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ABSTRACT Multi-sensor underwater surveillance has been a significant research problem for civilian
and naval applications. Due to limited bandwidth considerations, the underwater wireless sensor net-
works (UWSNs) use measurement quantization to transmit information from individual sensors to the
fusion center to perform centralized tracking/fusion. However, at the measurement level, quantization of
azimuth information is complex due to its non-linear behavior. To address this problem, this paper proposes
to perform the distributed tracking and quantizing the local estimates (state and covariance) to provide
improved bandwidth and reduce computational load. The local tracker estimates the updated state and
covariance of a target’s time-varying dynamics in the given surveillance from the obtained measurements
using extended Kalman filter (EKF) and global nearest neighbor (GNN) data association. The measurement
model contains both detections of target and false alarms. This paper uses optimal quantization rather than
linear quantization owing to its minimal bandwidth requirement. Once the quantized local tracks are obtained
at the fusion center, these tracks are quantified using track-to-track association (T2TA) in the S-D assignment
framework. The associated tracks are fused using correlation-free fusion algorithms like covariance intersect
(CI), sampling covariance intersects (SCI), ellipsoidal intersect (EI), and arithmetic average (AA) algorithms
to achieve the global track. The position root mean square error (PRMSE), bandwidth, and error ellipses are
used to quantify the performance of the proposed framework. The simulation results show that the PRMSE
of the optimally quantized fusion estimates yields good agreement with the unquantized method. Simulation
results further reveals that, optimal quantization utilizes lower bandwidth compared to linear quantization.
In addition, optimally quantized local estimates accomplishes promising covariance regions at the fusion
center.

INDEX TERMS Correlation-free fusion, extended Kalman filter, state quantization, target tracking, track-
to-track association.

I. INTRODUCTION
Deployment of the large number of active and passive
underwater sensors and their cooperative network is an
emerging topic for both monitoring as well as target track-
ing in a given surveillance [1]. The sensor-to-sensor and
sensors-to-fusion center data exchange is essential for cen-
tralized tracking/fusion. Observation of targets (maneuver-
ing targets, autonomous vehicles, marine species, and other
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ocean resources [2]), with considerable implications in nav-
igation, military, defense, disaster management, and other
civilian applications [3] is a significant research problem
during recent years. In the terrestrial scenario, commu-
nication between various sensors has been accomplished
using radio frequency (RF) waves due to the high-frequency
spectrum with good bandwidth for several wireless sensor
networks applications. Due to forbidden RF wave propaga-
tion conditions in the underwater scenario, sensors estab-
lish communication among them using acoustic waves or
light waves rather than radio waves. As a result, Underwater
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Wireless Sensor Networks (UWSN) provide limited avail-
able bandwidth compared to terrestrial Wireless Sensor Net-
works (WSN). Limited bandwidth is inadequate with regular
information exchange between the sensors to perform error-
free communications in multi-sensor multi-target applica-
tions in UWSNs. Therefore, it requires alternative solutions
to address this important problem.

Quantization is a powerful tool to address the limited
bandwidth problem within the given network with minimal
information loss due to quantization error [4]. There are two
types of quantization techniques: uniform and non-uniform
quantization. Uniform or linear quantization is a simple and
popular technique that has been employed to quantize the
analog to digital conversion based on the assumption of lin-
ear levels and is predominately employed in various appli-
cations [4]. Apart from the linear quantization technique,
an optimal quantization technique is proposed in the liter-
ature, in which the quantization is achieved with optimal
quantization threshold levels [5]. Quantization is performed
on received measurements in several application domains
(data communications, wireless communications, and digital
filtering etc.) to accommodate limited bandwidth require-
ments [6]–[11].

A. RELATED WORK
In UWSN with limited bandwidth constraints, researchers
propose quantizing the measurements and thereafter
transmitting them to the fusion node to perform centralized
tracking/fusion. Here, quantized measurements from multi-
ple sensors are sent to the central fusion node to estimate the
parameter of interests like position, velocity, and acceleration
of the target directly at the fusion node. Sensor-centric data
reduction for estimation with WSNs via censoring and quan-
tization is proposed in [6]. A new distributed adaptive quanti-
zation system is presented in [7], in which each sensor node’s
quantizer threshold is dynamically adjusted based on previ-
ous transmissions from other sensor nodes. Besides, optimiz-
ing the quantizer under energy constraints is reported in [8].
In addition, multiple target tracking with quantized measure-
ments in a Bayesian framework is presented in [9]. More-
over, the approximate minimummeans square error (MMSE)
approach for state estimation with the quantized measure-
ments is presented in [10]. In a recent communication [11],
a method for tracking the targets is proposed, which uses
the readily updated optimum quantization thresholds based
on real-time target states. The authors in [12] presented
a quantizer with adaptive threshold levels. These adaptive
threshold levels are determined by maximizing the entropy
while considering the probability density function (pdf) of
randomly selectedmeasured signal amplitude. Thereafter, the
particle filter is used in the fusion center for target track-
ing [12]. In another communication, localization using novel
Bayesian compressed sensing framework with quantized
received signal strength-based measurements is proposed
in [13]. Further, to improve tracking accuracy, the optimal bit
allocation method is deployed in [14]. The suggested optimal

bit allocation approach [14] takes into account both node
topology and sensor-to-target range. Furthermore, authors
in [15] proposed switched quantizer-based event triggered-
Kalman consensus filtering algorithm to overcome the lim-
ited bandwidth conditions in WSNs. It is evident from all
the above literature, data fusion plays a significant role in
combining the quantized measurements at the fusion center,
coming from several sensors.

1) TARGET TRACKING
Target tracking is one of the most important applications in
WSN in which one or more sensor nodes monitor and report
the time-varying kinematics of moving objects to the fusion
center. The sensor measurements come from various places,
including the targets of interest, intentional interference, clut-
ter, etc. The fundamental goal of target tracking is to track
the targets of interest by estimating the parameters such as
position, velocity, acceleration, turn, intensity, etc. Filtering,
data association, and track management are the fundamental
blocks of a tracker. Under the principles of linearity and
Gaussianity, the Kalman filter (KF) delivers the best esti-
mate [16]. Converted Kalman filter, extended Kalman filter
(EKF), cubature Kalman filter (CKF), unscented Kalman
filter (UKF), Interactive multiple models (IMM), and particle
Kalman filter (PKF), among others, are frequently employed
to address non-linearity issues in target tracking [17]. Target
tracOn the other hand, data association is performed by using
classical methods such as nearest neighbor (NN) and global
nearest neighbor (GNN) that consider only a single mea-
surement out of all available measurements that fall within
the validation gate [18]. The weighted summation of all
measurements within the validation gate is utilized in the
probabilistic data association (PDA) based technique [19].
Under the assumption of propagating all hypotheses into
tracks, the best strategy for target tracking was demonstrated
by using a multiple hypothesis tracker (MHT) [20]. Track
management methods such as logic-based track maintenance
and quality-based track maintenance are widely used [21].
Single or multiple sensors can track targets in either a central-
ized or distributed framework. A novel data association solu-
tion for multi-object pedestrian tracking in thermal images is
proposed in [22]. The authors in [23] proposed point-track-
transformer (PTT) module to focus on the important features
of objects while tracking.

