNet [40], only apply
some layers to generate final output neglecting the fine
details. Nonetheless, the classical U-Net applications has two
main limitations: 1) the parameters on both sides of the
bottleneck layers are updated before the intermediate layers.
This makes intermediate layers less powerful in terms of
semantic representations [51]; 2) the sparsity applied in the
intermediate features limits the generalization performance.

Liu et al. [52] incorporated the spatial pyramid pooling
module into the encoder-decoder architecture for building
extraction. The main drawback of this model is additional
computational cost and memory consumption. Ji et al. [53]
proposed a scale-robust FCNusingASPP structures for build-
ing extraction from aerial and satellite imagery. In another
work, Ji et al. [54] proposed Siamese U-Net to improve
segmentation performance by multi-scale input. But the
deep symmetry architecture means it needs heavy-weight
decoder which leads to high memory consumption and low
inference speed. Li et al. [55] proposed encoder-decoder
architecture and employed Dense-block [40] as their core
module. But the Dense-block makes networks need large
memory consumption and computational cost. For the prob-
lem of multi-scale building extraction, [56]–[58] integrated
hierarchical results extracted from multiple models, based on
feature pyramid network or a design-specificCNNmodels for
accurately buildings extraction. Despite the improvement of
segmentation accuracy, the challenges of building extraction
still exist. First, the engagement of pooling layers causes the
loss of detailed information, and coarse upsampling layers
without the detailed information, would reduce the recog-
nition accuracy of small buildings, especially the contours.
Second, the coarse upsampling layers, and the orthodox
structures of FCNs, leads to numerous misclassifications
when extracting buildings from RS images.

To achieve further improvement in accuracy, Zhang and
Wang [59] proposed a method called JointNet, which is
a novel neural network for extraction of both roads and
buildings built on the integration of dense connectivity and
atrous convolution, which employs the propagation efficiency
of the dense connectivity pattern and the large receptive
field of atrous convolution layer. The main drawbacks
of the model are small training epochs and needs long
training time. Zhang et al. [60] proposed a novel fully
convolutional network, called the Web-Net, which uses the
Ultra-Hierarchical Sampling (UHS) block to absorb and fuse
the inter-level feature maps to propagate the feature maps
among different levels to perform the building extraction on
high-resolution remote sensing images. The proposed Web-
Net performed not well in the extraction of buildings that
were mixed with vegetation or shadows. Liu et al. [61]
proposed a novel FCN-based network named SRI-Net in
which spatial residual inception (SRI) module was proposed
to capture and aggregate multi-scale contexts for a better
semantic representation by successively fusing multi-level
features. This network requires high computational cost, large

memory consumption and too much time to train. Abdollahi,
Pradhan and Alamri [62] applied a new FCN architecture
called Seg-UNet, which is a mixture of SegNet and UNet
structures, to extract building objects from a Massachusetts
building dataset. It is not useful specifically in RS which also
needs large memory allocation for high-resolution data with
constraint computational resources.

For further improving accuracy and to preserve the
structure consistency, DeepLab family [7], [63]–[65], some
FCN-based models [28], [33] utilize postprocessing and
additional context module, such as CRFs, dense-CRF [63],
exponential linear units and ASPP [64], [65]. Although these
networks significantly improved segmentation performance,
they generally need high computational cost, large memory
consumption and too much time to train and are difficult
to apply for the application of DL in RS [9]. For example,
Shrestha and Vanneschi [66] proposed a building extraction
method using conditional random fields (CRFs) and expo-
nential linear units. Alshehhi et al. [33] used a patch-based
CNN architecture and proposed a post-processing method
integrating low-level features of adjacent regions. Though,
the improvement of results is obtained by post-processing
methods but within a specific range, and the quality of results
strongly depends on the initial segmentation accuracy [38].

Although the abovementioned models have achieved
progress in tackling the issue of building extraction, they
revealed several limitations. Two aspects in building extrac-
tion still exist. The first one is the high intraclass variance of
buildings and the low interclass difference between buildings
and other nonbuilding objects. The other one is the scale
invariance of buildings under many complex scenarios.
Most of these structures revealed poor success in building
extraction purposes in heterogeneous areas such as vegetation
covers, shadows, and parking lots where these obstacles
encompass buildings.

More recently, following the great success of Generative
Adversarial Networks (GANs), Luc et al. [67] proposed to
train an adversarial network to inspires the segmentation
network to generate label maps that cannot be distinguished
from the reference map. In this way, the joint distribution of
at each pixel location of all label variables can be measured
all together, and can enforce forms of high-order consistency
that cannot be enforced by pixelwise classification. Abdol-
lahi et. al [4] proposed an end-to-end convolutional neural
network called GAN for building footprint extraction from
high resolution aerial images utilizing SegNet model with
Bi-directional Convolutional LSTM (BConvLSTM). How-
ever, traditional adversarial networks are known hard to train
and face the danger of model collapse. This can lead to an
optimization problem for segmentation network.

