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ABSTRACT The submarine is an underwater ship that can perform a variety of combatmissions in a complex
marine environment. Path planning of submarines has always been the focus of military marine engineering
research. In most practical applications, there are numerous marine physical phenomena in the marine
environment, such as pycnocline, density fronts, mesoscale eddy, etc., which have an important impact on
the navigation of submarines. First, the artificial potential field heuristic factor is introduced into the ant
colony algorithm to improve its convergence speed, and the artificial potential field ant colony optimization
(APF-ACO) is obtained. In addition, this article uses the unit-body to reflect the regional physical elements
and quantifies the physical marine phenomenon in the form of the cost function, which is used to solve the
problem of submarine path planning in the complex marine environment. In this article, the algorithm is
tested in a real marine data environment. The experimental results show that the algorithm can realize the
utilization of the ocean sound speed environment, ocean density environment and ocean current environment,
and obtain a path more suitable for submarine underwater navigation.

INDEX TERMS Submarine, complex marine environment, three-dimensional path planning, artificial
potential field (APF), ant colony optimization (ACO).

I. INTRODUCTION
The submarine is a ship that can fight independently underwa-
ter. It appeared in the First World War and was widely used
in various military operations afterwards. It has been made
an important part of modern naval operations, and mainly
undertakes the important strategic role of combat readiness,
cruise and deterrence against the enemy.

With the continuous changes in the international situa-
tion, underwater navigation of submarines has become a
hot research topic. Unlike surface ships, submarines face
more unknown threats underwater, mainly including: seabed
topography and bottom quality, marine physical phenomena,
enemy sonar detection, etc [1].

In order to ensure safe navigation, submarines need to
choose the path that best meets the need of combat missions
among the many navigation paths. Therefore, path planning
is a vital step for submarine underwater operations. Under
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normal circumstances, three factors need to be considered in
submarine path planning:

1) Concealment factors. The combat effectiveness and
threat of submarines are mainly focused on their con-
cealment characteristics. Therefore, when performing
combat missions, submarines should ensure their con-
cealment as much as possible. Mainly consider the
characteristics of marine acoustic velocity distribution
and other characteristics to plan the navigation path.

2) Safety factors. The submarine’s underwater naviga-
tion environment includes the enemy’s sonar detection
range, dangerous physical marine phenomena, seabed
topography and submarine reefs and other factors that
threaten the submarine’s survival. Therefore, these
areas should be prevented in submarine path planning
to achieve the goal of safe navigation.

3) Economic factors. The submarine is difficult to replen-
ish underwater, so it is necessary to consider the sub-
marine’s endurance when performing tasks. The usual
method is to plan the shortest path for the submarine
from the departure to the destination and try to use

37016 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0001-6232-8085
https://orcid.org/0000-0002-7810-2061
https://orcid.org/0000-0002-2673-7751
https://orcid.org/0000-0002-4408-9153


J. Fu et al.: Three-Dimensional Underwater Path Planning of Submarine Considering Real Marine Environment

marine currents and other marine elements to save
fuel [2].

Due to the complexity and nonlinearity of the underwater
3D environment, the 2D land-based algorithms cannot be
directly used to solve the underwater path planning problems.
In response to this issue, many scholars have focused on the
development of underwater path planning algorithms. The
most commonly used path planning algorithms are as follows:

Geometric model search algorithms: The most represen-
tative algorithms are Dijsktra algorithm and A∗ algorithm.
Since Dijkstra algorithm traverses all nodes and obtains the
shortest path, the obtained shortest path has a high suc-
cess rate and satisfactory robustness [3], [4]. However, when
applied to large-scale complex path topology networks, node
traversal and low efficiency are fatal drawbacks [5]. Arinaga
et al. applied Dijkstra algorithm to a global path search for
AUVs in an underwater environment. The algorithm can
avoid a set of obstacles and reach the end but does not
consider the impact of the marine environment [3]. The A∗

algorithm is based on Dijkstra algorithm to add the estimated
cost of the target point to the current node [6]. However,
the A∗ algorithm gradually determines the next path grid by
comparing the heuristic function values of the adjacent grids
of the current path. The A∗ algorithm is not guaranteed to
be optimal when there are multiple minima [7]. Garau et al.
implemented a path search with A∗ algorithm and considered
the influence of marine environmental factors [8].

Sample planning-based approaches: The most represen-
tative algorithms are PRM algorithm and RRT ∗ algorithm.
At the heart of the PRM algorithm is sampling and building a
roadmap. In [9] and [10], the algorithm was verified to be
applicable to underwater 3D path planning under complex
constraints. RRT ∗ algorithm has a powerful spatial search
ability [11]. For single query problems, the RRT ∗ algorithm
has a faster convergence speed than the PRM algorithm [12].
Carreras et al. employed the RRT ∗ algorithm to perform
2D AUV path planning, and the 3D results show that the
adaptability of this method in the real complex environment
is Satisfactory [11]

Artificial potential field (APF)-based approaches:
Solari et al. introduced the artificial potential field algorithm
into underwater path planning and found that it is feasi-
ble in a static environment, but it cannot perform accurate
dynamic obstacle avoidance [13]. To solve this problem,
Cheng et al. added the speed synthesis algorithm of AUV to
the APF algorithm, which improved the convergence speed
of the algorithm while avoiding obstacles accurately [14].
Jantapremjit et al. not only realize automatic obstacle avoid-
ance by applying the APF algorithm, but also introduced
the state-dependent Riccati equation method to optimize the
optimal high-order sliding mode control, which improved the
robustness of the AUV motion [15].