The track-to-track association (T2TA) is an essential com-
ponent in distributed target tracking since it distinguishes and
assigns the tuples that belong to the same targets [24]. The
global estimates are obtained by fusing the tuples of tracks
reported by the T2TA block.

2) SENSOR FUSION
The sensor fusion is a powerful technique to fuse multi-
ple sensor data to produce the best estimates for a given
parameter of interest [25]. Data fusion finds a wide range
of applications in many fields like Wireless sensor networks
(WSN), Underwater Wireless sensor networks (UWSN),
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robotics, control engineering, medical electronics etc. [26],
[27]. By taking the advantage of radial basis function (RBF)
neural network with error state KF, a novel multi-sensor
fusion algorithm that improves state estimation for under-
water vehicle localization is proposed in [28]. Further, data
fusion is broadly categorized into centralized and distributed
fusion. In the multi-sensor scenario, distributed fusion is
popular over centralized structure because of the distribution
of computation load among multiple sensor nodes and simul-
taneously reducing the bandwidth requirement at the cen-
tral fusion node [29]. The centralized fusion requires higher
computational requirements, owing to its ability to fuse
all the available measurements. In addition, track-to-track
fusion (T2TF) approaches are broadly divided into two types:
correlation-free and correlation-based fusion methods [30].
The correlation-based fusion technique requires the exact
cross covariances among the local tracks of the same target.
As a result, a large amount of information exchange between
the fusion center (FC) and the local trackers takes place [31].
In theory, information matrix fusion (IMF) or centralized
tracking yields the estimate/ fused track [17]. On the other
hand, the correlation-free-based fusion algorithms require
no correlation information while fusing the estimates at the
fusion center. The correlation free fusion methods include
covariance intersect (CI) [32], sampling covariance intersect
(SCI) [33], ellipsoidal intersect (EI) [34], arithmetic average
(AA) [35], and others. Furthermore, by approximating the
intersection region of individual ellipsoids, the CI, SCI, and
EI methods provide the fused estimate. However, AA pro-
vides the fused estimate by averaging technique [35], [36].
The CI and EI methods provide good performance for two
sensor-based fusion. In contrast, the AA provides the conser-
vativeness of fused estimate. Alternatively, the SCI provides
a better-fused estimate with more flexibility in information
sharing across a distributed sensor networkwhen fusingmany
data sources.

In the above literature, most of the research articles [6],
[9]–[13], [37] concentrate on measurement quantization and
addressed the tracking/fusion problem under low bandwidth
scenarios. Further, most of the contributions considers range
information, which is easy to quantize. However, one of the
investigations with azimuth quantization [38] clearly shows
that the quantization of azimuth information is complex due
to its non-linear behavior and requires more quantization
levels, which in turn increases the required bandwidth [38].
Further, limited amount of contributions were focused on
quantization of state and covariance in distributed sensor sce-
nario. Therefore, there is a strong need to carryout research
investigation in this direction to provide efficient and alterna-
tive solution to this problem. Thismotivated us to consider the
problem in state (cartesian coordinates) quantization rather
than measurement (polar coordinates) quantization. The state
quantization is more feasible in real-time because of its linear
relationship. Moreover, centralized fusion is complex and
computationally expensive. This paper considers distributed
tracking. Every sensor is associated with a local tracker

module to provide the local estimates. Lloyd’s based optimal
quantization is used to quantize the local estimates. The asso-
ciation of the tracks pertaining to the same origin is resolved
using track-to-track association from all the available tracks.
These associated local estimates are then used to perform the
fusion to obtain the global estimates. Since the correlation
information is not available in distributed fusion [31], this
paper utilizes the correlation-free fusion algorithms.

The article’s main contributions are

1) The local estimator is developed based on the EKF and
GNN framework. Two quantization techniques, namely
linear and optimal quantization, are utilized to quantize
the local estimates.

2) The quantized local estimates are associated using
track-to-track association in the S-D assignment
framework.

3) The associated local tracks are fused with fusion algo-
rithms like CI, EI, SCI, and AA to examine the quanti-
zation performance on fused tracks.

The organization of the paper is as follows. The problem
formulation is outlined in Section II. Section III presents
distributed tracking and state quantization. The following
Section IV presents the track-to-track association and fusion.
Further, Section V deals with the results and discussion.
Finally, Section VI concludes the paper.

II. PROBLEM FORMULATION
Consider a problem of underwater distributed target tracking
with S number of sensors. Each sensor is associated with
its local tracker. The sensor static locations are {xi}Si=1. Let
the number of time-varying targets be N and their positions
are represented by

{
xj
}N
j=1 as depicted in Fig. 1. The sensors

acquire measurements as range and azimuth about the targets.
Based on the collected measurements, the local tracker esti-
mates the state and covariance of targets. Traditionally, the
measurements are quantized and sent to the fusion node [6],
[9]–[13], [37], [38]. The Local estimates are quantized and
then sent to the fusion node to obtain fused/global estimates.
The time-varying dynamics of the target is represented and
follows

x(k + 1) = F(k)x(k)+ v(k), (1)

where x is the state of the target consists of position and corre-
sponding velocity components i.e., x =

[
x ẋ y ẏ

]′.F(k) is the
state transition matrix follows models like constant velocity
(CV), constant acceleration(CA), and constant turn (CT) etc.
The v(k) is a process noise follows white Gaussian distribu-
tion with covariance Q(k). The sensor i receives a measure-
ment setZi(k), which containsmeasurements originated from
targets and false alarms within the surveillance region.

Zi(k) =
{
z1i (k), z

2
i (k), · · · , z

nk
i (k)

}
. (2)

Here, nk represents total number of measurements at time k .
Themeasurement pertaining to target originated is designated
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FIGURE 1. Under water multi sensor multi target scenario (The transfer of
data from local tracker to fusion node is given in black arrows).

as

zji(k) = h(xji(k))+ w(k), (3)

where w is assumed to be white Gaussian noise with mea-
surement covariance R(k). The h(·) represents the non-linear
relation between the measurement space and the state space.
The false alarms are assumed to be independent and follows
Poisson distribution, given by

P(nFA) =
exp(−Np)(Np)m

m!
, (4)

where Np is the number of cells under consideration over a
volume V . The spatial density of false alarm is given by

λ =
Np
V
. (5)

The probability of having nk measurements originated from
a given volume V is

P(nk ) =

{
(1− PD)µ(0); nk = 0,
(1− PD)µ(nk )+ (PD)µ(nk ); nk > 0.

(6)

Here, PD is probability of target detection. The measurement
zji(k) consists of range and azimuth between sensor i and
target j, and are characterized as

r ji =

√(
xsi − x

t
j

)2
+

(
ysi − y

t
j

)2
+N (0, σ 2

r ) (7)

and

θ
j
i = tan−1

(
ysi − y

t
j

xsi − x
t
j

)
+N (0, σ 2

θ ) (8)

respectively. Here x, y are the 2-D Cartesian co-ordinates.
N (·) represent Gaussian pdf, σr and σθ are the variances of
range and theta respectively.

