
Received February 5, 2022, accepted March 20, 2022, date of publication April 1, 2022, date of current version April 7, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3164250

A Parallelizable Algorithm for Stabilizing Large
Sparse Linear Systems With Uncertain
Interconnections
ALEKSANDAR ZEČEVIĆ , (Senior Member, IEEE),
AND MARYAM KHANBAGHI , (Senior Member, IEEE)
Department of Electrical and Computer Engineering, Santa Clara University, Santa Clara, CA 95053, USA

Corresponding author: Maryam Khanbaghi (mkhanbaghi@scu.edu)

ABSTRACT This paper proposes a new method for permuting sparse matrices into an upper block
triangular from. The algorithm is highly parallelizable, which makes it suitable for large-scale systems with
uncertain interconnection patterns. In such cases, the proposed decomposition can be used to develop flexible
decentralized control strategies that produce a different gain matrix whenever the configuration changes.
Applications to interconnected microgrids and supply and demand networks are provided to illustrate the
versatility of the proposed approach.

INDEX TERMS Large-scale systems, reconfigurable interconnections, uncertainty, decentralized control,
sparse matrices, block triangular structure, parallel graph theoretic decompositions.

I. INTRODUCTION
The control of large-scale systems with uncertain intercon-
nections has been studied extensively over the past few
decades [1]–[11]. One of the key early results in this field
was based on vector Lyapunov functions and the compari-
son principle, which were used to establish conditions under
which the systemwould remain stable for a range of structural
perturbations in the system [1]. More recently, techniques
such as Linear Matrix Inequalities (LMIs), H2 and H∞ con-
trol design, adaptive neural networks and fuzzy control design
have also been applied to this problem [12]–[24].

Despite the large body of work that exists on this topic,
there are relatively few papers which examine how graph the-
oretic decompositions can be applied to control sparsely inter-
connected complex systems. Some research along these lines
has been done on utilizing overlapping and bordered-block
diagonal decompositions to identify appropriate structures
for the gain matrix [25], [26]. There have also been a number
of results related to networked control systems, where it is
desirable to determine the sparsest control network that can
satisfy a given set of performance requirements [27]–[29].
However, none of these papers consider reconfigurable sys-
tems in which the matrix that describes the interactions can
potentially be permuted into an upper block triangular form

The associate editor coordinating the review of this manuscript and

approving it for publication was Feiqi Deng .

for every permissible interconnection pattern. This possibility
is clearly relevant in problems where interactions between
subsystems can change unpredictably (as is the case with
microgrids, for example) or when the subsystems are con-
nected through a reconfigurable network whose topology is
not fixed. With that in mind, the principal objective of this
paper will be to develop an efficient decomposition algorithm
that can determine if (and how) a large, sparse matrix can be
reordered into an upper block triangular form.

The speed with which this is done is very important for
large-scale applications, because decisions (including pos-
sible changes to the control design) often have to be made
in a short amount of time. This requirement becomes even
more critical if many different configurations need to be
examined and evaluated. As a result, the algorithm that we
propose will focus on ways to perform the decomposition in
a multiprocessor environment.

The problem of permuting a sparse matrix into an upper (or
lower) block diagonal form was addressed in the early 1960s
by Sargent and Westerberg [30], who developed a graph the-
oretic algorithm for this purpose. Their approach was based
on examining each edge in the graph separately, and building
paths that eventually produce strong components. This idea
was further developed by Tarjan [31], who increased the
efficiency of the algorithm by introducing a simple way to
keep track of the information that is gathered as the edges are
searched.

35888
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-4554-0217
https://orcid.org/0000-0002-2641-8814
https://orcid.org/0000-0002-0257-5647


A. Zečević, M. Khanbaghi: Parallelizable Algorithm for Stabilizing Large Sparse Linear Systems With Uncertain Interconnections

For the most part, Tarjan’s algorithm (with its various
refinements) remains the most effective sequential approach
for identifying an upper block triangular structure (its com-
plexity is O(n + τ ) for an n × n matrix with τ nonzero
elements) [32], [33]. For the applications that wewill be inter-
ested in, however, this algorithm may not be sufficiently fast,
so it is necessary to explore viable alternatives. The algorithm
that we propose in this paper represents one such possibility,
whose distinguishing feature is its inherent parallelizability
(as well as the fact that it does not need to search for strong
components).

It should be noted in this context that a number of
authors have proposed methods for parallelizing a simpler
version of this problem, which is known as topological sort-
ing [34]–[37]. The objective in this case is to permute the
matrix into a strictly upper (or lower) triangular form, which
is important for a wide range of problems (including instruc-
tion and task scheduling in computer science, critical path
analysis in project management, digital logic synthesis, etc.).
For our purposes, however, this approach is not sufficiently
general, since it implicitly assumes that the graph is acyclic.
As a result, it cannot handle matrices where an upper block
triangular structure is the only available option.

To the best of our knowledge, the problem of identifying
an upper block triangular structure using multiple processors
was addressed only in [38]. We should point out, however,
that the approach described in this paper requires each pro-
cessors to search the entire graph, and eventually uses the
partial results to identify strong components. The method that
we propose is considerably simpler in that respect, because it
examines only a very limited subset of nodes and edges.

The paper is organized in the following manner.
In Section II we formulate the control problem that we wish
to solve, and identify classes of systems where the proposed
strategy can be effective. In Sections III and IV we describe
a highly parallelizable graph theoretic algorithm that can
quickly permute large sparse matrices into an upper block
triangular form (whenever this is possible, of course). Finally,
in Section V we provide examples of practical large-scale
models where this paradigm can be applied.

II. THE MODEL AND THE CONTROL PARADIGM
In this paper we will examine large sparse linear systems of
the form

ẋ = A(t)x + Bu (1)

in which the interconnections between the subsystems are
subject to unpredictable changes, both in structure and in
strength. In problems of this sort, decentralized control is typ-
ically the preferred option, both from a computational stand-
point and from the standpoint of implementation. We will
therefore assume that the overall system dynamics can be
described as

ẋi = Aiixi + Biui +
∑
j 6= i

Aij(t)xj (i = 1, 2, . . . , s) (2)

where xi ∈ Rni represents the state of the i-th subsystem, and
ui ∈ Rmi is the input that is associated with it. We will further
assume that the elements of matrices Aii are fixed and known,
while the elements of matrices Aij(t) are uncertain and time
varying.

In its most general form, this is a difficult problem, partic-
ularly when the number of subsystems is very large. We will
therefore concentrate on the following two important scenar-
ios, which allow for certain simplifications.
Scenario 1: All possible interconnection patterns that can

arise are known, but the system can switch from one config-
uration to another unpredictably
Scenario 2: The system topology is not fixed, and we

cannot anticipate all possible interconnection patterns in
advance. However, once a new configuration becomes avail-
able, we have the option of rejecting it if we determine that it
will adversely affect the stability of the system.

The first scenario has a long history, dating back to 1970s
[2]. In problems of this sort, it is often convenient to describe
the elements of matrices Aij as apq(t) = epq(t)āpq, where
āpq denotes the ‘‘nominal’’ value of the element, and 0 ≤
epq(t) ≤ 1. Changes in the system topology can then be
modeled by setting epq to zero at appropriate locations in the
matrix.