Evolutionary algorithms (EAs)-based approaches: EDA is
a stochastic optimization algorithm based on statistical prin-
ciples. Compared with other evolutionary algorithms, EDA
has stronger global search ability and faster convergence

speed. But the algorithm is prone to fall into premature con-
vergence [16]. The PSO algorithm performs path planning
operations by simulating the individual cooperation mecha-
nism in the group [17]. It has the advantages of easy imple-
mentation and rapid convergence, but it is easy to fall into the
local optimal solution [18]. Liu et al. used the PSO algorithm
for AUV path planning. Simulation experiments show that
the algorithm is simple easy to implement, not sensitive to
the population size, and has a faster convergence speed [17].
GA is a computational model that simulates genetic selection
and natural elimination. Similar to PSO algorithm, GA also
finds the optimal solution through iteration of random solu-
tions [19]. Compared with the PSO algorithm, GA can find
the global optimal solution according to the adaptive evalua-
tion, but the calculation time is too long [20]. The difference
between DE algorithm and GA is that DE algorithm uses
the difference vector between individuals in the population to
achieve individual variation. The robustness of DE algorithm
is better than that of genetic algorithm [21].

Heuristic algorithms (HAs)-based approaches: The most
representative algorithms are ACO and SA. ACO is a proba-
bilistic algorithm with the characteristics of distributed com-
puting, positive feedback and heuristic search [22]. The
advantage of ACO is that it can be applied to the underwater
3D path search problem, and its parameters are relatively
small and do not need to be adjusted manually [23]. This
is why this paper chooses the ant colony algorithm as the
basic algorithm of the optimization algorithm. However, the
convergence speed of ACO is slow, and it is easy to fall
into the local optimum, so ACO needs to be optimized.
Ma et al. introduced alarm pheromone in the ACO algorithm
(AP-ACO) for path planning of underwater vehicles. The
experimental results show that compared with the ordinary
ACO algorithm, AP-ACO has faster convergence speed and
stability [24]. However, the above algorithms only consider
the impact of marine currents on underwater path planning,
which is obviously inconsistent with the real marine environ-
ment. SA performs path planning by simulating the annealing
process of solid matter. SA has the characteristics of flexible
use and less initial conditions [25]. [26] used SA for under-
water path planning. The results show that the algorithm can
complete the large turning radius path planning of AUV, but
it has the shortcomings of slow convergence speed and poor
randomness.

In addition to the above algorithms, in recent years, many
emerging hybrid algorithms have been proposed and proven
to be effective. For example, Orozco-Rosas et al. integrated
membrane computing, the pseudobacterial genetic algorithm
and artificial potential field algorithm to obtain a hybrid
path planning algorithm based on membrane pseudobacterial
potential field (MemPBPF). The algorithm not only realizes
the effectiveness of the path planning of the mobile robot,
but also can realize the parallel operation on the multi-core
computer, which improves the efficiency [27], [28].

However, some of the above algorithms are not suitable
for underwater 3D path planning, and some only consider the

VOLUME 10, 2022 37017



J. Fu et al.: Three-Dimensional Underwater Path Planning of Submarine Considering Real Marine Environment

impact of ocean currents on path planning, which is obviously
inconsistent with the real marine environment.

Since various marine phenomena have important effects on
underwater navigation in the real marine environment, the
impact of the marine environment on the planning results
should be taken into account when planning the path. But
the research in this area is not sufficient. Yu et al. proposed
a fast-stepping method in a large three-dimensional marine
battlefield environment to realize underwater vehicle route
planning. This method not only considers obstacles, enemy
detection probability, marine depth and route length, but also
considers performance constraints such as the safe depth of
the aircraft and the turning radius. This method can bet-
ter realize path planning in a complex marine environment,
but the planning speed is slow [29]. Zhu et al. introduced
marine factors such as seabed topography, marine currents,
marine climate, sea depth, and sea water transparency into
the submarine’s path planning, which improved the path’s
adaptability to the complex marine environment. However,
this method does not consider physical marine phenomena,
all of which still have limitations [2]. Liu et al. introduced
the maneuvering rules of underwater submarine vehicles into
path planning. This algorithm can find a suitable search
range according to different state distributions, and has good
adaptability. The results of simulation experiments prove that
the algorithm can obtain a safe dynamic path with optimized
performance. However, the algorithm still simplifies the com-
plex marine environment [30]. Therefore, it can be seen that
there is still a lot of work to be done in path planning in a
complex marine environment. This article hopes to design
a submarine underwater path planning algorithm that can
adapt to the real marine environment by introducing physical
marine phenomena into path planning.