Using the measurement set Zi(k), the sensor estimates
the target dynamics to acquire updated state and covariance{
x̂ji(k),P

j
i(k)

}N
j=1

. These updated state and covaraince infor-

mation is quantized as
{(

x̂ji
)q

(k),
(
Pji
)q

(k)
}N
j=1

and trans-

mitted to fusion node as shown in Fig. 1. In this problem,

FIGURE 2. Block diagram representation of proposed methodology.

one needs to investigate the type of quantization required
(linear or non-linear) and the minimum number of quantiza-
tion levels that are required to achieve a comparable PRMSE
as that of without quantization method. Moreover, in multi-
target multi-sensor scenario, before performing the fusion,
one needs to associate the tracks pertain to the same origin.
Since the tracks are independent there is a need to perform
the correlation-free based fusion.

III. DISTRIBUTED TRACKING AND STATE QUANTIZATION
In this section, first we obtained the state and covariance
estimates from the observations of the sensors in a EKF and
GNN association framework. The local estimates are quan-
tized by using linear and non-linear quantization techniques.
The processing steps are represented in Fig. 2, and operation
of the individual blocks are explained below.

A. DISTRIBUTED TRACKER
The individual sensor in a distributed sensor network contains
a local tracker to process the observations. The Kalman filter
gives an optimal solution under the linear Gaussian assump-
tion. Due to the non-linearity relationship exists among the
measurements and state, the measurements are filtered using
EKF. From the prior state and covariance at k − 1, the EKF
predicts and updates the state and covariance using all the
available measurements till k . Let xji(k) be the state of jth

target at k th scan for the sensor i. Then the predicted state
is given by

x̂ji(k + 1|k) = F jx̂ji(k|k), (9)

where x̂ji(k|k) is the previous state of j
th target pertaining to

ith sensor. The F ji represents the state transition matrix, which
follows either CV, CT, or CA models [16]. Let, Pji be the
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covariance matrix corresponding to the state x̂ji. Then, the
predicted covariance is

Pji(k + 1|k) = F jiP
j
i(k|k)F

j′

i + Q
j
i(k + 1). (10)

Here, (·)′ indicates the transposition operation and Q is noise
covariance matrix. Similarly, the measurement prediction is
given by

ẑji(k + 1) = H j
i (k + 1)x̂ji(k + 1|k). (11)

Here, H j
i is linear measurement transition matrix obtained

from first order Taylor’s expansion, represented as

H j
i =


∂r ji
∂xj

∂r ji
∂ ẋj

∂r ji
∂yj

∂r ji
∂ ẏj

∂θ
j
i

∂xj

∂θ
j
i

∂ ẋj

∂θ
j
i

∂yj

∂θ
j
i

∂ ẏj

 . (12)

The elements of H j
i matrix are obtained from application

of partial derivatives to range and azimuth with respect to
coordinates is as follows

∂r ji
∂xj
=

xj−xi√(
xi−xj

)2
+
(
yi−yj

)2
∂r ji
∂yj
=

yj−yi√(
xi−xj

)2
+
(
yi−yj

)2
∂θ

j
i

∂xj
=

yi−yj(
xi−xj

)2
+
(
yi−yj

)2
∂θ

j
i

∂yj
=

xj−xi(
xi−xj

)2
+
(
yi−yj

)2 (13)

and rest of the partial differentials are zero. The innovation
vector z̃ji(k + 1) is designated as

z̃ji(k + 1) = zji(k + 1)− ẑji(k + 1), (14)

where zji(k+1) is the associated measurement. One measure-
ment from the set zi(k+1) is generally considered to compute
the innovation. At time k, Tk tracks are evolved, these tracks
are to be associated with zi(k + 1) measurements.
In multiple target scenario, the association is formulated as

an optimization problem represented as

C(k + 1|a(k + 1)) =
nk+1∑
i=0

Tk∑
t=0

a(k + 1, i, t)c(k + 1, i, t)

(15)

subjected to
nk+1∑
i=0

a(k + 1, i, t) = 1, t = 1, 2, . . . ,Tk

Tk∑
t=0

a(k + 1, i, t) = 1, i = 1, 2, . . . , nk+1 (16)

where c(k + 1, i, t) is the cost of the assignment. Further,
a(k + 1, i, t), nk+1 and Tk are the cardinalities of the mea-
surement and track sets, respectively. A binary assignment
variable a(k + 1, i, t) is defined such that

a(k + 1, i, t)=

{
1; ith measurement is assigned to track t
0; otherwise

(17)

The updated state and covariance of jth target is given by

x̂ji(k + 1|k + 1) = x̂ji(k + 1|k)+ K j
i (k + 1)z̃ji(k + 1) (18)

and

Pji(k + 1|k + 1)

= Pji(k + 1|k)− K j
i (k + 1)H j

i (k + 1)K j′

i (k + 1), (19)

respectively. Where K is KF gain, which is given as

K j
i (k + 1) = Pji(k + 1|k)H j′

i (k + 1)S−1, (20)

where

S = H j
i (k + 1)Pji(k + 1|k)H j′

i (k + 1)+ Rji. (21)

The track maintenance module is a combination of initiation,
confirmation, and deletion of tracks [39]. Initially, each detec-
tion made from the sensor observations is represented as an
individual tentative track. The tentative tracks are confirmed
or deleted based on the logic based track management.
• To initiate the track: If at least Minitiation measurements
are associated in the last Ninitiation measurement sets,
establish a track and label it tentatively; otherwise,
ignore.

• For a tentative track: If at least Mtentative measurements
are associated with the track from the latest Ntentative
measurement sets, upgrade it as confirmed; else, discard
that track.

• For a confirmed track: If at least Mconfirmed mea-
surements are associated with the track from the last
Nconfirmed measurement sets, maintain the confirmed sta-
tus. Otherwise, delete the track.

We have applied quantization on local estimates before
sending them to the fusion node. The following subsection
presents the quantization methods considered to quantize the
state information.

B. QUANTIZATION OF LOCAL ESTIMATES
This subsection briefly describes the quantization of local
estimates. Let the quantized local estimates of state and
covariance are represented as

(x̂ji)
q
= Q(x̂ji),

(Pji)
q
= Q(Pji). (22)

Here Q(·) represents the quantization of the parame-
ter of interest. This quantization can be either linear or
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non-linear [4]. The total available estimates from all local
estimates at the fusion center is X̂, designated as

X̂ =
{{

x̂ji
}S
i=1

}N
j=1
. (23)

Here N and S represent the number of targets in the
given surveillance and the number of sensors employed,
respectively.

1) LINEAR QUANTIZATION
In linear quantization, the uniform step size (∇) is calculated
by considering minimum and maximum values of the local
estimates, given by

∇X =
ζmax − ζmin

LX
, (24)

∇P =
ηmax − ηmin

LP
, (25)

where ζ is an element from the state vector x, and η is an ele-
ment from the covariance matrix P. Therefore, {ζmax, ζmin},
and {ηmax, ηmin} are the maximum, minimum value of the
local state estimates and covariances, respectively. Further,
the LX , LP are the number of quantization levels in state
and covariance estimates respectively. The partition levels are
selected based on the step size defined in (24).

Q1 = {ζ : −∞ < ζ ≤ ζ1 = ζmin}

Q2 = {ζ : ζ1 < ζ ≤ ζ2 = (ζmin +∇)}

.

.

.