Following the definition introduced in [2], system (2) is
said to be connectively stable if it is stable for all permissible
values epq(t). Necessary conditions for this were established
in [1], using the concept of vector Lyapunov functions and
the comparison principle. These conditions allow for the
interactions to have the general form

hi(x) =
s∑
i=1

eij(t)hij(xj) (3)

where hi(x) is a nonlinear function that can be bounded as

‖hi(x)‖≤
s∑
i=1

ēijξij‖xj‖ (4)

Constants ξij that appear in expression (4) are assumed to be
positive, and ēij are elements of the so-called fundamental
interconnection matrix Ē , which captures all possible inter-
connection patterns.

Although this result is general and mathematically elegant,
we should point out that it is often conservative (in part
becausematrix Ē must include every single configuration that
could potentially arise). In view of that, it would be desirable
to identify class of systems where a simpler approach is
possible.

The second scenario is more complicated, because the
structure of matrices Aij cannot be predicted. As a result,
we do not know in advance which of its elements will have
nonzero values in the next configuration. In such cases,
it becomes necessary to consider each configuration as it
becomes available, and establish (in a limited amount of time)
whether it can be stabilized using decentralized control laws.

VOLUME 10, 2022 35889



A. Zečević, M. Khanbaghi: Parallelizable Algorithm for Stabilizing Large Sparse Linear Systems With Uncertain Interconnections

One way to approach both of these scenarios would be
to determine whether the system matrix A can be permuted
into an upper block triangular structure for every permissible
interconnection pattern. If that turns out to be possible, one
could ensure the stability of each configuration by applying
appropriate decentralized control laws to the diagonal blocks.

When examining whether such a permutation exists for
a given matrix A, it is common practice to represent each
subsystem as a node in a directed graph, where an edge
pointing from node j to node i indicates that subsystem j
influences subsystem i. In our case, this would be equivalent
to saying that edge (j, i) appears in the graph if and only if
matrix Aij contains at least one nonzero element. Because
such a representation doesn’t take into account the inter-
nal structure of the individual subsystems, it is commonly
referred to as a condensation of the graph that corresponds
to the system matrix A [2], [39]. Working with such reduced
graphs is clearly desirable when dealing with large-scale
systems, since it allows us to analyze a smaller matrix Ā
whose dimensions are s × s (where s denotes the number of
subsystems).

From a control perspective, it would be ideal if matrix Ā
could be permuted into a strictly upper triangular form for
all possible configurations, because we could then guarantee
stability by simply ensuring that each subsystem is stable.
Under such circumstances, we could use the same decentral-
ized control law in all cases, and could treat the elements of
matrices Aij as completely uncertain.
In cases when we can only obtain an upper block trian-

gular structure, it becomes necessary to design decentralized
control laws that can stabilize clusters of subsystems (each
of which corresponds to a different diagonal block). It is
important to recognize, however, that this structure still offers
some significant advantages, because it allows us to apply
techniques such as LMI-based decentralized control design
to individual blocks (as opposed to the entire matrix A, which
is large). This makes a great deal of difference, since LMI
optimization can be a computationally intensive procedure
[40], [41]. We should also note that the control design can
be decoupled in this case, since each diagonal block consists
of a different set of subsystems.

In light of these observations, we will now focus our atten-
tion on developing an efficient algorithm that can determine
whether (and how) a large, sparse matrix can be permuted
into an upper block triangular form. Although a number of
algorithms have been developed for this purpose over the past
few decades, they are usually not suitable for the kinds of
problems that we are interested in, because execution speed is
critical in most such cases. It is not difficult to see why this is
so - in Scenario 1, for example, it may be necessary to exam-
ine a very large number of different interconnection patterns,
and determine if each one of them is stable (or stabilizable).
In Scenario 2, on the other hand, we need to quickly identify
whether a potential change in the configuration is acceptable,
and modify the control laws accordingly if this is indeed the
case.

The algorithm that we will describe in the following sec-
tions is well suited for such applications, because it is simple,
and is inherently parallelizable. What distinguishes it from
other techniques is the fact that it does not need to identify
cycles and/or strong components by an exhaustive search of
all edges in the graph. Instead, it focuses on a limited subset
of nodes and edges, and checks whether they belong to a cycle
(which can be done in parallel).

III. THE DECOMPOSITION ALGORITHM
As we already noted in the previous section, a nonsymmetric
matrix A can be represented using a directed graph in which
an edge pointing from node i to node j indicates that aij 6=
0. For our purposes, however, it will be convenient to take a
somewhat different approach, and describe the matrix using a
bipartite graph (or bigraph, for short). In such a graph, node
xi corresponds to column i of matrix A, and yj corresponds to
row j.

It is well known that a matrix can be permuted into a
strictly upper triangular form if and only if the corresponding
graph is acyclical [42]. For that reason, most techniques for
permuting a matrix into an upper block triangular form have
focused on identifying all the cycles in the graph, and using
this information to cluster vertices into strong components (a
strong component is defined as a subgraph in which there is a
closed path that passes through all of its nodes, but does not
include nodes from other subgraphs [39]).

The first step in most such procedures is to ensure that the
matrix has nonzero diagonal elements, using an appropriate
pre-permutation. Doing so can be challenging in general, and
involves finding what is known as a maximal transversal (or
perfect matching) [33], [43]. For the problems that we are
interested in, however, this will not be an issue, since the diag-
onal elements of the reduced matrix Ā represent individual
subsystems. As a result, nodes xi and yi are guaranteed to be
connected for i = 1, 2, . . . , s.
Once a maximal transversal is identified, existing algo-

rithms typically proceed by checking every edge in the graph,
in order to establish whether or not it belongs to a cycle.
This normally involves a depth-first search, combined with
some sort of ‘‘backtracking’’ scheme. There have been some
attempts to distribute this procedure across multiple proces-
sors [38], but even then, each processor searches the entire
graph (which can be time consuming when the matrix is
large).

The algorithm that we propose utilizes a different
approach, which entails examining only a limited subset of
nodes and edges. We will describe it in two stages, starting
with the simpler case when the matrix can be permuted into
a strictly upper triangular form. We will then show how this
algorithm needs to be modified in order to produce an upper
block triangular structure. As we proceed, we will highlight
those elements of the proposed method that distinguish it
from other techniques that have similar objectives.

Our ordering scheme proceeds by recursively reducing the
size of setV whose elements represent a subset of nodes in the

35890 VOLUME 10, 2022



A. Zečević, M. Khanbaghi: Parallelizable Algorithm for Stabilizing Large Sparse Linear Systems With Uncertain Interconnections

FIGURE 1. The first component of the bipartite graph.

graph. In the first iteration, this set includes all of the nodes,
and the process terminates when V becomes empty.

Each iteration consists of three simple steps, which are
described below.

STEP 1. Form a bipartite graph starting with the node in
set V that has the smallest index. If node yj is connected to
some node xi that appeared before it, flag node xi.
STEP 2. Repeat Step 1 starting from a node that has not yet

been visited. If any nodes in this graph have already appeared
in a previous step, they should be flagged as well.