This article mainly considers introducing the following
marine phenomena into underwater path planning.

1) Marine acoustic environment. The acoustic environ-
ment of the marine mainly includes the acoustic veloc-
ity and the acoustic velocity gradient. The acoustic
velocity affects the range of the anti-submarine sonar.
Therefore, the lower the acoustic velocity, the closer the
submarine can get to the target position, so as to achieve
the combat purpose of concealed attack. The greater
the absolute value of the acoustic velocity gradient, the
more severe the refraction of acoustic rays, which is
more conducive to the concealment of the submarine.
Moreover, the acoustic velocity gradient can represent
the size of the sonic cline to a certain extent. In order
to avoid the detection of surface anti-submarine equip-
ment, the submarine should navigate below the sonic
cline as much as possible.

2) Pycnocline. Pycnocline is a physical phenomenon that
occurs between two layers of fluids with different
densities, and it has an important impact on the safe
navigation of submarines. Pycnocline is divided into
positive and negative. The positive pycnocline is also
called ‘‘liquid seafloor’’, which can carry submarines

to sail above it to achieve the purpose of concealed
approach to the target and saving fuel. The negative
pycnocline is called the ‘‘submarine cliff’’. Owing to its
physical characteristics, the submarine will ‘‘fall deep’’
when encountering it and face danger. Therefore, the
submarine should take different maneuvering routes
when encountering different types of the pycnocline.

3) Density front. The density front mainly refers to the
narrow water body in the horizontal direction between
two bodies of water with different densities. When the
submarine navigates through the front with a sudden
change in density, the hull may appear large inclination
and heave. At this time, if the maneuvering measures
are not appropriate, it may dive to a large depth or sud-
denly emerge from the water, endangering the safety
and concealment of the submarine [31].

4) Mesoscale eddy. Mesoscale eddy is a complex and
large-scale marine vortex phenomenon. Submarine
encounters a strong mesoscale eddy and will get out of
control. What’s more, it will greatly weaken the perfor-
mance of underwater communication and detection and
pose a great threat to the safety of underwater targets
such as submarines.

Based on the improved artificial potential field ant colony
algorithm, this article quantifies the above-mentioned marine
physical phenomena through the cost function, and intro-
duces it into the path planning algorithm.

The rest of this article is organized as follows. In the
second section, the environment model will be introduced.
Section III will introduce the Improved Artificial Poten-
tial Field Ant Colony Optimization (APF-ACO) used in
this article. In Section 4, a cost function that takes into
account marine environmental impacts will be presented.
In Section V, a series of experiments will be implemented
to verify the reliability of the newly proposed algorithm and
the performance of the marine-related cost function in a real
marine data environment. The conclusion will be given in
Section VI.

II. MODELS
The environmental model represents the real marine environ-
mental information with an abstract physical model, and its
representation method directly affects the efficiency of the
path planning. This section mainly introduces the environ-
ment model used in this article

A. SPACE COORDINATE SYSTEM
This article uses the method of spatially equally dividing
grids to divide the path planning environment. As shown in
Figure 1, the minimum grid interval corresponds to the min-
imum longitude, latitude, and depth interval of the database.
The plane with the depth value of 0 is regarded as the isosur-
face with the Z value of 0. The vertical downward along the
depth is the positive direction of the Z axis. The direction in
which the latitude increases along the origin O is the positive
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FIGURE 1. The 3D environment model.

direction of the X axis. The increasing direction along the
longitude is the positive direction of the Y axis. Therefore,
the underwater planning space is constructed as a rectangular
parallelepiped equally divided along the longitude, latitude,
and depth. We stipulate that the space is equally divided into
(l + 1) parallel planes perpendicular to the Y axis and the
Z axis along the X axis. Then this article divides each plane
into (m + 1) × (n + 1) grids along the Y-axis and Z-axis.
In this way, the planning space is preliminarily divided into
(l + 1)× (m+ 1)× (n+ 1) subspaces.
In the planning space, each point in the subspace can be

spatially positioned with coordinates (x, y, z), as shown in
Figure 2. In this way, the environmental modeling of the
planned space is initially completed.

FIGURE 2. The 3D environment aspect.

B. UNIT-BODY
Considering that most of the physical phenomena in the com-
plex marine environment cannot be characterized by a simple
data point, it is necessary to calculate the physical quantities
within a certain range to get the true performance of marine
parameters, such as mesoscale eddy. Therefore, on the basis
of the above environment modeling, this article has proposed
a data cube modeling method.

A data cube is composed of 8 adjacent data points,
as shown in Figure 3, where adjacent data cubes share 4 data
points on adjacent faces. In this way, a new subspace distri-
bution form is formed, in which the characteristic value of
each data cube is calculated by corresponding 8 data in it,
such as average value, curl, gradient, etc. The article mainly

FIGURE 3. The schematic diagram of the unit-body.

constructs such a data cube as a subspace of the environment
space based on the following reasons.