Qν−1 = {ζ : ζν−2 < ζ ≤ ζν−1}

Qν = {ζ : ζν−1 < ζ ≤ ζν = ζmax} (26)

Finally, the quantized values qα for the relevant partition
levels Qα are picked from the code-book Cα . Where α =
1, 2, · · · , ν. The appropriate partition’s code-book values are
chosen as floor, mid, or ceiling values [5]. The code-book
values in this paper are based on the floor values of the
respective part. i.e.,

ζ qα = {Cα = floor (Qα)}. (27)

The similar analogy holds for the covariance and it is des-
ignated as ηqβ = {Cβ = floor (Qβ )}, where β is the number
of levels pertaining to covariance. In Linear quantization,
data loss occurs as a result of quantization error. In order
to reduce the quantization error, the optimal quantization is
adopted. The optimal quantization is described in the follow-
ing subsection.

2) OPTIMAL QUANTIZATION
To accomplish good quantization levels with minimum
quantization error, Lloyd [5] approach is adapted. Lloyd’s
approach for determining the optimum quantization levels is

based on the least-square minimization of quantization error
ε, defined as

ε =

ν∑
α=1

∫
Qα

(
ζ qα − ζ

)2 df (ζ ), (28)

where ζ qα and Qα represent quantized values and fixed pre-
assigned sets. The uniquely determined optimum quanta to
employ with a given partition {Qα}, to yield the smallest
qunatization error ε as defined in (28), is given by

ζ qα =

∫
Qα
ζ df (ζ )∫

Qα
df (ζ )

(29)

Further, with the provided quantization levels, the optimum
partition values are given by

Q1 = {ζ : −∞ < ζ ≤ ζ1}

Q2 = {ζ : ζ1 < ζ ≤ ζ2}

.

.

.

Qν−1 = {ζ : ζν−2 < ζ ≤ ζν−1}

Qν = {ζ : ζν−1 < ζ ≤ ζν} (30)

where {ζα} denotes the end points and are represented as

ζν−1 =
1
2

(
ζ
q
ν−1 + ζ

q
ν

)
(31)

Similarly, the same set of equations are considered for
quantization of covariances with ην−1 = 1

2

(
η
q
ν−1 + η

q
ν

)
. All

the elements of state & covariance are quantized and finally
attained x̂q and Pq values.

IV. TRACK-TO-TRACK ASSOCIATION AND FUSION
The quantized state & covariance information is transferred
to fusion node to obtain the fused estimates. However,
to determine the fused estimate, one needs to distinguish the
individual tracks pertaining to the same target and this is
carried-out using T2TA. The associated tracks are then sent to
the fusion node to estimate the fused track. This is illustrated
in the Fig. 2.

A. TRACK-TO-TRACK ASSOCIATION (T2TA)

In the form of target estimates x̂ =
{{(

x̂qi
)ni}S

i=1

}M
nj=1

, the S

sensors will have their own number of quantized tracks hav-
ing errors distributed as zero-mean Gaussian with covariance(
Pqi
)ni . The sensor number is represented by i = 1, 2, . . . , S

and the number of tracks on each sensor is represented by
ni = 1, 2, . . . ,M . To locate the tracks that are originated from
the same target, use the likelihood ratio test, which is defined
by

χ
(
H1
n1,n2,...,nS : H

0
n1,n2,...,nS

)
=

L
(
H1
n1,n2,...,nS

)
L
(
H0
n1,n2,...,nS

) , (32)
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whereL(H1
n1,n2,...,nS ) represents the likelihood hypothesis for

tracks with the same target origin and L(H0
n1,n2,...,nS ) repre-

sents the likelihood hypothesis for tracks with different target
origins. The following is used to calculate the likelihood
hypothesis of tracks with a shared origin:

L
(
H1
n1,n2,...,nS

)
= p

((
x̂qS
)nS
, . . . ,

(
x̂q1
)n1
|H1

n1,n2,...,nS

)
(33)

The (33) can alternatively be expressed with the first sensor’s
track estimate, which is provided by

L
(
H1
n1,n2,...,nS

)
= p

((
x̂qS
)nS
, . . . ,

(
x̂q2
)n2
|H1,

(
x̂q1
)n1)

×p
((
x̂q1
)n1
|H1

)
(34)

The p
((
x̂q1
)n1
|H1

)
independent of H1

n1,n2,...,nS , hence it can
be relaxed. In addition, it is assumed to be a uniform distri-
bution, which is reasonable in the absence of data. i.e.,

p
((
x̂q1
)n1
|H1

n1,n2,...,nS

)
= p

((
x̂q1
)n1)
=

1
C

(35)

Using (35), (34) can be written as

L
(
H1
n1,n2,...,nS

)
=

1
C
p
((
x̂qS
)nS
, . . . ,

(
x̂q2
)n2
|H1,

(
x̂q1
)n1)

(36)

Consider the case of two sensors (i, j) with two common
origin tracks (ni, nj). If the tracks

(
x̂qi
)ni , (x̂qj )nj at sensor

i, sensor j result from the same target under the Gaussian
assumption, the likelihood function of the two tracks is given
by [24]

L(Hn1,n2 ) =
1
C
N (x; x̄,P) (37)

where

x =
(
x̂qi
)ni
−

(
x̂qj
)nj
,

x̄ = 0,

P =
(
Pqi
)ni
+

(
Pqj
)nj
−

((
Pqi,j
)ni,nj)′

. (38)

HereN (x; x̄,P) denotes a Gaussian distribution of variable x
with x̄, P as mean and covariance, respectively.

The generalised likelihood function of all the common
tracks (error = 0), n1, n2, . . . , nS for all S sensors is des-
ignated as, (similar to the expression in (37)):

L
(
H1
n1,n2,...,nS

)
=

1
C
N
(
x̂q; 0,Pq

)
, (39)

where

x̂q =
[
x̃q21, x̃q31, . . . , x̃qS1

]′
, (40)

where x̃qij is the difference between the quantized state esti-
mates obtained from the same target at ith and jth sensors,
as determined by

x̃qij =
(
x̂qi
)ni
−

(
x̂qj
)nj
. (41)

The trace of Pq is given by

Pqi−1,i−1 = E
[(
x̃qi1
) (
x̃qi1
)′
|H1

n1,n2,...,nS

]
=
(
Pq1
)n1
+
(
Pqi
)ni
−

(
Pq1,i

)n1,ni
−

((
Pq1,i

)n1,ni)′
i = 2, . . . , S, (42)

where x̃qij is defined in (41), and E represents the expectation
operation.

