IEEE Access

Multidisciplinary  Rapid Review : Open Access Journal

Received January 20, 2022, accepted March 22, 2022, date of publication March 31, 2022, date of current version April 8, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3163729

Concurrent and Robust End-to-End Data Integrity
Verification Scheme for Flash-Based
Storage Devices

HWAJUNG KIM', INHWI HWANG', JEONGEUN LEE',
HEON Y. YEOM !, (Member, IEEE), AND HANUL SUNG 2

! Department of Computer Science and Engineering, Seoul National University, Seoul 08826, South Korea
2Department of Game Design and Development, Sangmyung University, Seoul 03016, South Korea

Corresponding author: Hanul Sung (hanul.sung @smu.ac.kr)

This work was supported in part by the Ministry of Science, ICT (MIST), South Korea, under the National Program for Excellence in
Software (SW), supervised by the Institute of Information and Communications Technology Planning and Evaluation (II'TP), in 2022,
under Grant 2019-0-01880; and in part by the National Research Foundation of Korea (NRF) Grant through the Korea Government (MSIT)
under Grant NRF-2021R1A2C2003618 and NRF-2022R1G1A1011433.

ABSTRACT The amount of data generated by scientific applications on high-performance computing
systems is growing at an ever-increasing pace. Most of the generated data are transferred to storage in remote
systems for various purposes such as backup, replication, or analysis. To detect data corruption caused by
network or storage failures during data transfer, the receiver system verifies data integrity by comparing the
checksum of the data. However, the internal operation of the storage device is not sufficiently investigated in
the existing end-to-end integrity verification techniques. In this paper, we propose a concurrent and reliable
end-to-end data integrity verification scheme considering the internal operation of the storage devices for
data transfer between high-performance computing systems with flash-based storage devices. To perform
data integrity verification including data corruptions that occurred inside the storage devices, we control
the order of I/O operations considering the internal operations of the storage devices. Also, to prove the
effectiveness of the proposed scheme, we devise a prototype that injects faults on the specific layer of the
storage stack and examines detection of faults. We parallelize checksum computation and overlap it with
I/O operations to mitigate the overhead caused by I/O reordering. The experimental results show that the
proposed scheme reduces the entire data transfer time by up to 62% compared with the existing schemes
while ensuring robust data integrity. With the prototype implementation, our scheme detects failures on

NAND flash memory inside storage devices that cannot be detected with the existing schemes.

INDEX TERMS Data transfer, I/O scheduling, parallel processing, data integrity.

I. INTRODUCTION

Data integrity verification is one of the most important fea-
tures of storage systems. For example, file systems (e.g.,
BtrFS) detect data corruption by performing a cyclic redun-
dancy check (CRC) in the units of pages of 4 KiB [6].
As the volume of data grows rapidly, it has become common
to move data to remote storage systems. Transferring data
to remote storage systems increases the possibility of data
corruption caused by network failure, packet loss, or stor-
age corruption of the receiver system [3]. Therefore, many
systems have adopted end-to-end integrity verification by

The associate editor coordinating the review of this manuscript and
approving it for publication was Ligang He.

comparing the checksum of each file using secure hash func-
tions such as MD5 and SHA1 [2]-[5]. When the receiver
system detects data corruption, it reconstructs the corrupted
data by requesting a data retransmission from the sender
system. It is important to detect data corruption at the right
time because detecting and reconstructing data corruption
after a certain period affects the results of the data processing
already done.

In recent years, flash-based storage devices, solid-state
drives (SSDs), are increasingly replacing hard-disk drives
in modern storage systems [1], [12], [13]. Such flash-based
storage devices have a cache layer, called a buffer cache, that
buffers data [10], [11], [14], [15], [28]. When writing data to
SSD, the data are cached in the buffer cache of SSD for a

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

36350

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 10, 2022


https://orcid.org/0000-0001-6865-1756
https://orcid.org/0000-0002-1103-8755

H. Kim et al.: Concurrent and Robust End-to-End Data Integrity Verification Scheme

IEEE Access

while. Data cached in the buffer cache are flushed to NAND
flash memory when the buffer cache is full, or according to
SSD controller’s buffer management policy. As the capacity
of SSD increases, the size of the buffer cache also increases
proportionally. In other words, the data written to the stor-
age device stay in the buffer cache for a longer time. As a
result, reading data immediately after writing to flash-based
SSD returns data from the buffer cache, which has not yet
been flushed to NAND flash memory. During the process of
flushing data from the buffer cache to NAND flash memory,
data can become corrupted due to the internal failures of
SSD [31]-[33]. These data corruptions that occurred during
the data processing inside the SSD are difficult to detect.

The general implementation of data transfer, including ver-
ification, is as follows. As a first step, the sender system reads
a file from its storage device and sends it over the network to
the receiver system. The sender system also computes and
sends the checksum value of the file to the receiver system.
When the file is transferred to and stored in the storage device
of the receiver, the receiver performs an integrity verification
by computing the checksum of the file to detect errors during
transmission. Finally, the receiver compares the checksum
value with the value sent from the sender. If the two values
are different, the receiver considers that the file has been
corrupted during the transmission and requests the sender to
retransmit the file. In the existing implementation, data cor-
ruption that may occur in the procedure of flushing the data to
the storage device is not sufficiently considered because the
integrity verification is performed with data buffered in host
memory.