To trade-off between efficiency and accuracy, a variety
of FCN-based architectures have been designed, includ-
ing ESFNet [1], ARC-Net [9], ENet [68], ERFNet [69],
EDANet [70], MobileNet family [71], ShuffleNet fam-
ily [72], EU-Net [73], DE-Net [74], DR-Net [75], Deep-
ReID [76] and learning to rank [77]. All of these recent
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networks are aiming to compromise performance and effi-
ciency. So, there is still room for further improvement.
CNN-based building extraction algorithms have mainly been
encoder-decoder-based, which loses the spatial details in
the encoder stage and recovers by fusing shallow feature
maps during the decoder stage. However, it causes imprecise
localization on building boundaries since the coarse features
propagated from shallow layers and small size buildings may
be unrecognized. Moreover, the extracted features are always
partly restricted by the local respective field, and large-scale
buildings with low texture are always discontinuous and
perforated when extracted.

To better balance the accuracy and efficiency, this paper
proposes an improved novel dense deep learning-based
convolutional network called IRU-Net which adopts U-Net
structure, residual learning, atrous convolutions and spatial
pyramid pooling (SPP) to extract buildings from two public
building datasets, the Massachusetts Building Dataset [35]
and the Aerial Images for Roof Segmentation (AIRS)
dataset [78]. As far as we know, the proposed technique
has not been used in the literature and this is for the
first time this kind of approach has been proposed for the
given task. The atrous spatial pyramid pooling (ASPP) [79]
module is added as a bridge between the encoder and the
decoder path to extract features at multiple spatial scales
and comprise some more spatial details and at the same
time up-samples the feature maps to learn global contextual
information. Moreover, the common skip connection used
in U-Net is replaced with a new path utilizing a chain of
convolutional operations along with the skip connections to
pass the features from the encoder to the decoder to lessen
the semantic gaps between the encode–decoder features [49].
In addition, a new residual unit is used in the encoder and
decoder path by incorporating convolution kernel with a size
of 1 × 1, a step size of 1, and a batch normalization layer
as the identity mapping function to overcome the problem of
dimensionality change of the input image during convolution
in the residual unit. Also, a new objective loss function
based on binary cross-entropy and dice loss (BCEDL) [55]
was opted to combine local information (CE) and global
information (DL)and reduce the influence of class imbalance,
and thereby increase the building segmentation results. The
key contributions of this study are summarized as follows:

1) We design a novel efficient network, called IRU-Net,
which could efficiently capturemulti-scale features and
effectively utilize the detailed context information of
buildings at various scales.

2) To mitigate the semantic gaps between encoder and
decoder features, the common skip connection used
in the U-Net is replaced with a new path utilizing a
chain of convolutional operations to pass the features
from the encoder to the decoder instead of merging the
feature maps from the encoder part with those from the
decoder part in a straight-forward manner.

3) a new dual loss function called binary cross-entropy-
dice-loss (BCEDL) is opted that make cross-entropy

(CE) and dice loss (DL) and consider both local
information (CE) and global information (DL) to
decrease the class imbalance influence and improve the
building extraction results.

4) The proposed method is evaluated qualitatively
and quantitatively on two public building labeling
datasets, the Massachusetts Dataset [35] and the
AIRS Dataset [78], and demonstrates the excellent
performance of the proposed model. Compared with
established models such as SegNet [47], Residual
U-Net (ResU-Net) [80], E-Net [68], ERFNet [69], and
SRI-Net [61], the proposed IRU-Net could achieve
higher accuracies and F-1 scores on both the two
datasets for the problem of building extraction.

The remainder of this paper is organized as follows. The
second section gives overall methodology of the proposed
IRU-Net architecture. Sections III illustrates the test dataset,
experimental settings, evaluation metrics, experiential out-
comes of the proposed model and detailed comparison,
respectively. Lastly, Section IV describes the significant
findings and conclusion of this study.

II. PROPOSED METHEDOLOGY
The overall methodology of the proposed IRU-Net based
method for building extraction from high-resolution RS
imagery is illustrated in Figure 1. At the first step, two
different building datasets called Massachusetts Building
dataset [35] and AIRS dataset [78] are used to prepare the
training, validation and test images for training the IRU-Net
model and evaluate the performance of the proposed method.
Then, the architecture of the proposed IRU-Net approach
along with the new BCEDL [81] function is designed.

A. PROPOSED IRU-NET ARCHITECTURE
We propose an efficient Improved ResU-Net architecture
called IRU-Net, integrating ASPP module with an encoder-
decoder structure, in combination with modified residual
units, skip connection and Atrous convolutions for building
segmentation in high-resolution RS images. In this work,
we utilize a 7-level architecture of deep ResU-Net for
building extraction, as shown in Figure 3. The network
comprises of three parts: encoding path, ASPP as bridge
connector and decoding path. A brief explanation of each of
the parts is given in the following subsections.