1) Compared with the scale of the submarine itself, the
scale of the marine environment is much larger and the
temporal and spatial changes are not drastic. Therefore,
the method of reorganizing data points can reduce the
amounts of useless calculations and improve efficiency.

2) The reconstruction of data can give each data cube
more information, enabling it to realize the expression
of marine physical phenomena.

For the convenience of explanation, this data cube will be
referred to as the unit − body in the following.

III. IMPROVED ARTIFICIAL POTENTIAL FIELD ANT
COLONY ALGORITHM (APF-ACO)
The potential field ant colony algorithm proposed in this
paper is mainly aimed at the specific application scenarios of
submarine underwater navigation. Compared with ordinary
underwater vehicles, submarine has more stringent require-
ments on path planning algorithms due to its special military
purposes, among which convergence speed and global opti-
mality are the two most important aspects.

Due to its ergodicity and positive feedback, the common
ant colony algorithm has a slow convergence speed and is
easy to fall into local optimum, which is not in line with the
background of submarine combat applications. To solve this
problem, this paper proposes an improved ant colony opti-
mization (APF-ACO) that introduces artificial potential field
factors. In the initial stage of the algorithm, the introduction
of artificial potential field factors can increase the difference
between the grids to be selected, thereby speeding up the
speed of ants choosing the correct path and improving the
convergence speed of the algorithm. In the middle and late
stages of the algorithm, the artificial potential field factor can
input the information of the target point into the operation to
induce the ants to always choose the route closest to the target
point and avoid the result falling into local optimum.

The specific explanation of APF-ACO is as follows.

A. IMPROVED APF ALGORITHM
The original artificial potential field function is prone to
deadlock when there are a large number of obstacles around
the target point, which makes the algorithm unable to effec-
tively converge. In order to solve this problem, this article
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improves the repulsion function of the artificial potential field
algorithm. The improved repulsion function is shown in (1).Urep (X)=

1
2
krep

(
1

ρ (X ,X0)
−

1
ρ0

)2

· ξ, ρ (X ,X0)≤ρ0

0, else

(1)

where ξ = (X − Xd )n, representing the n-th power of the
Euclidean distance between the current node and the target
point. ρ0 is the value of the influence range of the obstacle,
if the distance between the carrier and the obstacle is greater
than ρ0, the repulsion is 0. n is a positive adjustment constant.
The introduction of ξ can reduce the effect of repulsion when
the carrier is close to the target point, so that the carrier can
reach the target point normally.

ForUrep (X) to find the negative gradient, the repulsion cal-
culation formula of the improved algorithm can be obtained
as:

Frep (X) = Frep1 (X)+ Frep2 (X) (2)

where
Frep1 (X) = krep

(
1

ρ (X ,X0)
−

1
ρ0

)
·

ξ

ρ2(X ,X0)

Frep2 (X) = −
n
2
· krep ·

(
1

ρ (X ,X0)
−

1
ρ0

)2

· (X−Xd )n−1

(3)

Frep1 (X) and Frep2 (X) respectively describe the repulsive
force of obstacles pointing to the robot and the attraction of
robots pointing to the target point. In this way, the repulsion
function expression of the improved algorithm is constructed.

The gravitational expression of the artificial potential field
is

Uatt (X) =
1
2
kp (X − Xd )2 =

1
2
kp((x − xd )2

+ (y− yd )2 + (z− zd )2) (4)

where kp is the target gain coefficient, and the attractive force
of the gravitational potential field to the carrier is the direction
of the negative gradient of the gravitational potential energy:

Fatt = −kpn1ε1 (5)

where n1 is the unit vector with direction between the carrier
and the target point, ε1 is the Euclidean distance between the
carrier and the target point, ε1 = ‖X − Xd‖.
In this way, the resultant force of the artificial potential

field can be obtained:

Ft = Frep + Fatt (6)

B. IMPROVED APF HEURISTIC FUNCTION
The heuristic function of the traditional ant colony algorithm
only considers the distance between the current position and
the next node. When there are a lot of obstacles near the
endpoint, the algorithm is easy to fall into the local optimum.

Due to the positive feedback of the ant colony algorithm, the
final planned path may not be the globally optimal path.

To solve the problems of the traditional ant colony algo-
rithm, firstly, the heuristic function is improved by the dis-
tance and position information of the node and the endpoint
searched by the artificial potential field method. Later, in the
later stage of the path search, to avoid the potential field ant
colony algorithm from falling into the local optimum, it is
necessary to reduce the influence of the heuristic function on
the path search. Therefore, the decreasing parameter of the
heuristic function is introduced.

The improved heuristic function is shown in (7).

ηij(t) = ηd · ηF =
dSj(

dij + djG
) · aFt ·ζ ·cosθ (7)

where ηd is distance heuristic function, ηF is potential field
heuristic function.