STEP 3. Continue executing Step 2 until all nodes in set
V have been visited. Once this condition is met, remove all
unflagged nodes from V , and place them into setW .

The following simple example explains the logic behind
this strategy, and demonstrates how ‘‘flagging’’ certain nodes
eventually produces an upper triangular stucture.
Example 1: Suppose that we are given a 5× 5 matrix



1 2 3 4 5
1 ∗ ∗ ∗

2 ∗ ∗

3 ∗

4 ∗ ∗

5 ∗ ∗

 (5)

and that we would like to permute it into an upper triangular
form. If we represent this matrix as a bipartite graph, we ini-
tially obtain the configuration shown in Fig. 1, in which node
yi (which represents row i of the matrix) is connected to all
nodes xk for which aik 6= 0. As this graph is constructed,
the next y-node is processed only after all x-nodes associated
with the previous one have been added.

The fact that node y5 is connected to a node that appeared
before it (in this case, node x1) is indicated by a dashed line
in the graph. To understand the significance of such edges,
it suffices to observe that the submatrix composed of rows
and columns 1, 3 and 5 has the form


1 3 5

1 ∗ ∗ ∗

3 ∗

5 � ∗

 (6)

This matrix is obviously not upper triangular, due to the
presence of element a51. In view of that, we will ‘‘flag’’ nodes
x1 and y1 in the graph (which is indicted by an asterisk).

Since we haven’t exhausted all the rows and columns of
the matrix, we now continue building the bipartite graph
starting from node 2 (which is the node with the smallest
index among those that have yet to be examined). When we

FIGURE 2. The second component of the bipartite graph.

do so, we obtain a second component whose form is shown
in Fig. 2.

We should recognize at this point that node 3 already
appeared in the previous step. This means that there will be a
nonzero element in the lower triangular part of the permuted
matrix



1 3 5 2 4
1 ∗ ∗ ∗

3 ∗

5 ∗ ∗

2 ∗ ∗

4 � ∗

 (7)

In order to avoid that, we will ‘‘flag’’ node 3 as well.
If we now place all the unflagged nodes (in order of their

appearance) in set W (1) = {5, 2, 4} and the flagged ones
in set V (1) = {1, 3}, the corresponding permutation P =
{W (1),V (1)} = {5, 2, 4, 1, 3} will produce a matrix whose
first three rows have the form

(8)

Note that this submatrix has an upper triangular structure,
which is precisely what we wanted to achieve.

In the next iteration, we need to repeat the process on the
nodes in set V (1) = {1, 3}, and place any unflagged ones into
setW (2) (in order of their appearance). If setsW (1) andW (2)
happen to be disjoint, we can group the remaining flagged
nodes into set V (2) and continue the process. As we do so, the
size of sets V (k) will decrease in each iteration, since V (k −
1) = W (k)∪ V (k) by construction. This ensures that we will
encounter an empty set V at some point, unless the algorithm
terminates prematurely.

The problem with this particular example is that the bipar-
tite graph that originates at node 1 (which is used in the
second iteration) contains node 5, which already appeared
in W (1). When this happens, the algorithm terminates auto-
matically, because repeated elements are indicators of cycles
in the graph (in this case, the cycle is 1 → 5 → 1).
As we already mentioned, this means that the matrix cannot
be permuted into an upper triangular form.

The following theorem formalizes these observations, and
shows that the presence of a cycle in the graphwill necessarily
result in a node that reappears after being included in some
previous setW (k).

VOLUME 10, 2022 35891



A. Zečević, M. Khanbaghi: Parallelizable Algorithm for Stabilizing Large Sparse Linear Systems With Uncertain Interconnections

Theorem 1: Let A be an n × n matrix, and suppose that
the bipartite graph which corresponds to it contains a cycle.
In that case, one of the nodes that belongs to the cycle
will necessarily reappear, and the algorithm will terminate
prematurely.

Proof: Suppose conversely that there is a cycle in the
bipartite graph that corresponds to matrix A, but that the
algorithm does not terminate prematurely. If this is true, there
will be a pair of nodes a and b such that there is a path from
node a to b and vice versa.
Let us now assume (without loss of generality) that node a

appears before b in the first iteration of the algorithm. In that
case there will be a dashed edge from yb to xa, and node a
will be flagged. As such, it will be placed in set V (1). As far
as node b is concerned, there are two possibilities which we
need to consider separately.

Case 1. If b is notflagged in the first iteration, it will belong
to set W (1). Given that a ∈ V (1), we are bound to encounter
this node again in the next iteration. Note, however, that the
same holds true for node b, since there is a path from a to b.
Because b already appeared in W (1), the algorithm will end
prematurely, which contradicts our assumption.

Case 2. If b is flagged in the first iteration, it will belong
to set V (1) (together with node a). Since we assumed that the
algorithm does not terminate prematurely, one of these two
nodes (let’s say node b) will eventually appear in some set
W (m) (this is inevitable, because sets V (k) decrease in size in
each iteration). We should recognize at this point that nodes
a and b can never be unflagged simultaneously, since there
is a path from a to b and from b to a. Recalling that node b
belongs toW (m) (and is therefore not flagged in iterationm),
it follows that node a must be placed in set V (m).

Since the iterative process continues until no flagged nodes
are left, we know that node amust eventually appear in some
setW (m+ k). When that happens, node b will show up again
as part of the bigraph that is used to form sets W (m + k)
and V (m + k) (because there is a path from a to b). This,
however, leads to a contradiction, because the algorithm will
automatically terminate under such circumstances. Q.E.D.
Corollary 1: Suppose that the algorithm has executed k

iterations without terminating prematurely, and that no nodes
which belong to setsW (1),W (2), . . . ,W (k) have reappeared.
Then, these sets must be disjoint.

Proof: Suppose conversely that that the algorithm has
executed k iterations without terminating, but that sets W (i)
andW (j) are not disjoint. In that case, there must exist a node
a that belongs to bothW (i) andW (j).
If we assume that i < j, we can additionally claim that

node a will appear in setW (i) before it shows up in setW (j).
The fact that it appears again in the bigraph used to form sets
W (j) and V (j) leads to a contradiction, however, since this
means that the algorithm terminates prematurely in step j (and
j ≤ k). Q.E.D.

Corollary 1 indicates that the algorithm can proceed with-
out modifications for as long as sets W (1),W (2), . . . ,W (k)
are disjoint. If there are no cycles in the graph, the union of

these sets will ultimately produce a permutation that trans-
forms matrix A into a strictly upper triangular form. We will
consider how cycles can be handled in the following section,
but before we do that, we first need to demonstrate how the
process described in Example 1 can be parallelized using n
processors (where n is the dimension of matrix A).
The idea behind the parallelization is remarkable simple,

and is based on the observation that each processor can
construct a bipartite graph like the one in Fig. 1 starting from
a different node. In this process, four ordered sets are formed
for each node i, and are stored as linked lists.

1) Set Ti, which contains all the nodes that are reachable
from xi (these are the only nodes that appear in the
bigraph that originates at node i).

2) Set Fi, which consists of all nodes that are flagged due
to connections that are labeled by dashed lines.