1) ENCODER AND DECODER
The encoder extracts spatial features from the training
data [52]. It consists of a single STEM block and three
encoder blocks. A single STEM block, which differs from the
convolution blocks only for lacking the initial Batch Normal-
ization (BN) and Rectified Linear Unit (ReLU) operations,
processes the initial input. Each encoder block is built with
residual units which consist of two 3 × 3 convolution blocks
and an identity mapping. Each convolution block includes a
BN layer, a ReLU activation layer and a convolutional layer.
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FIGURE 1. The overall framework of the proposed IRU-Net network for building extraction.

The identity mapping connects input and output of the unit.
A stride of 2 is applied to the first convolution block to reduce
the feature map by half. At the same time, the output of
each encoder block is fused with the corresponding decoder
block layer via a skip connection as shown in Figure 3, which
makes full use of the semantic information and improves the
segmentation accuracy.

This creates an information propagation path that allows
signals to spreadmore easily between low-level and advanced
features; this not only facilitates backpropagation during
training but also improves model segmentation accuracy. The
ASPP module is integrated as a bridge between the encoding
and the decoding path. The decoding or expanding path
restores the feature map to a pixel-wise categorization, i.e.,
semantic segmentation [52]. It comprises of three residual
units each of which is preceded by an up-sampling of feature
maps from a lower level and concatenation with the feature
maps from the corresponding encoding path. The output of
the last decoder block is passed through ASPP, and finally, a
1× 1 convolution and a sigmoid activation layer are added on
top of the IRU-Net to project the multi-channel feature maps
into the desired segmentation.

2) RESIDUAL UNIT
The residual block propagates information over layers,
allowing to build a deeper neural network that could solve the
training degradation problem in each of the encoders while at
the same time reducing the computational cost [69], [80]. The
residual unit consists of two parts: the identity mapping part
and the residual part. Identity mapping mainly integrates the
input with the output generated by the residual part, which
enables the fusion of subsequent features. Each residual unit
is generally composed of multiple convolution layers, BN,
and ReLU activation function. The deep ResU-net consists a
series of stacked sequence residual units. Each residual unit

FIGURE 2. Building blocks of neural networks. A residual block with
identity mapping used in the proposed ResU-net.

can be defined as a general form:

yi = h(x i)+ F(xi,Wi)
xi+1 = f (yi)

}
(1)

whereby xi and xi+1 denote to the input and output of the
i-th residual unit; f (yi) and F (·) are the activation and
the residual functions, respectively; and h (·) is the identity
mapping function h (xi) = xi. Figure 2(a) shows a pre-
activated residual unit. A linear projection Wi is used to
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FIGURE 3. Proposed IRU-Net structure.
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maintain the dimension of the input and output of the
convolutional layers.

The identity mapping integrates the input and output of
the residual neural network unit. The dimension of the input
image also needs to be changed during identity mapping as
the dimensionality of the corresponding input image changes
during convolution, The residual unit as proposed in [11]
has this kind of problem. To overcome this, a convolution
kernel with a size of 1 × 1, a step size of 1, and a BN layer
was used as the identity mapping function to build our deep
residual U-Net. Figure 2 shows the difference between the
residual network unit and the proposed residual network unit.
Figure 2(a) is the structure of the residual network unit and,
Figure 2(b) is the structure of the proposed residual network
unit.

3) SKIP CONNECTION BETWEEN ENCODER AND DECODER
PATH
The skip connection between the encoder and decoder layers
was introduced in the U-Net network [48]. However, in the
skip connection presented in [48], a possible semantic gap
exists between two sets of features being fused because the
initial layers in the encoder path of the U-Net model compute
the low-level features, whereas the deep layers in the decoder
path compute the prominent higher-level features. After the
initial addition layer, the encoder was fused with the decoder
after the last upsampled layer using the first skip connection.
Hence, the concatenation of these different collections of
features can perhaps negatively affect the prediction process
because they can cause conflicts during the learning process.
The volume of gap is expected to slightly reduce as wemoved
to the subsequent skip connections, because the encoder fea-
tures were not only fused with the features from the decoder
path of the newer layers but also moved with additional
processing.

Hence, a new skip connection is proposed consisting
several convolutional operations to lessen the difference
between the encoder and decoder feature maps. In addition,
we introduced a residual connection rather than utilize
the normal convolutional operation because this process
yields ample deep structures and eases the learning pro-
cess [36]. At first, the features are passed through a
chain of convolutions and fused them with the decoder
features instead of simply integration the encoder and
decoder features. The semantic gaps between encoder and
decoder features are expected to lessen using this chain of
operations. Figure 4 illustrates the proposed skip connection.
Precisely, the residual connections are accompanied by the
1 × 1 filters, and the 3 × 3 filters were utilized in the
convolutions.

It is anticipated that, the strength of the semantic gaps
between the encoder features maps and decoder ones are
decreased as we passed through the internal shortcut paths.
The number of convolutional blocks utilized along the three
skip connections are also gradually decreased to 3, 2 and 1.
Furthermore, filters of 64, 128, and 256 are used in the three

FIGURE 4. Proposed skip connection. A series of convolutions are used to
pass the features from the encoder to decoder part instead of directly
merging the features maps.

skip connection blocks to consider the number of feature
maps in encoder–decoder.