ηd =
dSj(

dij + djG
) (8)

where dSj is the distance between the starting point S and the
next node j, and djG is the distance between the next node j
and the target point G. According to this formula, the farther
from the starting point S and the closer to the target point G,
the larger dSj and the smaller djG, the greater the possibility
of selecting node j. The improved distance heuristic function
moves the ant away from the initial recognition point and
approaches the target when selecting the next node to prevent
the algorithm from falling into a deadlock.

ηF = aFt ·ζ ·cosθ (9)

where Ft is the resultant force of the potential field. θ is
the angle between the connection direction of the current
node and the next node and the direction of the potential
field force. The use of the base a coefficient expression is
mainly to consider the unity of the order of magnitude of
the two multiplication expressions. The existence of artificial
potential field makes the ant colony algorithm converge at a
faster speed, but at the same time it is more likely to fall into a
local optimum in the latter part of the iteration. Therefore, the
attenuation coefficient ζ is introduced. With the continuous
iteration of the algorithm, the force of the situation gradually
decreases.

ζ = 1−
Nk
Nmax

(10)

where Nk is the current iteration number, Nmax is the maxi-
mum iteration number.

The heuristic function of this paper is obtained bymultiply-
ing the above formulas. The heuristic function can introduce
the influence of distance and potential force into the path
planning operation to improve the convergence speed of the
algorithm and obtain a better path.

37020 VOLUME 10, 2022



J. Fu et al.: Three-Dimensional Underwater Path Planning of Submarine Considering Real Marine Environment

C. IMPROVED PHEROMONE DIFFUSION MODEL
The basic ant colony system partial pheromone update rule is

τ ′ij = (1− ρ) τ
′
ij + ρ1τ

′
ij (11)

The information speed update rule is uniform and does not
consider the influence of pheromone diffusion on the distri-
bution of pheromone, which deviates from the real ant colony
system. To more truly restore the high-efficiency characteris-
tics of the ant colony system and improve the convergence
speed of the existing ant colony system algorithm, this article
proposes a three-dimensional spherical pheromone diffusion
model to improve the efficiency of the ant colony’s use of
pheromone.

We assume that the pheromone concentration obeys the
Gaussian distribution, and the pheromone at the current point
only diffuses to the adjacent advancing direction grid. The
simplified pheromone diffusion model is a circumscribed
sphere, as shown in Figure 4.

FIGURE 4. Schematic diagram of pheromone diffusion model.

where lob represents the diffusion radius of the pheromone.
We assume that the step length of each movement of the ant
is 1 in the y and z directions, the lob is

√
3 . In (7), calculate

the potential field included angle θ for the adjacent grid of the
current grid, and the adjacent grid with the smallest θ value
is the pheromone diffusion direction. From this, determine
the direction of the next grid j, and calculate the pheromone
concentration diffused to point j as shown in (12).

τ
′′

ij = δ · q (i) ·
lob − d
lob

(0 < δ ≤ 1) (12)

where δ is the diffusion coefficient of the pheromone, and d
is the Euclidean distance between the current node i and the
next candidate node j.

Based on the above improvements, calculate the state tran-
sition rule of the ant from point i to the next grid point:

Pkij (t) =
ταij (t) · η

β
ij (t)∑

s∈allowedk τ
α
ij (t) · η

β
ij (t)

(13)

where α and β are the two adjustable parameters which can
affect the performance of the algorithm. τij = τ

′

ij + τ
′′

ij , τ
′

ij
is the global update rule of pheromone, and its formula is as
follows.

τ ′ij(t, t + 1) = (1− ρ) τ ′ij(t)+1τ
′
ij(t, t + 1) (14)

where

1τ
′

ij (t, t + 1) =


1
Lgb

,
(
Ti,Tj

)
∈ globalbest tour

0, else
(15)

The flowchart of the algorithm is shown in Figure 5.

FIGURE 5. Algorithm flowchart.

IV. MARINE-RELATED COST FUNCTION
In order to introduce the physical phenomena in the marine
into the route planning of the submarine, this article extracts
the expression of its physical characteristics and uses the cost
function to quantify it. By introducing it into the heuristic
function of the algorithm, marine physical phenomena can
affect the result of path planning.

A. CONCEALMENT COST FUNCTION
The concealment cost function FC proposed in this article for
submarine underwater path planning mainly considers two
parameters: acoustic velocity and acoustic velocity gradient.
In addition, to eliminate the influence of the dimension on the
cost function, the cost function is processed with the idea of
standardization.

1) ACOUSTIC VELOCITY C
The concealment cost function of submarine path planning is
proportional to the acoustic velocity. The formula is

fs(Ti) =
C(Ti)− Cmin
Cmax − Cmin

(16)

where C refers to the average value of the acoustic velocity
of 8 data points in the unit-body, Cmax refers to the largest
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value of all the acoustic velocity data points obtained by this
method, and Cmin is the smallest value.