3) Set Ui, which is defined as Ui = Ti\Fi.
4) Set Li, which contains all the edges that correspond to

dashed lines.
When evaluating the efficiency of this procedure, it is impor-
tant to recognize that in a sparsematrix of dimension n×n, the
number of nodes in any given set Ti is typically much smaller
than n. As a result, sets Ti, Fi, Ui and Li can be constructed
quickly. Once this procedure is completed, each processor
sends the sets that it formed to a root processor (by default
we will assume that this processor corresponds to node 1).
This is a straightforward communication task, which can be
executed in time proportional to log n on a hyper cube [44].
The following example demonstrates how the process

works on a matrix whose graph contains no cycles.
Example 2: Consider the 9× 9 matrix



1 2 3 4 5 6 7 8 9
1 ∗ ∗ ∗

2 ∗

3 ∗ ∗ ∗

4 ∗ ∗ ∗

5 ∗ ∗ ∗

6 ∗ ∗

7 ∗ ∗ ∗

8 ∗ ∗

9 ∗ ∗


(9)

The algorithm starts from the bipartite graph that originates
at node 1, which is shown in Fig. 3. It is not difficult to
see that the corresponding sets T1, F1 and U1 have the form
T1 = {1, 7, 9, 4, 6, 8, 2}, F1 = {6} and U1 = T1\F1 =
{1, 7, 9, 4, 8, 2}, respectively (note that these sets preserve the
order in which the nodes appear). This allows us to initialize
matrices T , F and U (which are associated with the entire
matrix A), as T (0) = T1, F(0) = F1 and U (0) = U1.
From set T (0), it is readily observed that nodes 3 and 5 have

not yet appeared in the graph, so our next step will be to
consider the graph that originates at node 3. It is important
to keep in mind that the corresponding sets T3, F3 and U3 are
already available to processor 1 at this point, so we can use
them directly to update sets T (0), F(0) and U (0).

35892 VOLUME 10, 2022



A. Zečević, M. Khanbaghi: Parallelizable Algorithm for Stabilizing Large Sparse Linear Systems With Uncertain Interconnections

FIGURE 3. The bigraph that originates at node 1.

FIGURE 4. The bigraph that originates at node 3.

For the sake of completeness, in Fig. 4 we show the bigraph
that originates at node 3, and gives rise to sets T3, F3 and U3.
As before, dashed lines correspond to situations when a y-
node is connected to an x-node that appeared before it. Since
there are three such edges in this case ((4, 2), (6, 2) and (8, 6)),
nodes 2 and 6 need to be flagged, and sets T3, F3 and U3
take the form T3 = {3, 2, 7, 4, 6, 8}, F3 = {2, 6} and U3 =

T3\F3 = {3, 7, 4, 8}.
The process of updating sets T , F and U now proceeds

in two stages, the first of which involves identifying which
unflagged nodes in set T3 have already appeared in one of
the previous steps. These nodes (which ought to be flagged)
are place in auxiliary set Q3, while new nodes that arose in
this step are placed in set R3. Comparing Figs. 3 and 4, it is
readily observed that nodes 7, 4 and 8 already appeared in the
previous step, while node 3 is new. As a result, we have that
Q3 = {7, 4, 8} and R3 = {3}.

In the second stage, sets T (0), F(0) and U (0) are updated
in the following manner

T (1) = T (0) ∪ R3 = {1, 7, 9, 4, 6, 8, 2, 3}

F(1) = F(0) ∪ F3 ∪ Q3 = {6, 2, 7, 4, 8}

U (1) = T (1)\F(1) = {1, 9, 3} (10)

It is readily observed that U (1) contains all the nodes that
remain unflagged at this point, while F(1) consists exclu-
sively of flagged nodes. This allows us to partition set T (1)
(which contains all the nodes that have been visited so far)
into two disjoint subsets - U (1) and F(1).

FIGURE 5. The bigraph that originates at node 5.

Since node 5 still hasn’t appeared in the graph, we need to
repeat the process one more time, using the bipartite graph
that originates at node 5. This graph is shown in Fig. 5, and
the corresponding sets T5, F5 and U5 are T5 = {5, 4, 8, 2, 6},
F5 = {2} and U5 = T5\F5 = {5, 4, 8, 6}.

Recalling that this information is already available to pro-
cessor 1, we easily obtain Q5 = {4, 8, 6} and R5 = {5}, and
matrices T (1), F(1) and U (1) are updated as

T (2) = T (1) ∪ R5 = {1, 7, 9, 4, 6, 8, 2, 3, 5}

F(2) = F(1) ∪ F5 ∪ Q5 = {6, 2, 7, 4, 8}

U (2) = T (2)\F(2) = {1, 9, 3, 5} (11)

At this point the first iteration is complete, since T (2) includes
all of the nodes. We can therefore group the unflagged nodes
into setW (1) = U (2) = {1, 9, 3, 5} and the flagged ones into
set V (1) = F(2) = {6, 2, 7, 4, 8}.
The second iteration focuses on the nodes in V (1), starting

with node 2 (which has the lowest index). Repeating the
procedure described above, we obtain T (2) = {2, 4, 8, 6, 7},
F(2) = {2, 6, 4, 8} and U (2) = {7} (the corresponding
bigraphs that appear at different stages in the process are
shown in Fig. 6). Since sets U (2) and W (1) are obviously
disjoint, we can set W (2) = U (2) = {7} and V (2) = F(2) =
{2, 6, 4, 8}, which allows us to partition the nodes as

W (1) ∪W (2) = {1, 9, 3, 5, 7} (12)

and

V (2) = {2, 4, 6, 8} (13)

Observing that node 2 has the smallest index in set V (2),
in the next iteration we obtain a graph that corresponds to the
first two blocks in Fig. 6. The corresponding sets T (1), F(1)
and U (1) are obviously T (1) = {2, 4, 8, 6}, F(1) = {2} and
U (1) = {4, 8, 6}. The fact that sets U (1) and W (1) ∪ W (2)
are disjoint allows us to set W (3) = U (1) = {4, 8, 6} and
V (3) = F(1) = {2}, which produces

W (1) ∪W (2) ∪W (3) = {1, 9, 3, 5, 7, 4, 8, 6} (14)

and

V (3) = F(1) = {2} (15)

Since V (3) contains only node 2 (which is not connected
to any other nodes), it is readily observed that W (4) = {2}

VOLUME 10, 2022 35893



A. Zečević, M. Khanbaghi: Parallelizable Algorithm for Stabilizing Large Sparse Linear Systems With Uncertain Interconnections

FIGURE 6. Graph that corresponds to the second iteration.

and that V (4) = ∅. Given that set V is now empty, it follows
that

W (1) ∪W (2) ∪W (3) ∪W (4) = {1, 9, 3, 5, 7, 4, 8, 6, 2}

(16)

represents the desired ordering. The corresponding permuted
matrix will then have the form



1 9 3 5 7 4 8 6 2
1 ∗ ∗ ∗

9 ∗ ∗

3 ∗ ∗ ∗

5 ∗ ∗ ∗

7 ∗ ∗ ∗

4 ∗ ∗ ∗

8 ∗ ∗

6 ∗ ∗

2 ∗


(17)

IV. THE MODIFIED ALGORITHM
If the algorithm terminates prematurely after disjoint sets
W (1),W (2), . . .W (m) have been formed, we know that sub-
matrix Am (which corresponds to set V (m)) will not be
permutable into an upper triangular form. In view of that,
we will now consider a modification that allows us to con-
tinue the reordering process, and identify an upper block
triangular structure in matrix Am (if such a structure exists,
of course). This modification consists of four straightforward
steps which can be described as follows.