4) ATROUS SPATIAL PYRAMIDAL POOLING
The proposed architecture consists of a spatial pyramid
pooling module called ASPP [52] to capture and aggregate
multi-scale contextual information and helps in propagating
fine detailed information from earlier layers to higher levels,
and at the same time up-samples the feature maps to learn
global contextual information in order to produce more
accurate classification [52], [79].

The ASPP, the middle part of the proposed IRU-Net, acts
as a bridge connecting the encoding and decoding paths in
our architecture. Figure 5 presents the detailed structure of
the ASPP module in the IRU-Net. In ASPP, the contextual
information is captured at multiple scales [79] and many
parallel atrous convolutions [7] with different rates in the
input feature map are fused at the end [35]. Comparing with
the standard convolutional layer, the atrous convolutions can
effectively increase the receptive field of the network without
extra down-samplings. In this work, the ASPP module is
employed with a convolution of size 1× 1 and three branches
of atrous convolution with rate 6, 12, 18 as a connector
in block after encoder to effectively capture multi-scale
contextual information. Global average pooling is considered
to acquire the feature map at the image level, permitting
these two results to be combined and convoluted. The ASPP
model yields promising results on segmentation of building
by giving useful multi-scale information.

B. NETWORK TRAINING LOSS FUNCTION
Loss functions set the rules to evaluate the distance between
network prediction and ground truth [82]. For our case,
building extraction can be seen as a binary segmentation
problem where the binary cross-entropy (BCE) loss function
is most commonly used, as given by Equation (2). However,
building segmentation from RS images have an imbalance
problem between building pixels and background pixels,
where the BCE loss function is prone to get stuck in local
minima, and the network tends to predict the background for
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FIGURE 5. The proposed IRU-Net with ASPP integration: The ASPP
module is inserted between the encoder-decoder network. The feature
map generated by the encoder is processed by ASPP, and then, the output
is fed into the decoder path.

a good loss value and fails to learn representative features
of the minor class [81]. Therefore, the foreground area
is usually partly identified or even missed. One way to
tackle this problem is to assign a prior weight on each
class when computing loss—a bigger weight for buildings in
this case—which introduces additional hyper-parameters that
need careful tuning. Another way is to choose a less biased
function, such as dice and BCE loss [82].

In this study, since we have the same issue of imbalance
classes such as building pixels (foreground) and non-building
pixels (background) we opted a new dual objective loss
function (BCEDL) [81] which combines both Binary Cross-
Entropy loss function (BCE) (Equation (2)) and Dice coeffi-
cient (DL) (Equation (3)) to (i) integrating local information
and global information, (ii) reduce the influence of class
imbalance, and (iii) improve the building segmentation
results.

The binary cross entropy (BCE) function is given as
follows:

BCE (pi, gi)=−
N∑
i=1

(gi log (pi)+(1−gi) log (1− pi)) (2)

where N is the pixel number, pi and gi represents the value of
i-th pixel in the model prediction results and the ground truth
value, respectively.

The Dice loss (DL) between two binary classes is defined
as

DL =
2
∑N

i pigi∑N
i p

2
i +

∑N
i g

2
i

(3)

where gi ∈ G is the ground truth pixels, pi ∈ P is the predicted
binary pixels and N defines as total pixels.

Equation (4) defines the new loss function (L) which
integrates the global information and local information to
extract buildings more accurately.

LOSSBCE+DL = BCE (pi, gi)+ DL (pi, gi) (4)

The proposed loss function integrates dice loss and BCE loss
by addition to combine the advantages of both functions.
BCE loss function well evaluates the misclassification and
is easy to calculate the gradient mathematically despite the
abovementioned flaw. The dice loss function, as given by
Equation (3), is built on a dice coefficient that evaluates the
overlap between the prediction and the ground truth whose
values are ranging from 0 and 1. The more they match, the
nearer dice coefficient is to one, pushing the dice loss to zero.

III. EXPERIMENTAL RESULTS AND DISCUSSION
In order to measure the effectiveness of IRU-Net for
building extraction from high-resolution aerial imagery,
we conduct numerous experiments on two public datasets:
the Massachusetts Buildings Dataset [35] and the AIRS
dataset [78]. The performance and efficiency of IRU-Net is
also compared with some state-of-the-art models in semantic
segmentation, including SegNet [47], ResU-Net [80], E-Net
[68], ERFNet [69] and SRI-Net [61].

A. DATASETS
To verify the effectiveness of IRU-Net for building segmen-
tation from high-resolution RS imagery, we conducted exper-
iments on two public dataset building datasets: the AIRS
Dataset [78] and the Massachusetts Building Dataset [35].
This section introduces the information of the data set used
to train the proposed IRU-Net. It should be noted that both
datasets are publicly available.