2) ACOUSTIC VELOCITY GRADIENT 1C
The concealment cost function is inversely proportional to the
absolute value of the acoustic velocity gradient. Moreover,
the acoustic velocity gradient can represent the size of the
sonic cline to a certain extent. In order to avoid the detection
of surface anti-submarine equipment, the submarine should
navigate below the sonic cline as much as possible. The
expression is as follows.

fsg(Ti) =


(
1−

1C(i, j, k − 1)− 0
1Cmax − 0

)
, if 1C ≥ 0,(

1−
0−1C(i, j, k − 1)

0−1Cmin

)
, if 1C ≤ 0

(17)

where1C(i, j, k−1) represents the acoustic velocity gradient
value at the point directly above Ti, expressed as the differ-
ence between the average acoustic velocity of the upper and
lower surfaces in the vertical direction in the unit body, the
positive direction is downward. The expression is as follows.

1C(i, j, k − 1) =
C1 + C2 + C3 + C4

4

−
C5 + C6 + C7 + C8

4
(18)

In summary, given the weight of each parameter, the con-
cealment cost function can be formed:

Fc = αc·f s + βc·f sg (19)

where αc + βc = 1.

B. SECURITY COST FUNCTION
The safety cost function Fs of path planning mainly considers
three parameters: pycnocline, density front, and mesoscale
eddy.

1) PYCNOCLINE
Submarines should adopt different route options when facing
different types of pycnocline. This article considers this point
and proposes the cost function shown as follows.

fd (Ti) =


1zρ(Ti)−1zρmin

1zρmax −1zρmin
, if 1zρ < 0(

1−
1zρ(Ti)−1zρmin

1zρmax −1zρmin

)
, if 1zρ > 0

(20)

where 1ρ(Ti) is the density gradient of point Ti, and its
expression is

1zρ =
ρ1 + ρ2 + ρ3 + ρ4

4
−
ρ5 + ρ6 + ρ7 + ρ8

4
(21)

2) DENSITY FRONT
The density front poses a threat to the safe navigation of
submarines. Considering its physical characteristics, this arti-
cle uses the horizontal gradient of density to represent it.
In addition, since the plane has two directions of latitude
and longitude, there is a difference in horizontal density
in the two directions. In order to reflect its characteristics
more accurately, this article decides to use the larger of the
two-direction density difference to characterize the horizontal
density difference of the unit-body. The expression is as
follows.

fdf (Ti) = max
(
1xρ(Ti)−1xρmin

1xρmax −1xρmin
,
1yρ(Ti)−1yρmin

1yρmax −1yρmin

)
(22)

where 1xρ(Ti) and 1yρ(Ti) respectively represent the hori-
zontal density gradients in the two directions at point Ti. The
expression is as follows.

1xρ(Ti) =
ρ3 + ρ4

2
−
ρ1 + ρ2

2

1yρ(Ti) =
ρ1 + ρ4

2
−
ρ2 + ρ3

2
(23)

3) MESOSCALE EDDY
In order to represent mesoscale eddy in a complex marine
environment, this article decides to use the curl of the vector
field in the unit-body to characterize it. Considering that the
vorticities of the mesoscale eddy are all vertically upward,
this article uses the calculation of the curl of the vector field
composed of four points on the same plane of the unit-body
to express the cost function. The expression is as follows.

fv(Ti) =
|∇ × u(Ti)| − |∇ × u|min
|∇ × u|max − |∇ × u|min

(24)

where u is the velocity vector field composed of four points
on the top plane of the unit-body. Since the mesoscale eddy
is only on the horizontal plane, its curl only contains the
quantity in the Ek direction. The value of its modulus can
represent the degree of vortex in the flow field.

In summary, the safety cost function formula of underwater
path planning is as follows.

Fs = αs · fd + βs · fdf + γs · fv (25)

where αs, βs and γs are weighting factors.

C. ECONOMIC COST FUNCTION
The economic cost function mainly considers the impact
of marine currents. Let θ be the angle between the marine
current and the horizontal, ϕ is the angle between the sub-
marine’s heading and the horizontal when passing through
the unit body, V is the marine current velocity, and V is the
submarine’s velocity. Then when there is a marine current
area in the unit-body, and the direction of the marine current
is opposite to the submarine’s heading, the function is as
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follows.

Fe(Ti) =
Li

V ′−V (Ti)·cos(θ+ϕ−180)
Li
V ′

=
V ′

V ′ − V (Ti) · cos(θ + ϕ − 180)
(26)

When the direction of the marine current is the same as the
heading of the submarine:

Fe(Ti) =
V ′

V ′ + V (Ti) · cos(θ + ϕ − 180)
(27)

In this way, the cost function expression of submarine
underwater path planning can be obtained as:

Focean = αFc + βFs + γFe (28)

In this way, we can get the final expression of the algorithm
heuristic function as shown below.

ηij (t) = ηd · ηF · ηocean

=
dSj(

dij + djG
) · aFt ·ζ ·cosθ · (Focean)−1 (29)

V. SIMULATION EXPERIMENT AND ANALYSIS
To verify the effectiveness of the proposed algorithm, rel-
evant experiments are designed in this section. First, the
effectiveness of APF-ACO is verified by comparing the pro-
posed APF-ACO with the optimized ACO (AP-ACS) pro-
posed in Ref. 27 under different obstacle environments. Then
experiments are designed to analyze the influence of the
marine-related cost function on the path-planning results.