The Pq diagonal elements are given by

Pqi−1,j−1 = E
[(
x̃qi1
) (
x̃qj1
)′
|H1

n1,n2,...,nS

]
=
(
Pq1
)n1
−

(
Pq1,j

)n1,nj
−

((
Pq1,i

)n1,ni)′
+

(
Pqi,j
)ni,nj

i, j = 2, . . . , S (43)

The likelihood hypothesis of trackswith distinct target origins
follows the same process as (39), and is represented as

L
(
H0
n1,n2,...,nS

)
= p

((
x̂qS
)nS
, . . . ,

(
x̂q2
)n2
|H0,

(
x̂q1
)n1) p ((x̂q1)n1 |H0

)
=

S∏
i=2

p
((
x̂qi
)ni
|H0,

(
x̂q1
)n1) p ((x̂q1)n1 |H0

)
(44)

The p
((
x̂q1
)n1
|H0

n1,n2,...,nS

)
is considered to be a diffuse prior,

similar to (35), given by

p
((
x̂q1
)n1
|H0

n1,n2,...,nS

)
= p

((
x̂q1
)n1)
=

1
C
, (45)

In the state space with the spatial density λ, p
( (
x̂qS
)nS
, . . . ,(

x̂q2
)n2
|H0,

(
x̂q1
)n1 ) is assumed to follow a Poisson distribu-

tion. As a result, (44) can be expressed using (45) as,

L
(
H0
n1,n2,...,nS

)
=

1
C
λS−1. (46)

Finally, the likelihood ratio test is calculated using the equa-
tions (32), (39) and (46).

χ (H1
n1,n2,...,nS : H

0
n1,n2,...,nS ) =

N
(
x̂q; 0,Pq

)
λS−1

. (47)

Let’s define the track-to-track assignment procedure for
T2TA, which involves assigning the Si tracks generated by
S sensors that represent the same target. To do so, create a
binary assignment variable.

ψi1,i2,...,iS =

{
1 tracks i1, i2, . . . , iS from same target
0 from different target

(48)

The constrained optimization problem below yielded themul-
tidimensional (S-D) track to track assignment algorithm for
determining the most likely hypothesis,

min
ψi1,i2,...,iS

M1∑
i1=0

M2∑
i2=0

. . .

MS∑
iS=0

ci1,i2,...,iSψi1,i2,...,iS (49)

38988 VOLUME 10, 2022



B. N. B. Reddy et al.: Distributed Fusion of Optimally Quantized Local Tracker Estimates for UWSN

subject to

M2∑
i2=0

. . .

MS∑
iS=0

ψj,i2,...,iS = 1, j = 1, 2, . . . ,M1

M1∑
i1=0

M3∑
i3=0

. . .

MS∑
iS=0

ψi1,j,i3,...,iS = 1, j = 1, 2, . . . ,M2

...
M1∑
i1=0

. . .

MS−1∑
iS−1=0

ψi1,...,iS−1 = 1, j = 1, 2, . . . ,MS

(50)

and

ψi1,...,iS ε {0, 1},

i1 = 0, 1, . . . ,M1,

...

iS = 0, 1, . . . ,MS . (51)

It is possible to calculate the cost function ci1,i2,...,iS in (49)
as follows:

ci1,i2,...,iS = − lnχ (H1
: H0), (52)

where χ (H1
: H0) is the probability ratio as stated in (47).

B. FUSION
In an underwater distributed environment, the individual sen-
sor nodes operate independently. It is challenging to obtain
correlation information among the sensors. So, this paper
considers the correlation free fusion algorithms available in
the literature, which are used at the fusion centre to produce
consistent results in distributed sensor networks. They are
listed as follows:

1) COVARIANCE INTERSECTION (CI) ALGORITHM
The CI method combines the estimates from available state
and covariances with unknown correlations by considering
the covariances are independent. At the fusion node, assume
x̂q1 and x̂

q
2 are two quantized state estimates and Pq1 and P

q
2 are

two quantized covariances. The CI algorithm [32] fuses the
incoming estimates and provides new fused estimates, which
is independent of unknown correlations.

The fused estimates of state
(
x̂f
)
and covariance (Pf ) from

the CI algorithm are as follows,

(Pf )
−1
CI = ω(P

q
1)
−1
+ (1− ω)(Pq2)

−1, (53)

(x̂f )CI = (Pf )CI
(
ω(Pq1)

−1x̂q1 + (1− ω)(Pq2)
−1x̂q2

)
. (54)

Here, ω ∈ [0, 1] is the parameter needs to be optimized [40].
Let C be a cost function, which is to be selected arbitrarily
and optimized value (ω) for CI can be found by the following
equation.

ω∗ = argmin
ω

{
C((ω(Pq1)

−1
+ (1− ω)(Pq2)

−1)−1)
}
. (55)

2) ELLIPSOID INTERSECTION ALGORITHM
To improve the fusion accuracy of quantized state and covari-
ance estimates with unknown correlations in two sensor case,
ellipsoid intersection algorithm is generally deployed.

The fused estimates of state and covariance from EI algo-
rithm [34] are as follows,

(Pf )
−1
EI = (Pq1)

−1
+ (Pq2)

−1
− 0−1 (56)

(x̂f )EI = (Pf )EI
(
(Pq1)

−1x̂q1 + (Pq2)
−1x̂q2 − 0

−1γ
)

(57)

The variables0 and γ represents mutual covariance, and joint
mean, is used to calculate the unknown correlation among the
quantized estimates.

Here, we assumed only two estimates from sensor nodes
is to be fused, but in practical multi-sensor and multi-
target scenarios, there is a huge demand to track several
targets simultaneously. In such cases, the CI method pro-
vides degraded fusion accuracy. To address this problem,
the sampling covariance intersection (SCI) algorithm [33] is
proposed to obtain the optimal-fused estimate in distributed
fusion scenario.

3) SAMPLING COVARIANCE INTERSECTION ALGORITHM
Let us assume that the S number of covariances are fused to
get fused covariance. This S refers to individual tracks that
are pertaining to the target. Using SCI method, the fused state
estimate is as follows [33]

(x̂f )SCI = P
S∑
i=1

(Pqi )
−1x̂qi (58)

where, P is calculated assuming that the tracks are indepen-
dent, which is represented as

P−1 =
S∑
i=1

(Pqi )
−1 (59)

The maximum and minimum range limits for fused covari-
ance are calculated from the following

rmax = max
j=1,2,3,··· ,m

x̂′jP
−1x̂j

max
i=1,2,3,··· ,S

x̂′jP
−1
i x̂j

, (60)

and

rmin = min
j=1,2,3,··· ,m

x̂′jP
−1x̂j

min
i=1,2,3,··· ,S

x̂′jP
−1
i x̂j

. (61)

Here, m refers to the number of random samples, xj =
N (0,P0); j = 1, 2, · · · ,m.
Finally, the fused Covariance using SCI is given by

(Pf )SCI =
P

urmin + (1− u)rmax
, (62)

where u is optimal parameter, similar to ω in CI method,
ranges from 0 to 1. The rmax and rmin are given
in (60) and (61) respectively.
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The algorithms like EI, CI, SCI perform well when error
ellipses of individual sensors intersect [32]–[34]. Also, these
algorithms calculate the fused estimate as an intersection of
individual sensor error ellipsoids. However, in the case of
individual sensor error ellipses that do not intersect, averaging
techniques like linear and log-linear are utilized to get more
conservative fusion results by compromising the minimum
error covariance matrix [35], [36], [41]. Towards this end, this
paper considers the AA fusion algorithm.