STEP 1. Check each dashed edge in the bigraph that cor-
responds to matrix Am, and determine whether it is part of a
cycle.

STEP 2. Group the cycles into k disjoint subsets
{X1,X2, . . . ,Xk}, and label nodes that do not belong to any
cycle as Xk+1,Xk+2, . . . ,Xr .

FIGURE 7. Dashed edge that does not belong to a cycle.

STEP 3. Form a directed graph whose nodes correspond
to sets {X1,X2, . . . ,Xr }. In this graph, nodes i and j will be
connected if there exists a nonzero element apq in matrix Am
such that p ∈ Xi and q ∈ Xj.
STEP 4. Apply the algorithm described in Section III to the

matrix that corresponds to the directed graph obtained in Step
3.

To explain why these steps are necessary (and how they
can be implemented in a multiporocessor environment),
we should first observe that matrix Am is smaller in size
than A (often significantly so, if matrix A is sparse). As a
result, we will need to examine only a limited subset of the
nodes and edges that appear in the original condensed graph.
To see what this entails, let us assume that node a has the
smallest index in set V (m), in which case the ordering of
matrix Am will start with xa and ya. We should recognize at
this point that all the dashed edges that occur in this bigraph
are already available to processor 1, and are contained in sets
Li (i = 1, 2, . . . , n). With that in mind, the first step of the
modified algorithm is to check which of these edges actually
belong to cycles. This is necessary, because dashed edges
needn’t always correspond to cycles (the bipartite graph in
Fig. 7 shows one such possibility, where edge (d, c) is dashed,
but does not belong to a cycle).

Checking whether or not edge (α, β) belongs to a cycle
can be done by examining the bipartite graph that originates
at node β, and verifying if node α appears in it (which is easy
to do, since set Tβ is already available). If this happens to be
the case, all the nodes on the path from β to α will belong to
the same cycle, and we need to record them.

It is important to keep in mind in this context that checking
dashed edges is not equivalent to searching for strong compo-
nents (which entails finding a path that includes all the nodes
in the subgraph). Instead, we are only interested in finding
the shortest cycle that includes nodes α and β. In that respect,
the proposed algorithm is significantly simpler than the ones
proposed in the existing literature. It also allows us to examine
dashed edges in parallel, by assigning each one to a different
processor (together with the corresponding set Tβ ).

Because the dashed edges are already known at the start
of this process, there is no need to perform an exhaustive
search of all the edges in the graph, or to use a ‘‘backtracking’’
procedure to identify the cycle that theymay belong to (which
all other techniques for identifying block triangular structures

35894 VOLUME 10, 2022



A. Zečević, M. Khanbaghi: Parallelizable Algorithm for Stabilizing Large Sparse Linear Systems With Uncertain Interconnections

do in one way or another). Instead, everything is performed
in a single step, using p processors (where p represents the
number of dashed lines in the bigraph).

The communication tasks that are associated with this
search are a single node scatter operation that originates at
processor 1, and a single node gather operation that occurs
once the status of each edge has been determined. Both of
these tasks can be executed in time proportional to log p on a
hypercube architecture with p processors [44].

After all the dashed edges have been checked, processor
1 can compare and aggregate the paths that were obtained,
and partition the nodes that belong to cycles into r disjoint
sets. These sets correspond to different ‘‘supernodes’’ (or
composite nodes, as they are sometimes called) in the graph,
which can be combined with the nodes that do not belong to
any cycle. At that point, we can apply the algorithm described
in the previous section to identify a permutation that reorders
matrix Am into an upper block triangular form.
The following example demonstrates how the modified

procedure works in practice.
Example 3: Suppose that the original algorithm terminated

prematurely after m iterations, and that matrix Am (which
corresponds to the nodes in set V (m)) has the form



1 2 3 4 5 6 7
1 ∗ ∗ ∗

2 ∗

3 ∗ ∗

4 ∗ ∗ ∗ ∗

5 ∗ ∗

6 ∗ ∗

7 ∗ ∗


(18)

It is easily verified that this matrix cannot be permuted
into a strictly upper triangular form, since the corresponding
directed graph contains cycles. As a result, we need to apply
the modified algorithm, and establish whether Am can be
permuted into an upper block triangular form.

The first step of this algorithm produces the bipartite graph
shown in Fig. 8, which contains four dashed edges: (6, 1),
(4, 3), (4, 5), and (1, 6).
We can easily verify whether each of these edges cor-

responds to a loop by examining the bipartite graphs that
originate in nodes 1, 3, 5 and 7, respectively (as we already
noted, this can be done in parallel). These graphs (which are
shown in Fig. 9) indicate that the following four sets of nodes
belong to cycles: C1 = {1, 6}, C2 = {6, 1}, C3 = {3, 5, 4}
and C4 = {5, 4}. Note that the bipartite graphs in this figure
are not complete, because we can stop at the point when
the desired node appears for the first time. This obviously
contributes to the efficiency of the algorithm.

Having obtained setsC1,C2,C3 andC4, we can now easily
aggregate them and partition the rows and columns of matrix
Am into disjoint sets. When we do so, we obtain X1 = {1, 6},
X2 = {3, 4, 5}, X3 = {2} and X4 = {7} (the last two
sets contain only one element, because nodes 2 and 7 are
not part of any cycle). Using this information, we can form

FIGURE 8. The initial bigraph.

FIGURE 9. Possible cycles in the graph.

a condensation of the graph that corresponds to matrix Am,
which is composed of supernodes X1 and X2, together with
nodes X3 and X4.

In order to do that, we need to examine each node in sets
X1, X2, X3 and X4, and establish whether it is connected to
any nodes outside of its own set. This can be easily done
in parallel, by having a different processor check each node.
When we do so, we obtain the following reduced matrix


X1 X2 X3 X4

X1 ∗ ∗

X2 ∗ ∗

X3 ∗

X4 ∗ ∗

 (19)

VOLUME 10, 2022 35895



A. Zečević, M. Khanbaghi: Parallelizable Algorithm for Stabilizing Large Sparse Linear Systems With Uncertain Interconnections

Applying our original algorithm to this matrix, we easily
obtain permutation vector PC = {X2,X4,X1,X3}, which
translates into P = {3, 4, 5, 7, 1, 6, 2} once the supernodes
are expanded. The resulting reordered matrix

(20)

is obviously upper block triangular.

V. APPLICATIONS
To illustrate the practical value of the proposed approach (as
well as its versatility), in this section we will consider two
very different problems - energy exchanges between inter-
connected microgrids and optimal inventory management.
In both cases the system matrix can be large and sparse, and
the interconnection patterns between subsystems can change
unpredictably.