1) AIRS DATASET
This dataset is proposed by Chen et al. [78]. The AIRS
dataset includes 1047 aerial images with the original spatial
dimension of 10000 × 10000 and spatial resolution of
7.5 cm. The dataset covers a surface area of about 450 km2
in Christchurch, New Zealand and the whole aerial image
and the corresponding ground truth are provided. Given
computational restraints, we cut the original images into the
size of 1536 × 1536. Due to the limitation in GPU memory,
we randomly cropped all images into grid patches with a size
256 × 256 pixels. Subsequently, 1250 images are utilized in
our experiment. We divided the dataset into a training set,
a validation set, and a test set, consisting of 1125 images,
100 images, and 25 images, respectively. Figure 6 shows
examples of input images and its corresponding label. The
white color represents the buildings and the black color
presents the background.

2) MASSACHUSETTS BUILDING DATASET
Massachusetts buildings dataset is proposed by Mnih [35].
It consists of 151 aerial RGB images of the Boston area with
a spatial resolution of 1 m/pixel. Each image has a size of
1500 × 1500 pixels. There are 137 images in the training
set, 10 images in the test set, and 4 images for validation
with no overlapping areas. Similarly, we cropped the training
and validation images with a size 256 × 256 pixels. After
scanning, 3530 good quality images and corresponding labels
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FIGURE 6. Examples of AIRS dataset images and its corresponding label.

FIGURE 7. Examples of massachusetts building dataset images and its
corresponding label.

are selected in which 3356 images are used for training,
144 images for validation and remaining 30 are used for
testing, respectively. Also, data augmentation is used such
as flipping images horizontally and vertically to expand the
dataset. Figure 7 shows examples of input images and its
corresponding label.

B. EXPERIMENTAL SETTINGS
The proposed IRU-Net building extraction model is imple-
mented on the deep learning framework named PyTorch. The
experiments were conducted on computer servers with two
NVIDIA GeForce GTX 1080 Ti with a memory of 11GB.
In addition, for easy network training, we randomly cropped
all images in a size of 256 × 256 pixels for model training
and validation. For training phase, the proposed network is
optimized with ADAM optimizer [83] with an initial learning
rate of 0.0005, weight decay of 0.00002 and momentum 0.9.
Models has been trained with 300 epochs for both the AIRS
dataset and the Massachusetts Building Dataset, respectively
with mini-batch size set to 16.

FIGURE 8. The accuracy and loss of the proposed model for training the
massachusetts building dataset and AIRS dataset.

We use poly learning rate strategy for converging quickly
that is computed as Equation (5) to adjust the learning
rate:

lr = lr init

(
1−

iter
itermax

)power
(5)

where the initial learning rate is 0.0005 with power of 0.9.
Figure 8 displays the dynamic accuracies and losses of the
Massachusetts andAIRS datasets with increasing epochs. It is
evident that the loss gradually decreases while the accuracy
increases and stays at a high and stable level.

C. EVALUATION METRICS
In order to measure the effectiveness of IRU-Net for
building extraction, the ‘Overall Accuracy’ (OA), ‘Precision’,
‘Recall’, ‘F1-score’, ‘Intersection-over-Union (IoU)’ are
used as quality metrics [29], [81]. The recall value indicates
the percentage of the ground truth road pixels detected. The
Precision indicates the percentage of the correctly classified
road pixels among all predicted pixels of the classifier.
Finally, IoU is the number of pixels that are common between
the predicted and ground truth divided by the total number
of available pixels over both masks. The F1-Score indicates
the harmonic average of Precision and Recall. The values of
these metrics are in the range of 0 to 1, and higher values
indicate better classification performance. The metrics are
calculated as follows:

Recall =
TP

TP+ FN
(6)

Precision =
TP

TP+ FP
(7)

IoU =
TP

TP+ FP+ FN
(8)

F1− Score =
2× Precision× Recall
Precision+ Recall

(9)

OA =
TP+ TN

TP+ TN + FP+ FN
(10)
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where TP denotes the true positive; TN is the number of true
negatives; FP denotes the false positive, and FN denotes the
false negative.

D. COMPARISON OF BUILDING SEGMENTATION
ALGORITHMS
We compared the suggested IRU-Net model with other
state-of-the-art approaches to verify the performance of
the proposed IRU-Net model in building segmentation.
We selected CNN-based approaches such as the SegNet [47],
ResU-Net [80], E-Net [68], ERFNet [69] and SRI-Net [61],
for comparison, as the proposed model is a pixel-wise
segmentation method. All experiments are evaluated based
on five widely-used metrics: Overall Accuracy (OA), Recall,
Precision, Intersection over Union (IoU) and F1-score (F1)
[29], [81].