4) ARITHMETIC Average(AA) FUSION
The fused state (x̂f )AA using the arithmetic average is given
by [41]

(x̂f )AA =
S∑
i=1

ωix̂
q
i . (63)

Similarly, the fused covariance
(
Pf
)
AA is represented as [41]

(
Pf
)
AA =

S∑
i=1

ωiP̃
q
i , (64)

where,

P̃qi = Pqi +
(
(x̂f )AA − x̂qi

) (
(x̂f )AA − x̂qi

)′
. (65)

The weights in AA fusion technique [41] can be calculated
by maximizing

ωi
∗
= argmax

ωi

{ S∑
i=1

ωi

[
tr
(
(Pf )

−1
AAPi

)
+ log

∣∣(Pf )AA∣∣
|Pi|

+
∥∥x̂i − (x̂i)AA

∥∥2
PAA

]}
, (66)

where,∥∥x̂i − (x̂i)AA
∥∥2
PAA
=
(
x̂i − (x̂i)AA

)
(Pf )

−1
AA

(
x̂i − (x̂i)AA

)′
(67)

V. RESULTS AND DISCUSSIONS
A. SCENARIO GENERATION
A multi-sensor multi-target scenario in UWSN is considered
for simulation. The sensors are assumed to be static, syn-
chronous, and the maximum range of each sensor is Rmax =

10000m. The sensors receive range, and azimuth measure-
ments of the targets present within the surveillance. The stan-
dard deviation of measurement noises corresponding to range
and azimuth are σr and σθ respectively. A clean environment
(the false alarm density per unit volume is zero, and the target
detection probability is unity) is considered for simulation.
The locations of the sensors ({xi}Si=1), measurement noise
standard deviations (σr and σθ ), and sampling time (δt ) are
given in Table 1.

All the targets follow the CV model. The target’s start-
ing positions and velocities in the surveillance are random,
as shown in Fig. 3. The targets are starting at t = 1s and ends

TABLE 1. Sensor parameters.

FIGURE 3. Multi-sensor multi target scenario generation (red lines
represent targets and blue squares denote sensors).

at 100s with a sampling time of 1s, and follows CV model
with

F =


1 δt 0 0
0 1 0 0
0 0 1 δt
0 0 0 0

 .
The target trajectory uncertainties like perturbations in the

position and velocity are modeled as a process noise. The
mean and standard deviations of the process noise vector are
designated as

v=
[
N (0, 0.05) N (0, 0.02) N (0, 0.05) N (0, 0.02)

]
,

where N (·) represents Gaussian pdf.

B. DESIGN PARAMETERS
Here, we used EKF with the GNN association. The tracks are
initialized using the one-point initialization [42] by convert-
ing the obtained range and azimuth measurements. At k = 1,
sensor report r(1), θ(1). These measurements are converted
to Cartesian space as x(1) and y(1) is given by

x(1) = λ−1r(1) cos(θ(1)) and

y(1) = λ−1r(1) sin(θ(1))

respectively. Here λ = exp
(
−
σ 2θ
2

)
. This unbiased conver-

sion is valid for initialization, since it follows the necessary

criteria of
rσ 2θ
σr
� 0.4 [43].
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Therefore the initial state of the local tracker is

X (1) =
[
x(1) 0 y(1) 0

]
.

Similarly, the initial covariance of the track is given by

P(1) =


Rx 0 Rxy 0
0 (Vmax/2)2 0 0
Rxy 0 Ry 0
0 0 0 (Vmax/2)2

 ,
where,

Rx = (λ−2 − 2) (r(1))2 cos2(θ (1))

+

(
(r(1))2 + σ 2

r
)

2

(
1+ λ4 cos 2θ(1)

)
Ry = (λ−2 − 2) (r(1))2 sin2(θ (1))

+

(
(r(1))2 + σ 2

r
)

2

(
1− λ4 cos 2θ(1)

)
Rxy =

[
λ−2(r(1))2

2
+
((r(1))2+σ 2

r )λ
4

2
−((r(1))2

]
sin 2θ(1).

Tracker assumes that the maximum velocity of the target is
Vmax = 30m/s. Moreover, the tunable parameters of process
noise covariance and the measurement noise covariance of
the filter are

Q = diag([0.052, 0.022, 0.052, 0.022]) and

R = diag([102, 0.032])

respectively. The measurement validation is carried out
using the gating technique, follows chi-square distribution
χ2
b (1 − tp), where b is the degree of freedom, and tp is the

tail probability set to 0.05. The GNN association is solved by
using the munkirs algorithm [44]. Moreover, the logic-based
track maintenance [39] is utilized. We adopted the 7/10 and
4/10 rule for track confirmation and termination.

To perform the quantization, we choose three different step
sizes. The low-step size is 5m, moderate-step size is 20m, and
high-step size is 50m. For better understanding, we sweep the
quantization step from low to high with a step size of 5m. Two
different quantizations are used, namely linear and optimal.
Linear quantization is based on uniform distribution [4], and
optimal quantization is based on Lloyd’s algorithm [5].

C. TWO-SENSOR CASE
For the generated scenario, we considered two sensors,
located at x1, x2 as given in Table 1. The local tracker provides
state and covariance as local estimates. Once the quantization
is performed on these state and covariance estimates, the
quantized estimates are sent to the fusion center to obtain the
fused estimate. Due to the independent behavior of sensors,
the fusion center in distributed networks has inadequate infor-
mation about the correlation among the sensors. This correla-
tion information is needed to calculate the covariance region
of the targets because of multiple sensors looking at each
target. Due to the nonavailability of correlation (no correla-
tion/unknown correlation) information, the overall tracking
performance of the system diminishes.

EI, CI, and AA fusion methods have been used to find the
fused state estimates. The EI uses the mutual information-
based mean and covariance, which were derived using two
initial estimates, to calculate the final fused mean and covari-
ance [34]. On the other hand, CI uses trace or determinant
minimization to calculate the fused covariance [32]. This
minimization becomes a convex optimization problem. This
nonlinear optimization was modeled as the well-known poly-
nomial root-finding problem, allowing closed-form solutions
to find the final fused covariance. The AA fusionmethod uses
averaging technique to find the fused estimate [41].

1) PRMSE ANALYSIS WITH MEDIUM-STEP SIZE
The position root mean square error (PRMSE) metric quan-
tifies the results. This analysis considers medium-step size to
perform both linear and optimal quantizations. The PRMSE
for CI and EI for different quantizations concerning k are
plotted in Fig. 4a and Fig. 4b respectively. In the same Fig. 4,
it is worth noting that we plotted the PRMSE without quanti-
zation case for comparison. It is observed that, for k ∈ [1, 10],
the PRMSE is significantly higher in both liner and optimal
quantization cases, due to one point initialization. For linear
quantization, after k = 10, we can observe that PRMSE
is stable in between 16-18m in both EI and CI solutions.
Simultaneously, the optimal quantization-based PRMSE is
decreasing further. Even though we are using a medium-step
size, we are attaining a huge difference in PRMSE values
between linear & without quantization. The PRMSE of a
fused estimate with linear quantization is nearly three times
that of a fused estimate without quantization. The optimal
Lloyd’s based quantization [5] sets the quantization levels
based on the received data samples. This implies that if
more data samples are present over a specific range, Lloyd’s
quantizer opts for more quantization levels & vice versa.
This is a massive advantage of using optimal quantization
over linear quantization. For the same medium-step size,
it is observed that the overall PRMSE of optimal quanti-
zation provides a two-fold improvement in tracking accu-
racy (optimal quantization PRMSE of 8.1415m and linear
quantization PRMSE of 17.477m). The optimal quantization
is offering 20% lower PRMSE compared to without apply-
ing the quantization method (without applying quantization
PRMSE is 6.277m); hence both are in good agreement with
each other. As k increases in the optimal case, a smaller
disparity between actual and estimated locations is observed.
However, for the linear quantization method, the PRMSE is
settling very fast at higher values. Further, the PRMSE of the
quantized local estimates fused value using CI is higher than
the EI approach. This is because unknown correlations are
explicitly characterized before a fused value of the estimate
is calculated; the EI approach is more accurate than the CI
method.