A. CONTROL OF INTERCONNECTED MICROGRIDS
A schematic representation of a system of interconnected
microgrids is shown in Fig. 10. This model assumes that indi-
vidual microgrids can exchange energy through a common
bus, and can indicate their needs through a communication
network.

Each microgrid that constitutes such a system can be
described by a pair of linear differential equations, which
reflect its battery dynamics and the way power is generated,
distributed and consumed. For microgrid i, the first of these
equations has the form

dE (i)
b

dt
= (1− αi)P(i)s + P

(i)
b − γiE

(i)
b (21)

where E (i)
b is the energy stored in the battery, P(i)s denotes

the generated solar power, and P(i)b is the power associated
with battery discharge. The constants αi and γi represent the
fraction of the solar power that is delivered to the load, and
rate of self-discharge, respectively [45].

The second equation stems from the requirement that the
generated solar power (P(i)s ), the battery discharge (P(i)b ), the
power consumed by the load (P(i)L ) and the net power that
microgrid i transfers to other microgrids (P(i)ex ) must be bal-
anced. This condition can be formally stated as

P(i)L = αiP
(i)
s + P

(i)
b − P

(i)
ex (22)

In themost general scenario, microgrid i can deliver energy
to some microgrids and receive it from others. Because there
is some flexibility in the way such exchanges are imple-
mented, it is always possible to schedule them so that the

FIGURE 10. Schematic description of a system of interconnected
microgrids.

power delivered by microgrid i to other microgrids is pro-
portional to the energy absorbed by load i up to time t . If we
take that into account, P(i)ex can be expressed as

P(i)ex =
dE (i)

ex

dt
=

∑
k 6= i

akiE
(i)
L −

∑
k 6= i

aikE
(k)
L (23)

where E (k)
L is the energy consumed by load k up to time t ,

and coefficients aki determine the amount of energy that is
exchanged between pairs of microgrids. Since these coeffi-
cients represent design parameters, they can be chosen in a
way that optimizes battery storage while satisfying the load
demand [45].

Setting E (i)
b and E (i)

L as the state variables for microgrid i,
the overall system can be represented as

xi = Aiixi + Biui +
∑
j 6= i

Aij(t)xj + Pi (i = 1, . . . , s) (24)

where Pi = [(1 − αi)P
(i)
s αiP

(i)
s ]T and input ui denotes the

control action (which amounts to charging or discharging
battery i). Matrices Aij are assumed to be time-dependent in
this model because energy exchange patterns can vary unpre-
dictably. However, any such change must first be approved
by a higher level operating unit, which needs to take into
account the possible stability implications, and determine if
the feedback law needs to be modified.

Because the number of microgrids can potentially be large
(and the exchanges between them are limited), matrix A is
likely to be sparse. Given the physical and economic con-
straints under which such systems operate, it is also likely
that this matrix will be permutable into an upper triangular (or
upper block triangular) form for most configurations that are
of practical interest. It is therefore reasonable to assume that
models of this sort will typically conform to Scenario 2 that
was described in Section II. As we already noted, in such
cases it is essential to have an efficient ordering algorithm that
will allow us to quickly determine whether additional control
action is necessary.

35896 VOLUME 10, 2022



A. Zečević, M. Khanbaghi: Parallelizable Algorithm for Stabilizing Large Sparse Linear Systems With Uncertain Interconnections

B. INVENTORY CONTROL
Today’s globalized economy requires ever increasing levels
of supply chain agility and inventory management in order to
improve operational efficiency. From a manufacturing per-
spective, this means that the ‘making-to-stock’ mode will
need to be replaced by the ‘making-to-order’ mode (and
perhaps the ‘engineering-to-order’ mode as well). In order to
implement such a change, production scheduling and inven-
tory control strategies will have to become considerably more
flexible. This task is complicated, however, by uncertainties
in the manufacturing process and other unpredictable fac-
tors (such as the availability of raw materials or customer
demand).

When analyzing the impact of consumer demand on pro-
duction scheduling and inventorymanagement, it is important
to recognize that different industries require different levels
of agility. Manufacturers that provide basic components to
industries with a volatile demand (such as those that deliver
thin glass to companies that make flat panels) often serve
more than a dozen large customers, and must be able to
quickly respond to their needs. This is not the case with the
automotive industry, for example, where manufacturers have
more time to react.

Models that are used to study production scheduling and
inventory management must also account for forecast vari-
ability. Although it is often possible to identify the largest
sources of uncertainty, the fact remains that no demand
forecast is completely accurate. This is due to a number of
factors, which include (but are not limited to) competition,
consumer behavior and the availability of supplies. One must
also consider the unpredictable nature of global economic
conditions, as well random events such as political crises or
the recent COVID pandemic.

The impact of uncertain demand forecasting can be mini-
mized by optimal inventory/safety stocks management. Over
the past few decades, a number of papers have addressed
this problem using control theory [46]–[53]. One possible
approach involves modeling inventory levels as discrete-time
dynamic systems of the form

x(j)i (k + 1) = x(j)i (k)+ γjiF
(j)
i (k)− di(k)

−

∑
l 6= i

ejix
(j)
l (k)

y(j)i (k + 1) = y(j)i (k) (25)

In equation (25), x(j)i (k) represents the inventory level at time
k for a specific product attribute j at location i, F (j)

i (k) denotes
the product volume at time k for attribute j at location i, and
di(k) is the customer demand associated with this product
volume (which is a stochastic variable in general). Constants
γji and eji are assumed to be known, and y(j)i (k) represents the
measured inventory level (which is what one would like to
optimize).

This model assumes that a product can have as many as q
different attributes, and that the inventory is distributed across

FIGURE 11. Simplified schematic description of a supply and demand
network.

m different locations. If we introduce an aggregate vector

x(k) =
[
x(1)1 · · · x

(q)
1 · · · x

(1)
m · · · x

(q)
m

]T
(26)

and treat the product volume as the system input (which we
will denote by u(k)), the inventory dynamics can be repre-
sented as

x(k + 1) = Ax(k)+ Bu(k)− d(k) (27)

where A is a matrix of dimensionmq×mq. Whenm and q are
large, matrixA is typically sparse, since only a limited amount
of material from one inventory location needs to be moved to
another one at any given time. When such exchanges occur,
the material is usually moved to only a few other locations
(which further contributes to the sparsity of matrix A).

From the perspective of this paper, it is important to rec-
ognize that the directed graph associated with matrix A can
contain cycles. This possibility is indicated in Fig. 11, which
provides a schematic description of the supply and demand
network.

In such cases, matrix A is usually permutable into an upper
block triangular form (given the nature of the inventory net-
work). Since this matrix needs to be reordered whenever there
is a change in supply or demand (which happens frequently),
it is important to have an algorithm that can perform this
task quickly. The need for an efficient reordering algorithm is
amplified by the fact that fluctuations in demand are unpre-
dictable, which means that the exact structure of matrix A
cannot be known until they actually occur. In that respect,
inventory dynamics bears a certain resemblance to energy
exchanges between interconnected microgrids.