1) QUANTITATIVE AND QUALITATIVE RESULTS ON THE AIRS
DATASET
For evaluating the effectiveness of the proposed IRU-Net
model for building extraction, the qualitative segmentation
results are presented for all six models on the AIRS dataset in
Figure 11. There are five columns and 8 rows in this figure.
The yellow, blue, red and black pixels of the maps denote
the predictions of TP, FP, FN, and TN, respectively. In the
first and second rows, the RGB and corresponding reference
images are displayed. The third, fourth, fifth, sixth, seventh
and eight rows display the outputs attained by SegNet [47],
ResU-Net [80], E-Net [68], ERFNet [69] and SRI-Net [61],
and proposed IRU-Net model, respectively. SegNet and
ResU-Net return more FP (blue) and FN (red) than the other
methods. SegNet returns slightly more false positives (blue)
compared to othermodels. By contrast, the proposed IRU-Net
model shows significantly less false positives (blue) and false
negatives (red) than the other models, while maintaining high
completeness in building segmentation on the AIRS dataset.
Therefore, the segmentation map obtained by the proposed
model is smoother than that of the other models, with higher
accuracy and fewer FPs.

The quantitative comparison of the different networks
for the five test images is presented in the first five rows
in Table 1 and the average performance is shown in the
last row of the Table 1. The proposed IRU-Net delivers
improvements on all evaluation metrics over the other models
except for precision. The IRU-Net model achieved best result
among all models on OA metric with an improvement of
0.93% (0.9725 vs. 0.9635) over the next best model SRI-Net.
As for Precision, the ERFNet model holds the highest values
and gains 0.33% over IRU-Net (0.9668 vs. 0.9636). For
Recall, the E-Net, SRI-Net, and IRU-Net methods scored
significantly better performance over the other three methods
while IRU-Net achieves the best value being 1.91% (0.9571
vs. 0.9388) ahead of the SRI-Net method. Similarly, IRU-Net
achieves the best F1-score being 1.1% (0.9565 vs. 0.9459)
ahead of the SRI-Net method where SRI-Net and ERFNet
achieves the best model amongst the others. For the IoU

TABLE 1. Quantitative comparison with state-of-the art models and the
proposed IRU-Net on the AIRS dataset.

metric, IRU-Net has scored the best value 1.2% ahead of
ERFNet (0.9227 vs. 0.9108) and even 1% ahead of SRI-Net
(0.9227 vs. 0.9133). Compared to the ResU-Net, IRU-Net
yields a higher F1-score by 2.9% (0.9565 vs.0.9292) and OA
by 5.2% (0.9725vs.0.9218). The overall average quantitative
comparison of the different networks is depicted graphically
in Figure 9.

2) COMPARISON ON THE MASSACHUSETTS BUILDING
DATASET
Building extraction results from the different models on a
sample in theMassachusetts Building dataset are presented in
Figure 12 for a qualitative comparison. It is clear that SegNet
yields more FNs while U-Net yields more FPs in comparison
to the other models. Overall, SRI-Net and IRU-Net predict
buildings reasonably fine.

We further conducted a quantitative comparison with
different models on the Massachusetts Building dataset. The
results of the quantitative comparison are summarized in
Table 2. In contrast to the AIRS dataset where ERFNet per-
formed the second best, SRI-Net shows the best performance
amongst the established methods. SRI-Net has the highest
recall of 0.9177 with an improvement of 0.39% (0.9177 vs.
0.9141) while the proposed IRU-Net performs best except for
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FIGURE 9. Quantitative comparison with state-of-the art models and the
proposed IRU-Net on the AIRS dataset.

TABLE 2. Quantitative comparison with state-of-the art models and the
proposed IRU-Net on the massachusetts building dataset.

the Recall score. In the testing case, IRU-net achieves the
best values on OA metric with an improvement of 1.45%
compared to SRI-Net (0.9661 vs 0.9521). For precision,
IRU-Net achieves an improvement over the next best model
SRI-Net of 2.19% (0.9316 vs. 0.9112). For Recall, IRU-Net
achieves an improvement of 3.9% over ResU-Net (0.9141 vs.
0.8788). As for F1-score and IoU, IRU-Net obtains the

FIGURE 10. Quantitative comparison with state-of-the art models and the
proposed IRU-Net on the massachusetts building dataset.

highest value over the other models and outperforms SRI-Net
by 2.6% (0.9234 vs 0.8997) and 3.4% (0.8152 vs 0.7878) and
outperforms ERFNet by 4% (0.9234 vs 0.8862) and 3.9%
(0.8152 vs 0.7829) which are considered to be state-of the-
art networks for segmentation. Compared to the ResU-Net,
IRU-Net yields a higher F1-score by 6.8% (0.9234 vs.0.8606)
and a higher IoU by 6.2% (0.8152 vs. 0.7645). For Overall
Accuracy, IRU-Net holds the highest values with a gain of
6.0% compared to ResU-Net (0.9661 vs. 0.9084). The overall
average quantitative comparison of the different networks is
depicted graphically in Figure 10.

E. EFFECT OF ASPP
The ASPP model has shown promising results on building
segmentation tasks by providing useful multi-scale informa-
tion which improve the accuracy of buildings segmentation
in different sizes, especially medium-sized to over-sized
buildings [73]. One crucial innovation of the IRU-Net is that
it employs the ASPP module as a bridge between the encoder
and the decoder. To test the performance, we conducted a
comparison experiment with and without the ASPP module
of IRU-Net on the AIRS dataset. As presented in Table 3,
the model with ASPP shows an obvious improvement over
the model without ASPP across all evaluation metrics. The
comparison result shows the improvement of efficiency and
applicability of the ASPP module as a bridge connector
between encoder-decoder path of the proposed IRU-Net
model for building extraction from high-resolution RS
images [33]. The overall effect of ASPP on AIRS dataset is
depicted graphically in Fig. 13.