In addition to CI and EI algorithms, the PRMSE corre-
sponding to AA fusion technique is plotted in Fig. 5. Here,
we can see that initially, the PRMSE is high and start dimin-
ishes similar to that of CI and EI algorithms. However, it is
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FIGURE 4. PRMSE of various fusion algorithms using linear, optimal, and
without quantization.

worth noting that the PRMSE of AA fusion technique is
higher than CI and EI fusion techniques. The simulation
framework presented in this paper always has an intersection
among the error ellipses of the local tracks. Hence, conserva-
tiveness is always guaranteed. For example, if the simulation
results fails to get the intersection among the error ellipse
of the local tracks, then the AA fusion technique yield same
PRMSE values of EI and CI algorithms. From the Fig. 5, it is
further observed that the PRMSE value of optimal quantiza-
tion and without quantization are almost same. Whereas, the
optimal quantization provides improved PRMSE compared
to linear quantization in AA fusion technique.

2) PRMSE ANALYSIS BY SWEEPING STEP SIZE
To analyze the impact of quantization on local estimates,
we varied the quantization step size (∇), the PRMSE values
are calculated and tabulated in Table 2 along with quanti-
zation levels (L) for both linear and optimal quantization

FIGURE 5. PRMSE of AA fusion algorithm using linear, optimal, and
without quantization.

TABLE 2. PRMSE of fused quantized estimates with various quantization
levels for two-sensor case.

methods. In Table 2, CIopt refers to optimal quantization with
CI fusion algorithm, and a similar representation is valid for
others. If local estimates are linearly quantized, as we sweep
the step size, there is a significant change in PRMSE. At the
same time, if local estimates are non-linearly quantized, there
is a slight difference in PRMSE values as we sweep the step
size. All three fusion algorithms offer almost equal PRMSE
for optimal quantization. We employed the SCI technique for
the same case of two sensors and observed that it provides
better-fused estimates than CI and EI. From Table 2, it is
also observed that the difference in PRMSE of linear and
optimal quantization is minimal if more quantization levels
are employed (refer to step size of 5m and 10m). The low-step
size optimal quantization offers almost the same PRMSE as
that of without quantization (It can be seen from Fig. 6 that
the optimal quantization provides a 97% accuracy with the
assumption of without quantization gives 100% accuracy).
In contrast, low-step size linear quantization offers 80% accu-
racy compared to without quantization. Which is same as
that of the accuracy offered in the medium-step size case
of optimal quantization. The same can be seen from Fig. 6
graphically.
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FIGURE 6. PRMSE of fused quantized estimates with medium-step and
low-step quantization levels for two-sensor case.

3) BANDWIDTH ANALYSIS
In addition to PRMSE, the bandwidth required for each quan-
tizer is considered as a metric of measure to compare the
two different quantization methods. In general, for a binary
communication system, a quantizer having L quantized levels
represents each input data sample using n = log2(L) bits.
Transferring the m data samples will result in a (m × n)
bps data rate, which in turn requires a minimum bandwidth
equal to half the data rate. The number of quantization levels
directly related to the number of bits to be transmitted deter-
mines bandwidth occupancy. For analysis, we kept the same
step size for both uniform and optimal quantizations. It is
observed from the Table-2 that, to achieve the same PRMSE
using both linear and optimal quantizationmethods, the linear
quantization requires 608 levels, whereas the optimal quan-
tization requires 152 levels. Also, the same can be observed
from Fig. 6 as well. To send the same data, linear quantizer
requires log2(608) ≈ 10 number of bits per level and optimal
quantizer requires log2(152) ≈ 8 number of bits per each
level. Let us assume m data samples are to be transmitted;
Linear quantizer requires a bandwidth of (10 × m)/2 =
(5 × m)bps whereas, optimal quantization requires (8 × m)/
2 =(4 × m)bps. Therefore, the optimally quantized local
estimates consume 20% lower bandwidth than the linear
quantization method to achieve the same PRMSE.

4) ERROR ELLIPSE ANALYSIS
The correlation information among sensors is required to
obtain the fused estimates in a multi-sensor scenario. But,
no such information will be available in distributed fusion
networks. As a consequence, deteriorated fused estimates
are generated at the fusion center. To analyze the fused
covariance estimate obtained using the different quantiza-
tion methods, the error ellipses of the fused data are plotted
in Figs. 7, 8, 9, and 10 for CI, EI, SCI, and AA, respec-
tively, based on (53), (56), (62), and (64), respectively. The
figures contain both linear and optimal quantizations along

FIGURE 7. Error ellipses using CI fusion algorithm for two-sensor case.

with reported local tracks. The errors about each sensor
are illustrated by the individual ellipsoids, representing the
covariance region. The fused covariance (Pf ) is smaller than
the individual sensor covariance (Pq1 and Pq2) regions and is
inside the intersection of the variances corresponding to the
individual sensors. The optimization parameter in CI and SCI
(ω) provides a good fit for fused covariance. For simulation,
we considered the optimization parameter (ω) value as 0.5.
However, for AA fusion, the fused covariance covers the
major portions of the individual sensor covariance regions
based on optimized fused weights, calculated using (66). The
larger covariance is because of the fact that the consevative-
ness of AA fusion technique. Further, AA fusion technique
ensures that, the true target falls within the fused covariance
region irrespective of false and missed detections. In Fig.10a,
the error ellipse is taken at 5th time stamp and the fused
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FIGURE 8. Error ellipses using EI fusion algorithm for two-sensor case.

covariance is almost equal to sensor-2 covariance, despite
smaller covariance region provided by sensor-1. Similarly,
the Fig.10b is taken at the 99th time stamp, and it is observed
that the fused covariance is larger compared to intersection
region of the individual sensor covariance regions. The error
ellipses for all fusion algorithms and individual sensors are
plotted at k = 5s and k = 99s, respectively. At k = 5, error
ellipses are not settling and produce inaccurate fused results
because of single point target initiation. The error ellipses at
k = 99 provide improved fused covariance. The fused covari-
ance region corresponding to linear quantization is slightly
away from the ground truth value. On the other hand, the
fused ellipse produced by all the local and optimally quan-
tized estimates are nearer to the ground truth, which is also
evident in Figs. 7, 8, and 9. A large covariance region is gen-
erated by the CI method owing to its over-conservativeness

TABLE 3. Computation time for various quantizations.

of covariance estimates [17]. Alternatively, the EI algorithm,
which provides more accurate estimates than CI, limits the
covariance region by explicitly analyzing the fusion with
approximations. It is also observed that, the SCI offers better
fused state and covariance estimates than the EI and CI based
fusion methods.