To catch undetectable errors that occur while flushing data
from the buffer cache to NAND flash memory, the integrity
verification must be performed after a sufficient number of
new data have been written to ensure that the data are flushed
to NAND flash memory. If the receiver system clears the
cached content of the file in page cache of host memory
to provide robust data integrity verification, the entire data
transfer time is significantly increased due to additional I/O
operations and cache eviction. Therefore, the receiver system
should schedule I/O operations considering the internal struc-
ture of SSD without extra overhead to perform a full coverage
integrity verification in the data transfer process.

To address these issues, many researchers have investi-
gated to optimize the entire time of data transfer, includ-
ing integrity verification. For example, Liu et al. [3] and
Globus [5] overlapped a data transfer and checksum
computation with file and block granularity, respectively.
Arslan et al. [2] introduced FIVER, which cooperates during
data transfer and integrity verification processes to reduce the
entire data transfer time. Different from these approaches [2],
[3], [5] that focus on reducing data transfer time, RIVA [4]
introduces a robust integrity verification algorithm that con-
siders undetected write errors that occur on disk drives. How-
ever, RIVA focuses on detecting corruption that occurs during
data s stored on the storage device from the host memory, and
does not consider corruption that may occur inside the storage

VOLUME 10, 2022

device. Considering the internal structure of flash-based stor-
age devices, room still exists for reconsideration of robust and
reliable integrity verification.

In this paper, we propose a reliable data transfer through
robust data integrity verification scheme considering the
internal operations of flash-based storage devices. We still
provide efficient data transfer through concurrent verifica-
tion procedure. To support robust and reliable data integrity
verification, we schedule procedures for data verification in
consideration of the internal structure of flash-based storage
devices. After receiving a file and writing it to the storage
device, we delete the memory mapping information of the file
to invalidate the data stored in host memory of the receiver
system. By doing this, we perform integrity verification with
the data written on NAND flash memory which is the actual
final destination. We delay the integrity verification process
until the file to be verified is flushed to NAND flash memory.
Integrity verification is performed by reading the file from the
storage device directly after sufficient new data are stored on
the storage device. To hide the overhead due to cache invali-
dation, we parallelize the checksum computation procedure.
We investigate the end-to-end data transfer procedure includ-
ing integrity verification and identify the main bottleneck is
checksum computation. Based on the results of bottleneck
analysis, we adopt page-level integrity verification using the
CRC32C algorithm, a variant of CRC, that enables parallel
execution of integrity verification for a single file. We reduce
the entire time for data transfer including verification by
efficiently parallelizing the verification procedure. We use the
CRC32C algorithm because the algorithm is used in many file
systems (e.g., BurFS, ZFS, and XFS) to ensure the integrity of
the data and metadata of a file in units of pages of 4 KiB [6],
[9], [18]. With page-level integrity verification, we involve
multiple threads to perform concurrent checksum computa-
tion for a single file. To examine that our proposed scheme
detects errors in each layer of the storage stack, we implement
a prototype that intentionally injects faults on the specific
layer of the storage stack. After transferred file is stored,
we manipulate the data of each storage layer to inject faults.
Then, data integrity verification is performed to ensure that
the proposed scheme can detect faults correctly.

For evaluations, we measured the entire data transfer time
with realistic data transfer scenarios. With the prototype
implementation, the proposed scheme detects data corrup-
tions on each layer of the storage stack. Specifically, using
fault injection, we demonstrate that the proposed scheme
can detect errors occurring in NAND flash memory inside
storage device that cannot be detected by the exiting scheme.
Moreover, the experimental results demonstrate that the veri-
fication time for a single file and the entire data transfer time
is reduced by up to 84% and 62% compared with the existing
scheme, respectively.

In summary, our main contributions are as follows:

o We study and analyze the main bottleneck of the

end-to-end data transfer procedure including integrity
verification.

36351



IEEE Access

H. Kim et al.: Concurrent and Robust End-to-End Data Integrity Verification Scheme

—

1 Processor | |
‘ Buffer Cache (RAM Buffer) %—' !

1 i

Host Interface Logic

Flash Controller

NAND NAND NAND NAND
Flash Flash Flash Flash
Memory Memory Memory Memory

FIGURE 1. Internal structure of a flash-based SSD.

o« We schedule I/O operations considering the inter-
nal structure of flash-based storage device to ensure
integrity verification including data corruption that
occurs inside the storage device.

o We parallelize checksum computation procedure and
overlap it with I/O operations to provide efficient data
transfer while ensuring the robustness of data integrity
verification.

o We implement a prototype that intentionally injects
faults on the specific layer of the storage stack and
examines detection of data corruptions.

o The experimental results show that our scheme provides
robust and reliable data transfer while efficiently per-
forming computations and I/O operations.