As it can be seen from Figure 13, the proposed IRU-Net
with ASPP achieves the best values on OA metric with an
improvement of 0.915% compared to IRU-Net without ASPP
(0.9725 vs 0.9636). IRU-Net with ASPP could accomplish
higher average accuracy over the IRU-Net without ASPP
and outperforms by 1.306% (0.9571 vs 0.9501) for Recall,
1.017% (0.9636 vs 0.9543) for precision, 1.181% (0.9565 vs
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FIGURE 11. Building extraction results from AIRS dataset achieved by proposed model and other state-of-the-art methods. First
and second rows show the original images and corresponding ground truth. The third, fourth, fifth, sixth, seventh and eighth rows
are the results achieved by the SegNet [47], ResU-Net [72], E-Net [62], ERFNet [63] and SRI-Net [59], and the proposed IRU-Net
architecture, respectively. The black (background), yellow, blue and red colours represent TNs, TPs, FPs, and FNs, respectively.
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FIGURE 12. Building extraction results from massachusetts building dataset achieved by proposed model and other
state-of-the-art methods. First and second rows show the original images and corresponding ground truth. The third, fourth, fifth,
sixth, seventh and eighth rows are the results achieved by the SegNet [47], ResU-Net [72], E-Net [62], ERFNet [63] and SRI-Net [59],
and the proposed IRU-Net architecture, respectively. The black (background), yellow, blue and red colours represent TNs, TPs, FPs,
and FNs, respectively.
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TABLE 3. Comparison of the IRU-Net with or without the ASPP module
on the AIRS dataset.

FIGURE 13. The comparative quantitative evaluation measured in terms
of Recall, Precision, F1-score, IoU and OA with effect of ASPP.

0.9451) for F-1 score, 1.311% (0.9227 vs 0.9040) for IoU
and 1.275 (0.9725 vs. 0.9601) for OA respectively for AIRS
dataset.

F. EFFECT OF LOSS FUNCTION
Moreover, we assessed the accuracy measurements of
IRU-Net with BCE loss function, IRU-Net with DL loss
function, and IRU-Net with BCEDL loss function for
Massachusetts building and AIRS datasets to review the
fitness of the proposed model for building extraction. Table 4
and Table 5 illustrate the accuracy of each defined metric for
the Massachusetts building and AIRS datasets, respectively.
As it can be seen from both Tables, the proposed IRU-
Net+BCEDL network could accomplish higher average
accuracy than IRU-Net+BCE, IRU-Net+DL, for Recall,
precision, F-1 score, IoU and OA with 91.41%, 93.16%,
92.34%, 81.52% and 96.61%, respectively for Massachusetts
building dataset; and 95.71%, 96.36%, 95.65%, 92.27%
and 97.25%, respectively for AIRS dataset. It is clear that
the proposed IRU-Net with BCEDL loss function network
achieves good results for the building extraction from both

TABLE 4. Comparing IRU-Net model with BCE, DL and BCEDL loss
functions for building extraction form massachusetts building dataset.

TABLE 5. Comparing IRU-Net model with BCE, DL and BCEDL loss
functions for building extraction on AIRS dataset.

datasets and determines that the segmented building sections
are close to ground truth, verifying the effectiveness of our
approach in building extraction. Furthermore, the proposed
IRU-Net with BCEDL loss function network could achieve
higher efficiency on the segmentation results than the other
comparative approaches. The overall effect of loss function
on AIRS Dataset and Massachusetts building dataset is
depicted graphically in Figure 14 and Figure 15.

Compared to the IRU-Net+BCE, IRU-Net+BCEDL
yields higher OA by 1.262% (0.9661 vs.0.9539), F1-score by
2.62% (0.9234 vs.0.8992), recall 1.159 (0.9141 vs. 0.9035),
precision by 1.17% (0.9316 vs. 0.9207) and a higher IoU
by 1.337% (0.8151 vs. 0.8043) for Massachusetts building
dataset; and for AIRS dataset 1.25% (0.9571 vs 0.9446)
for Recall, 0.98% (0.9636 vs 0.9538) for precision, 1.13%
(0.9565 vs 0.9452) for F-1 score, 1.21% (0.9227 vs 0.9106)
for IoU and 1.24% (0.9725 vs 0.9601) for OA respectively.

As it can be seen from both Table 4 and V, the proposed
IRU-Net+BCEDL outperforms IRU-Net+DL by 0.752%
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FIGURE 14. The comparative quantitative evaluation measured in terms
of Recall, Precision, F1-score, IoU and OA with effect of loss functions on
AIRS dataset.

FIGURE 15. The comparative quantitative evaluation measured in terms
of Recall, Precision, F1-score, IoU and OA with effect of loss functions on
massachusetts building dataset.