A. ALGORITHM COMPARISON ANALYSIS
We compare the path planning results of the APF-ACO and
optimized ACO in a variety of obstacle environments. The
parameter settings of the algorithm are shown in Table 1.

TABLE 1. Parameter settings.

We design experiments to compare the path planning
results of the four different implementations described above.
Each test was independently executed ten times for each
implementation of each test environment. Table 3 shows
the arithmetic mean, worst, best and standard deviation of
10 independent tests on each environment (Env1, Env2, . . . ,
Env5) to account for the randomness of the implementations.

As can be seen from Table 2 and Figure 6, the Opti-
mized ACO and APF-ACO can achieve better results than
the Original ACS and the Original APF in each test environ-
ment, proving the superiority of the two improved algorithms.
In addition to this, compared with the Optimized ACO, APF-
ACO performs better on the best planning result and the

FIGURE 6. Comparison of path lengths obtained by APF-ACO and
optimized ACO under different test environments.

average planning result. Except for the same optimal path
planning results in the third test environment, the optimal
path planning results of APF-ACO are better than those of
the Optimized ACO in the other four test environments.
In addition, the control of the worst experimental results and
standard deviation of APF-ACO is also significantly better
than that of the Optimized ACO, which makes the algorithm
have better stability and meets the needs of submarine under-
water path planning in practical situation

In this article, five test environments with different obsta-
cle distributions are constructed to study and analyze the
performance of each algorithm in different experimental
environments.

The establishment of different experimental environments
mainly considers the distribution concentration of obstacles
near the starting point and the end point and the overall
distribution shape of obstacles. For example, the test envi-
ronment 1 improves the distribution density of obstacles near
the end point. test environment 5 improves the distribution
density of obstacles near the starting point. The distribution
of obstacles in test environment 2 is more concentrated, while
the distribution of obstacles in test environments 3 and 4 is
more discrete.

It was concluded in the previous part of this article that
APF-ACO and Optimized ACO have comparative advan-
tages, so the path planning results of these two algorithms
are compared separately. The visualization results are shown
in Figure 7 and Figure 8. It can be seen that both of the
algorithms can obtain a feasible, stable and satisfactory path.
However, it can also be seen from the figure that the opti-
mized ACO algorithm presents more tortuous paths and
more turning points when the obstacles are denser. In con-
trast, the APF-ACO algorithm benefits from the introduc-
tion of potential field force parameters, and the constructed
path can avoid obstacles earlier to obtain a more stable
path.

Figure 9 shows the comparison of the convergence speed of
the APF-ACO algorithm and the optimized ACO algorithm.
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TABLE 2. Comparison of the results obtained by the for algorithms.

As can be seen from the figure, the APF-ACO algorithm
proposed in this article can converge faster, and the con-
vergence speed is improved by 65.7% compared with the
optimized ACO algorithm. Not only that, the APF-ACO algo-
rithm benefits from the introduction of potential field force
parameters, which can obtain better path selection in the early
stage of iteration, and can obtain better convergence results
after convergence.

B. ENVIRONMENT AND ALGORITHM PREPARATION
In order to verify the application of the algorithm in a real
marine environment, this article constructs a virtual under-
water environment for simulation experiments, as shown in
Figure 10, where the ellipsoid represents obstacles, and the
seabed terrain is simulated by mathematical functions. The
expression is as follows.

Z = h · exp

(
−
(Y − y0)2 · a2 + (X − x0)2 · b2

2σ 2

)
(30)

where X , Y and Z represent the 3D space domain, the param-
eters x0 and y0 represent the peak position of the seabed, the
parameters σ , a and b control the shape of the mountain peak
in the seabed, and h represents the height of the mountain
peak in the seabed.

The simulation environment is composed of 40 × 20 ×
20 unit-bodies, and the passability of each unit-body is cal-
culated by using a grid, and the passable grid is calculated in
advance through a cost function to calculate its passing cost.
In the path planning, in order to reflect the reliability of the

cost function to the greatest extent, the step length of the ant is
always set to 1unit of length and the side length of the steering
window is set to 1.

In order to confirm the influence of every marine phe-
nomenon on path planning, only one marine-related cost
function is considered in each experiment, and the weights
of cost functions related to other marine elements are reset
to 0.

In addition, the marine environment model involved in this
article is set as follows.

1) ACOUSTIC ENVIRONMENT
This article uses real marine acoustic velocity data to con-
struct marine acoustic velocity environment. The data used is
the acoustic velocity analysis and forecast data provided by
the National Marine Data Center (NMDC) of China, and the
time is November 11, 2021. In this experiment, the αc and βc
are set to 1, and other weight coefficients are set to 0. The
cross-section shows the vertical gradient of acoustic velocity,
red represents the positive acoustic velocity gradient, and blue
represents the negative acoustic velocity gradient. The verti-
cal sections show the magnitude of the acoustic velocity, red
represents the higher acoustic velocity, and blue represents
the lower acoustic velocity.