VI. CONCLUSION
In this paper, we presented a new method for permuting
large, sparse matrices into an upper block triangular struc-
ture. A distinguishing feature of the algorithm is its inherent
parallelizability, and the fact that it does not need to identify
cycles and/or strong components by an exhaustive search of
all edges in the graph. As such, it is well suited for certain
classes of large-scale problems (particularly those in which
interconnection patterns change frequently). Applications to

VOLUME 10, 2022 35897



A. Zečević, M. Khanbaghi: Parallelizable Algorithm for Stabilizing Large Sparse Linear Systems With Uncertain Interconnections

interconnected microgrids and inventory management were
provided to illustrate the practical value and versatility of the
proposed approach.

REFERENCES
[1] D. D. Siljak, ‘‘Stability of large-scale systems under structural perturba-

tions,’’ IEEE Trans. Syst., Man, Cybern., vol. SMC-2, no. 5, pp. 657–663,
Nov. 1972.

[2] D. D. Siljak, ‘‘Dynamic systems,’’ in Stability and Structure. Amsterdam,
The Netherlands: North-Holland, 1978.

[3] M. Garcia-Rubio and R. J. Thomas, ‘‘Decentralized stabilizability condi-
tions for large-scale electric power systems,’’ in Proc. 23rd IEEE Conf.
Decis. Control, Dec. 1984, pp. 185–190.

[4] L. T. Grujic, A. A.Martynyuk, andM. Ribens-Pavella, Large Scale Systems
Stability under Structural and Singular Perturbations (Lecture Notes in
Control and Information Sciences). Berlin, Germany: Springer, 1987.

[5] L. Shi and S. K. Singh, ‘‘Decentralized control for interconnected uncertain
systems: Extenstions to higher order uncertainties,’’ Int. J. Control, vol. 57,
pp. 1453–1468, 1993.

[6] S. Jain, F. Khorrami, and B. Fardanesh, ‘‘Adaptive nonlinear excitation
control of power systems with unknown interconnections,’’ IEEE Trans.
Control Syst. Technol., vol. 2, no. 4, pp. 436–446, Dec. 1994.

[7] M. Akar and U. Ozguner, ‘‘Decentralized techniques for the analysis and
control of Takagi-Sugeno fuzzy systems,’’ IEEE Trans. Fuzzy Syst., vol. 8,
no. 6, pp. 691–704, Dec. 2000.

[8] D. M. Stipanoviá and D. D. Šiljak, ‘‘Connective stability of discontinuous
dynamic systems,’’ J. Optim. Theory Appl., vol. 115, no. 3, pp. 711–726,
Dec. 2002.

[9] A. Swarnakar, H. J. Marquez, and T. Chen, ‘‘A new scheme on robust
observer-based control design for interconnected systems with application
to an industrial utility boiler,’’ IEEE Trans. Control Syst. Technol., vol. 16,
no. 3, pp. 539–547, May 2008.

[10] A. I. Zecevic andD. D. Siljak, ‘‘Control of complex systems,’’ in Structural
Constraints Uncertainty. Springer, 2010.

[11] M. Pirani, T. Costa, and S. Sundaram, ‘‘Stability of dynamical systems
on a graph,’’ in Proc. 53rd IEEE Conf. Decis. Control, Dec. 2014,
pp. 613–618.

[12] S.-W. Kim, B. K. Kim, and C.-J. Seo, ‘‘Robust and reliable H∞state
feedback control: A linear matrix inequality approach,’’ Trans. Control,
Autom. Syst. Eng., vol. 2, pp. 31–39, Dec. 2000.

[13] D. Stipanovic, G. Inhalan, R. Teo, and C. Tomlin, ‘‘Decentralized over-
lapping control of a formation of unmanned arial vehicles,’’ Automatica,
vol. 40, pp. 1285–1296, Apr. 2004.

[14] A. I. Zecevic and D. D. Siljak, ‘‘Global low-rank enhancement of decen-
tralized control for large-scale systems,’’ IEEE Trans. Autom. Control,
vol. 50, no. 5, pp. 740–744, May 2005.

[15] H. N. Wu and H. Y. Zhang, ‘‘Reliable H∞fuzzy control for continuous-
time nonlinear systems with actuator failures,’’ IEEE Trans. Fuzzy Syst.,
vol. 14, no. 6, pp. 609–618, Dec. 2006.

[16] W. Chen and J. Li, ‘‘Decentralized output-feedback neural control for
systemswith unknown interconnections,’’ IEEE Trans. Syst., Man, Cybern.
B. Cybern., vol. 38, no. 1, pp. 258–266, Feb. 2008.

[17] O. Ou, Q. Hui, and H. Zhang, ‘‘Stability analysis and h infinity decen-
tralized control for discrete-time nonlinear large-scale systems via fuzzy
control approach,’’ in Proc. 6th Int. Conf. Fuzzy Syst. Knowl. Discovery,
2009, pp. 166–170.

[18] A. Atig, F. Drua, D. Lefebvre, K. Abderrahim, and R. Ben Abdennour,
‘‘Neural network control for large scale systems with faults and pertur-
bations,’’ in Proc. Conf. Control Fault-Tolerant Syst. (SysTol), Oct. 2010,
pp. 305–310.

[19] L. J. Long and J. Zhao, ‘‘Decentralized adaptive fuzzy output-feedback
control of switched large-scale nonlinear systems,’’ IEEE Trans. Fuzzy
Syst., vol. 23, no. 5, pp. 1844–1860, Oct. 2015.

[20] L. Cao, H. Li, N. Wang, and Q. Zhou, ‘‘Observer-based event-triggered
adaptive decentralized fuzzy control for nonlinear large-scale systems,’’
IEEE Trans. Fuzzy Syst., vol. 27, no. 6, pp. 1201–1214, Jun. 2016.

[21] E. J. Davison, A. G. Aghdam, and D. E. Miller, Decentralized Control of
Large-Scale Systems. Springer, 2020.

[22] V. Vesely, ‘‘Novel approach to decentralized controller design for large
scale uncertain linear systems,’’ Int. J. Innov. Comput., Inf. Control, vol. 17,
pp. 1571–1580, Dec. 2021.

[23] J.-D. Liu, B. Niu, Y.-G. Kao, P. Zhao, and D. Yang, ‘‘Decentralized
adaptive command filtered neural tracking control of large-scale nonlinear
systems: An almost fast finite-time framework,’’ IEEE Trans. Neural Netw.
Learn. Syst., vol. 32, no. 8, pp. 3621–3632, Aug. 2021.

[24] S. Tong, Y. Li, and Y. Liu, ‘‘Observer-based adaptive neural networks
control for large-scale interconnected systems with nonconstant con-
trol gains,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 4,
pp. 1575–1585, Apr. 2021.

[25] A. I. Zeáeviâ and D. D. Šiljak, ‘‘A new approach to control design with
overlapping information structure constraints,’’ Automatica, vol. 41, no. 2,
pp. 265–272, Feb. 2005.

[26] A. I. Zeáeviâ and D. D. Šiljak, ‘‘Control design with arbitrary informa-
tion structure constraints,’’ Automatica, vol. 44, no. 10, pp. 2642–2647,
Oct. 2008.

[27] L. Furieri, Y. Zheng, A. Papachristodoulou, and M. Kamgarpour,
‘‘Sparsity invariance for convex design of distributed controllers,’’
IEEE Trans. Control Netw. Syst., vol. 7, no. 4, pp. 1836–1847,
Dec. 2020.