5) COMPUTATIONAL LOAD
Table 3 shows the computational time required in seconds to
quantize and fuse the local estimates. The simulation time is
calculated in MATLAB 2021a version with Intel(R) Xeon(R)
E-2224G CPU 3.50GHz processor. The optimal quantization
consumes five times more time than the without quantiza-
tion technique to generate the fused one. In contrast, linear
quantization technique requires twice the time compared to
without quantization approach. Even though optimal quanti-
zation requires larger computational time, it consumes lesser
bandwidth. It is also to be noted that the computational time
is less than the sampling time of the sensor. Therefore, the
algorithm is feasible for real-time applications.

D. FOUR-SENSOR CASE
To further observe the influence of quantization of local state
estimates in amulti-sensor scenario, a four-sensor case is con-
sidered by adding the two additional sensors to the two-sensor
case. The static locations of the added sensors (x3 and x4) are
mentioned in Table 1.

In contrast to the two-sensor case, here, the SCI and AA
methods are used to fuse the associated tracks. Since the EI is
limited to two sources, the CI is computationally demanding
for more than two sources. The SCI first fuses the local
track estimates with an assumption that they are independent.
Thereafter, the covariance size of the fused track estimate is
modified through a sampling process. In SCI, the fuser weight
plays a critical role in estimating the mean. For a given unity
fuser weight, the fuser is pessimistic. Whereas, for a zero
fuser weight, the fuser is optimistic. The fuser weight equals
to 0.5 provides the best consistency [33]. Henceforth, in this
simulation, we considered the fuser weight as 0.5.

1) PRMSE ANALYSIS
The analogy used in the two-sensor case is followed here with
SCI fusion. The PRMSE for SCI with different quantization
methods for medium and low step size is plotted in Fig. 11.
For comparison, the PRMSE without the quantization case is
also plotted in Fig. 11. It is observed that the PRMSE of a
fused estimate with linear quantization is nearly four times
that of a fused estimate without quantization. For the same
medium-step size, it is observed that the overall PRMSE of
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FIGURE 9. Error ellipses using SCI fusion algorithm for two-sensor case.

optimal quantization provides a three-fold improvement in
tracking accuracy (optimal quantization PRMSE is 6.5453m
and linear quantization PRMSE is 20.1704m). The opti-
mal quantization offers 35% lesser accuracy than without
considering the quantization, which offers a PRMSE value
of 4.1766m; hence, both are in good agreement with each
other. At the same time, linear quantization offers 80% lesser
accuracy than without applying the quantization method.
As k increases, the optimal quantization method observed
a smaller disparity between actual and estimated locations.
As in the two-sensor case, the PRMSE follows the same trend
for both quantization methods. The optimally quantized esti-
mates provide improved PRMSE compared to uniform quan-
tization. The quantized local estimates give more accuracy
than the two-sensor case because of the increased number of
sensors in surveillance. Thus, the presence of more sensors

FIGURE 10. Error ellipses using AA fusion algorithm for two-sensor case.

provides a large number of local state estimates, which in turn
improves the accuracy of the fused state estimate.

In order to further analyze the effect of quantization, the
step size is increased from 5 to 50m with 5m increment at
each step, the PRMSE values for fused state estimates are
tabulated in Table 4. The low-step size optimal quantization
offers almost the same PRMSE as that of without quanti-
zation (it is evident from Fig. 11 that optimal quantization
provides 97% accuracy with the assumption that without
quantization yields 100% accuracy). Whereas, low-step size
linear quantization offers 67% accuracy compared to without
quantization. For high-step size, the PRMSE offered by lin-
ear quantization is ten times that of the unquantized value.
Alternatively, optimal quantization provides three times that
of the unquantized value. The PRMSEvalues reveal that, even
though fewer quantization levels are considered, the optimal
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FIGURE 11. PRMSE of fused quantized estimates with medium-step and
low-step quantization levels for four-sensor case.

TABLE 4. PRMSE of SCI fused quantized estimates with various
quantization levels for four-sensor case.

quantization method provides superior performance than the
linear one.

2) BANDWIDTH ANALYSIS
From Table 4, it is observed that, to achieve the same PRMSE
value of 6.3m, linear quantization requires 631 levels,
whereas optimal Lloyd’s approach requires only 127 levels,
and the corresponding PRMSEs are plotted in Fig. 11.
In terms of the number of bits, a linear quantizer requires
log2(631) ≈ 10 bits to represent each quantization level, and
an optimal quantizer requires log2(127) ≈ 7 bits. So, the
bandwidth required to send m samples with linear quantizer
is (5 × m)bps, and it is (3.5 × m)bps for optimal quan-
tizer. Therefore, the linear quantizer occupies 42% of higher
bandwidth than the optimal quantizer. Also, the reduction in
PRMSE for the four-sensor case is significant compared to
the two-sensor case when optimum quantization is adopted.
However, it is quite small when linear quantization is adopted.

3) ERROR ELLIPSE ANALYSIS
To analyze the fused covariance estimate, the error ellipses
are drawn for the individual sensors. The error ellipses are

FIGURE 12. Error ellipses using SCI fusion algorithm for four-sensor
case.

plotted at initial and final timestamps of 5s and 99s. The
fused covariance region in SCI is defined as the intersection
space of ellipsoids from all sensors. In AA, the fused covari-
ance region is the arithmetic average of individual sensor
ellipsoids. These are depicted in Fig. 12 and 13 respectively.
The covariance region in SCI is diminished compared to the
two-sensor case because of more sensors. This provides an
accurate and exact region of fused covariance, and moreover,
it encircles the ground truth. This states that SCI fusion with
quantized local estimates achieves enhanced performance.
However, the covariance region in AA is increased for four-
sensor case compared to two-sensor owing to its over conser-
vative property.
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FIGURE 13. Error ellipses using AA fusion algorithm for four-sensor case.

VI. CONCLUSION
This paper presents state quantization instead of measure-
ment quantization due to its real-time feasibility and linear
relationship. We propose to use state quantization in dis-
tributed tracking followed by fusion as an alternative solution
to measurement quantization followed by centralized track-
ing. The local tracker uses the EKF and GNN association
framework to estimate the updated state and covariance of
the time-varying targets. Besides, linear and optimal quanti-
zation schemes are explored to quantize the densely avail-
able local estimates to feed the fusion node. Further, S-D
assignment-based T2TA is performed at the fusion center to
identify the correlated tracks that pertain to the same target
from the available quantized local tracks. The associated
tracks are fused using correlation-free fusion algorithms,
namely ellipsoid intersection (EI), covariance intersection
(CI), modified covariance intersection (SCI), and arithmetic

average (AA) fusionmethods. In addition, two different cases
(two-sensor and four-sensor case) are analyzed for distributed
UWSNs. The fused quantized local tracks are quantified
using PRMSE, bandwidth, and error ellipse metrics. The sim-
ulation results demonstrates that, applying the optimal quanti-
zation over linear quantization provides improved bandwidth
efficiency for multi sensor case. The optimal quantization
consumes 20% and 30% lesser bandwidth compared to lin-
ear quantization for two and four sensor cases respectively.
Further, optimal quantization yields improved PRMSE values
compared to linear quantization for both two and four sensor
cases. Furthermore, optimal quantization provides compara-
ble performance as that of the unquantized scenario for both
the cases that are investigated in this study.
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