(0.9571 vs 0.9499) for Recall, 0.601% (0.9636 vs 0.9578)
for precision, 0.930% (0.9565 vs 0.9476) for F-1 score,
0.910% (0.9227 vs 0.9143) for IoU and 0.874% (0.9725 vs
0.9640) respectively for AIRS dataset. Compared to the
IRU-Net+DL, IRU-Net+BCEDL yields higher OA by
0.807% (0.9661 vs.0.9583), F1-score by 2.133% (0.9234 vs.
0.9037), recall by 0.675 (0.9141 vs. 0.9071), precision by
0.762% (0.9316 vs. 0.9245) and a higher IoU by 1.337%
(0.8152 vs. 0.8081) for Massachusetts building dataset.

G. MODEL EFFICIENCY
To address the model efficiency, we further compared
the computational cost of different models in terms of
floating-point of operations (FLOPs) and the number of
trainable parameters [1]. In deep learning, the complexity
of networks could be measured by these two metrics.
Higher FLOPs and more trainable parameters correspond to
greater complexity of a model. The amount of computation
consumption of all models is calculated on a 256 × 256 RS
image. As shown in Table 6, we compared our proposed

TABLE 6. Comparison of flops and trainable parameters between IRU-Net
and other state-of-the-art models.

IRU-Net model with other state-of-the-art networks (i.e.,
Seg-Net, U-Net, E-Net, ERFNet and SRI-Net). All the
comparison results are based on test set with the same training
environment and configuration.

As shown in Table 6, it could be seen that U-Net has
the smallest number of trainable parameters and FLOPs
because of its simple structure than Seg-Net. Seg-Net still
has so many parameters of 39.44M though it has much
lighter decoder than other encoder-decoder architectures. Our
IRU-Net achieves 11.113G FLOPs and 6.01 M parameters.
The proposed IRU-Net has lowest number of FLOPs. The
proposed IRU-Net has relatively lowest FLOPs, while the
number of required training parameters is lowest compared
with other models except E-net. However, due to the
extra parameters in the upsampling path, IRU-Net has
more parameters than E-Net and second-lowest in trainable
parameters among all models.

The results in Table 6 indicate that our IRU-Net model
obtain much better efficiency than other established state-of-
the-art models.

H. LIMITATIONS
Despite the improvements in semantic segmentation of
buildings from RS images the proposed IRU-Net, some
issues remain to be considered. With the rapid development
of RS technology, the availability of high-resolution RS
imagery with abundant features and spectral information is
significantly increased [34]. Extraction of building from RS
images plays a vital role in a wide range of RS applications
but highly challenging task, due to the diverse characteristics
of building and poses a major challenge for computer vision
and image processing researchers. The proposed IRU-Net
model is able to helps to improve the accuracy of semantic
segmentation.

However, this model may fail to generalize to areas with
complex and heterogeneous buildings because the datasets
used in this research do not cover images from different
sensors, such as hyperspectral images, DSMs or Light Detec-
tion and Ranging (LiDAR) DSM and SAR images. Spectral
information is not enough since roads and building roofs
can have similar texture. Moreover, in observing only two-
dimensional images, we lose the third dimension—height.
As a result, accuracy and robustness of the extraction results
could be improved by integration of different data sources.
Therefore, fusing data sources, such as multi-spectral images
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with either stereo DSMs or LiDAR DSM rather than the
use of only a single data source can be used for solving
these problems and as a result, improve image interpretation.
However, these data provide information complementary to
the data in the visual spectrum, and therefore there is the
potential that training models with these additional data may
lead to better segmentation results.

IV. CONCLUSION
Accurate and automatic building segmentation from RS
imagery is essential for application areas such as urban plan-
ning and disaster management. In this paper, we proposed
a CNN framework, named IRU-Net, to perform building
segmentation on high-resolution RS images. The significant
contribution of this work is the analysis of the advantages of
existing FCN-based models and the development of a novel
model signifying that the two powerful tools the encoder-
decoder and spatial pyramid pooling module need to be fused
to improve building segmentation task. Moreover, a new skip
connection is utilized to mitigate the semantic gaps between
the encoder and decoder features. Also, we executed a new
loss function termed BCEDL to reduce the problem of class
imbalance in our datasets and improved the result of building
segmentation.

Experiments were conducted on two public building
datasets: the Massachusetts and AIRS datasets. The results
show that the proposed IRU-Net model achieves high
accuracy on these two datasets. The qualitative and quanti-
tative comparison with the state-of-the-art models SegNet,
ResU-Net, E-Net, ERFNet and SRI-net have demonstrated
that IRU-Net outperforms these models. Compared with the
ResU-Net, IRU-Net gains 5.97% (0.9661 vs. 0.9084) and
5.2% (0.9725vs.0.9218) improvements in Overall Accuracy
for Massachusetts datasets and AIRS dataset with the small
increase of 3.6% and 2.1% in model-training time on the
Massachusetts and the AIRS dataset respectively.
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