[28] F. Dörfler, M. R. Jovanović, M. Chertkov, and F. Bullo, ‘‘Sparsity-
promoting optimal wide-area control of power networks,’’ IEEE Trans.
Power Syst., vol. 29, no. 5, pp. 2281–2291, Sep. 2014.

[29] M. Razeghi-Jahromi and A. Seyedi, ‘‘Stabilization of networked control
systems with sparse observer-controller networks,’’ IEEE Trans. Autom.
Control, vol. 60, no. 6, pp. 1686–1691, Jun. 2015.

[30] R. W. Sargent and A. W. Westerberg, ‘‘Speed-up in chemical engineering
design,’’ Trans. Inst. Chem. Eng., vol. 42, pp. 190–197, Dec. 1964.

[31] R. Tarjan, ‘‘Depth-first search and linear graph algorithms,’’ SIAM J. Com-
put., vol. 1, no. 2, pp. 146–160, Jun. 1972.

[32] I. S. Duff and J. K. Reid, ‘‘An implementation of Tarjan’s algorithm for
the block triangularization of a matrix,’’ ACM Trans. Math. Softw., vol. 4,
no. 2, pp. 137–147, Jun. 1978.

[33] A. J. Osiadacz, ‘‘Direct methods for sparse matrices,’’ Automatica, vol. 26,
no. 2, pp. 441–443, Mar. 1990.

[34] E. Dekel, D. Nassimi, and S. Sahni, ‘‘Parallel matrix and graph algo-
rithms,’’ SIAM J. Comput., vol. 10, no. 4, pp. 657–675, 1981.

[35] M. C. Er, ‘‘A parallel computation approach to topological sorting,’’ Com-
put. J., vol. 26, no. 4, pp. 293–295, Nov. 1983.

[36] J. Ma, K. Iwama, T. Takaoka, and Q.-P. Gu, ‘‘Efficient parallel and dis-
tributed topological sort algorithms,’’ in Proc. IEEE Int. Symp. Parallel
Algorithms Archit. Synth., Dec. 1997, pp. 378–383.

[37] P. Chaudhuri, ‘‘Parallel incremental algorithms for analyzing activ-
ity networks,’’ Parallel Algorithms Appl., vol. 13, no. 2, pp. 153–165,
Aug. 1998.

[38] A. Mocanu and N. Tapus, ‘‘Sparse matrix permutations to a block
triangular form in a distributed environment,’’ in Proc. IEEE 9th
Int. Conf. Intell. Comput. Commun. Process. (ICCP), Sep. 2013,
pp. 331–338.

[39] F. Harary, Graph Theory. Boca Raton, FL, USA: CRC Press, 1994.
[40] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan,’’ Linear Matrix

Inequalities in System and Control Theory. Philadelphia, PA, USA: SIAM,
1994.

[41] L. El Ghaoui and S. Niculescu, Advances in Linear Matrix Inequalities
Methods in Control. Philadelphia, PA, USA: SIAM, 2000.

[42] J. Bang-Jensen and G. Gutin, Classes Directed Graphs. Springer, 2018.
[43] I. S. Duff, K. Kaya, and B. Uçcar, ‘‘Design, implementation, and analysis

of maximum transversal algorithms,’’ ACM Trans. Math. Softw., vol. 38,
no. 2, pp. 1–31, 2011.

[44] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation.
Upper Saddle River, NJ, USA: Prentice-Hall, 1989.

[45] M. Khanbaghi and A. I. Zecevic, ‘‘Jump linear quadratic control for
microgrids with commercial load,’’ Energies, vol. 13, no. 18, p. 4997,
Oct. 2020.

[46] R. Akella and P. R. Kumar, ‘‘Optimal control of production rate in a failure
prone manufacturing system,’’ IEEE Trans. Autom. Control, vol. AP-31,
no. 2, pp. 116–126, Feb. 1986.

[47] S. Chopra and P. Meindl, Supply Chain Management. London, U.K.:
Pearson, 2012.

[48] K. G. Kempf, ‘‘Control-oriented approaches to supply chain management
in semiconductor manufacturing,’’ in Proc. Amer. Control Conf., 2004,
pp. 4563–4576.

[49] E. Perea, I. Grossmann, E. Ydstie, and T. Tahmassebi, ‘‘Dynamic model-
ing and classical control theory for supply chain management,’’ Comput.
Chem. Eng., vol. 24, nos. 2–7, pp. 1143–1149, Jul. 2000.

35898 VOLUME 10, 2022



A. Zečević, M. Khanbaghi: Parallelizable Algorithm for Stabilizing Large Sparse Linear Systems With Uncertain Interconnections

[50] E. Perea-López, B. E. Ydstie, and I. E. Grossmann, ‘‘A model predictive
control strategy for supply chain optimization,’’ Comput. Chem. Eng.,
vol. 27, nos. 8–9, pp. 1201–1218, Sep. 2003.

[51] E. Porteus, Foundations of Stochastic Inventory Theory. Stanford, CA,
USA: Stanford Univ. Press, 2002.

[52] W. Wang and D. Rivera, ‘‘Model predictive control for tactical decision-
making in semiconductor manufacturing supply chain management,’’
IEEE Trans. Control Syst. Technol., vol. 16, no. 5, pp. 841–855, Sep. 2008.

[53] E. K. Boukas, ‘‘Manufacturing systems: LMI approach,’’ IEEE Trans.
Autom. Control, vol. 51, no. 6, pp. 1014–1018, Jun. 2006.

ALEKSANDAR ZEČEVIĆ (Senior Member, IEEE)
received the B.S. degree in electrical engineer-
ing from the University of Belgrade, Yugoslavia,
in 1984, and the M.S. and Ph.D. degrees from
Santa Clara University, Santa Clara, CA, USA, in
1990 and 1993, respectively. He is currently a Pro-
fessor with the School of Engineering, Santa Clara
University, where he teaches courses in the area
of electric circuits, control theory, and nonlinear
systems. He has published books and articles on a

broad range of topics, including graph theoretic decomposition algorithms,
control of large-scale systems, high-performance computing, and power
systems.

MARYAM KHANBAGHI (SeniorMember, IEEE)
received the bachelor’s degree from the Univer-
sité de Nice-Sophia Antipolis, France, and the
master’s and Ph.D. degrees in electrical engineer-
ing from École Polytechnique, Montreal, Canada.
She worked for several years at the Pulp and
Paper Research Institute, Montreal and Vancou-
ver, Canada, as a Research Engineer. She joined
Corning Inc., in 2000, and during her 12 years
tenure, she worked in research and development

centers, corporate engineering, manufacturing, and commercial technology.
She is currently an Assistant Professor at the Department of Electrical
Engineering, Santa Clara University, Santa Clara, CA, USA, and the Director
of power systems and sustainable energy graduate program. She has pub-
lished over 30 papers in journals, conference proceedings, and company
internal research papers. She has two patents. Her research interests include
control system design/optimization for large systems, such as manufacturing
and power systems. She was an Associate Editor of IEEE Control System
Magazine.

VOLUME 10, 2022 35899