2) PYCNOCLINE
In order to verify the influence of the density cline on the path
planning algorithm, this article uses the density field analysis
and forecast data provided by NMDC on November 8, 2021,
to construct a simulation environment. The blue area in the
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FIGURE 7. Comparison of path planning results between APF-ACO
algorithm and optimized ACO algorithm at a certain view under
5 different test environment (a, b, c, d, e).

cross-section represents the negative pycnocline, and the red
area represents the positive pycnocline. In this experiment,
the αs is set to 1, and other weight coefficients are set
to 0.

3) DENSITY FRONT
This article uses the density field analysis and forecast data
provided by NMDC on November 8, 2021, to construct a
simulation environment containing density fronts. The red
area in the two vertical sections represents the density front
that is positive in the X direction, and the blue area represents
the density front that is negative in the X direction. In this
experiment, the βs is set to 1, and other weight coefficients
are set to 0.

4) MESOSCALE EDDY
This article uses the National Oceanic and Atmospheric
Administration (NOAA) HYCOM (Hybrid Coordinate
Ocean Model) analysis ocean current data to build a simula-
tion environment containing mesoscale eddy. The red arrow
is the flow vector, and it can be seen that there is an obvious
vortex. In this experiment, the γs is set to 1, and other weight
coefficients are set to 0.

FIGURE 8. Comparison of path planning results between APF-ACO
algorithm and optimized ACO algorithm at top view under 5 different test
environment (a, b, c, d, e).

FIGURE 9. The convergence speed comparison between APF-ACO and
optimized ACO.

FIGURE 10. The 3D marine environment model.

C. RESULTS AND ANALYSIS OF MARINE-RELATED COST
FUNCTION EXPERIMENT
The visualization results of the marine environmental exper-
iments are shown in Figure 11. It can be seen from figure
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FIGURE 11. Visualization results of the effects of acoustic (a, b, c), pycnocline (d, e, f), density front (g, h, i), and mesoscale eddy (j, k, l) on path
planning in three marine environments.
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TABLE 3. The cost results of the marine cost function control experiment.

FIGURE 12. The cost results of the marine cost function control
experiment.

10 that the marine environment cost functions introduced in
this article have a significant impact on the results of path
planning.

Compared with the control test group that does not con-
sider the influence of the marine environment, the path
obtained by the algorithm proposed in this article can
maintain the navigation under the position with a large acous-
tic velocity gradient in the acoustic environment and choose
the position with the lower acoustic velocity to pass as far as
possible. In the density field environment, the path can avoid
the negative pycnocline and density front location seas and
navigate above the positive pycnocline location. In the flow
field environment, compared with the control group that only
considers the flow field direction and size, the path obtained
by the algorithm proposed in this article can avoid areas with
large vorticity values, further ensuring the navigation safety
of the carrier.

Table 3 and Figure 12 shows the comparison of the nav-
igation cost of the two paths in all experiments. It can be
seen from the results that the algorithm proposed in this
article can effectively reduce the submarine navigation cost
underwater. In the acoustic environment, the pycnocline envi-
ronment, the density front environment, and the mesoscale
eddy environment, the average navigation cost is reduced by
43.5%, 74.41%, 30.11%, and 25.95%, respectively, which has
a significant effect.

In short, the algorithm proposed in this article is sensitive
to the parameters of the marine environment, which can
truly reflect the influence of the marine environment on the
path planning results, and improve the survivability of the
submarine underwater.

VI. CONCLUSION
In this article, we propose an improved artificial potential
field ant colony Optimization (APF-ACO) considering the
elements of the marine environment, which is used to deal
with the route planning problem of submarines in the complex
marine environment. We design an algorithm comparison
experiment between APF-ACO and Optimized ACO, and
test the statistical significance of the experimental results.
The experimental results show that compared with Optimized
ACO, APF-ACO improves the convergence speed by about
65.7%, and has more stable and excellent path planning
results.

In addition, this article puts forward the concept of unit-
body to express the characteristics of local physical field, and
use cost function to quantify marine physical phenomena,
which successfully introduce the influence of the marine
environment into the calculation of path planning. We used
real marine data to construct experimental models, and the
performance of the algorithm in the acoustic environment,
the pycnocline environment, the density front environment
and the mesoscale eddy environment is verified respectively.
The experimental results show that compared with the control
group, APF-ACO can make the path sensitive to the marine
environment, reducing the path cost by 43.5%, 74.41%,
30.11% and 25.95% in the above four marine environments,
respectively.

The submarine’s underwater path planning also needs
to consider its own special mission background and com-
plex dynamic characteristics. Under different mission back-
grounds, the concealment and economic requirements of sub-
marines are different, and the indicators of the cost function
should be adjusted flexibly; the complex dynamic character-
istics of submarines will affect factors such as the range of
pitch angle variation and the minimum turning radius. The
above contents have a non-negligible impact on the underwa-
ter path planning of submarines, and these are also the focus
of our follow-up research.
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