The rest of this paper is organized as follows: Section II
describes the background and motivation. Section III dis-
cusses the related works. Section IV presents the design
and implementation of the proposed scheme. Section V
presents the implementation details of the prototype that
injects and detects faults on different layers of the storage
stack. Section VI shows the experimental results. Finally,
Section VII concludes this paper.

Il. BACKGROUND AND MOTIVATION

In this section, we describe the internal structure and I/O
operations of flash-based storage devices. Then, we provide
background on data integrity verification procedures and
present our preliminary experimental results that motivated
our study.

A. THE INTERNAL STRUCTURE AND OPERATIONS OF
FLASH-BASED SSD
The internal structure of flash-based SSD is illustrated in
Fig. 1. As illustrated in the figure, flash-based SSD has
a certain amount of DRAM buffer, called buffer cache,
to cache data. Flash-based SSDs cache data in the buffer
cache to increase throughput and improve NAND flash
endurance [10], [11], [28].

When the host system requests writing data to the stor-
age device, the SSD controller first caches the data in the

36352

Receiver

loop J {
[hasData] |
read data ED
from storage

D send data
\
|
I
\
\
\
\
\
\
|
\
\
\

System

I

f

\

\

\

\

\
write data
to storage

\

|

]

\

compute
checksum
compare

‘ checksum

send checksum

| values
opt__J |
[checksum \
mismatch] request retransmission |
retransmit data write data
to storage

\

| compute
‘ checksum
\
\ compare
\ checksum
\
|
\
\

values

\
|
\
\
FIGURE 2. Data transfer procedure including verification.

buffer cache inside SSD. The primary role of the buffer
cache is caching data to be written to or read from NAND
flash memory. The reason for caching data before writing
to NAND flash memory is the out-of-place update nature of
flash memory. When the data stored in NAND flash memory
are modified, the new data are written to another location.
The old data are invalidated, and the block containing the
data is a candidate for garbage collection that causes perfor-
mance degradation of SSD [19]-[22], [24], [25]. In addition,
repetitive data writes shorten the lifetime of SSD because the
endurance of flash memory is limited [23]-[27]. Therefore,
the data are cached in the buffer cache to prevent the modified
data from being repeatedly written to NAND flash memory
in a short time.

Data can become corrupted while moving from the buffer
cache to NAND flash memory [31]-[33]. The internal failures
of SSDs are relatively common, and the failure rates of var-
ious SSDs range from 4.2% to 34.1% [31]. The causes of
data corruption inside SSD are metadata corruption (i.e., FTL
metadata mapping disruption), shorn writes (i.e., incomplete
writes), dropped writes (i.e., data cached in the buffer cache
are not written to NAND flash memory), misdirected writes
(i.e., writes in the wrong location), and so on [32], [33].

VOLUME 10, 2022



H. Kim et al.: Concurrent and Robust End-to-End Data Integrity Verification Scheme

IEEE Access

(S) Sender System (R) Receiver System
® (S) Read a File = (R) Write a File = (R) Read a File = (R) Compute Checksum = Others

12% 13% 54% I

FIGURE 3. Major functions of the entire data transfer procedure including
verification.

Therefore, data transfer including verification should con-
sider the internal structure and operations of SSD.

In SSDs, there exist error correction code (ECC) which can
detect and correct errors in SSDs. However, it is not sufficient
for end-to-end integrity verification. Because ECC can check
only internal errors in SSD, it is not able to detect errors of a
transmitted file on the path to buffer cache in SSD. Therefore,
a new end-to-end integrity verification scheme other than
ECC is necessary.

B. DATA INTEGRITY VERIFICATION PROCEDURE

The existing implementation of data transfer including ver-
ification is shown in Fig. 2. A sender system first reads a
file from the storage device and sends it over the network
to a receiver system. After the file is transferred, the sender
computes the checksum of the file and transfers it to the
receiver. The receiver system writes the file to the storage
device and computes the checksum of the file. Then, the
receiver compares the checksum value with the value of
the sender to detect data corruption in the entire procedure.
If the checksum values match, the data transfer proceeds
to the next files. If the checksum values are different, the
receiver requests retransmission of the corrupted file to the
sender.

To perform integrity verification on the receiver system, the
receiver reads a file from the storage device to compute the
checksum of the file. However, without explicit eviction of
the page cache of host memory, the verification is performed
with the cached data, not the data written to the storage
device. In other words, it is impossible to detect data corrup-
tion caused by errors occurring while writing files from host
memory to the storage device or the aforementioned internal
failures of the storage device.

C. BOTTLENECK ANALYSIS IN DATA TRANSFER
INCLUDING INTEGRITY VERIFICATION

To analyze the main bottlenecks in data transfer includ-
ing integrity verification between remote systems, we per-
formed a simple preliminary experiment. We transferred a
single 1 GiB file for the analysis and stored it to the storage
device of the receiver system. Then, we read the file directly
from the storage device and performed the integrity verifica-
tion. We used a Samsung PM983 3.84 TB NVMe SSD [17] as
the storage device. The detailed specifications of the sender
and receiver system are described in Section VI. The analysis
result is illustrated in Fig. 3. As shown in the figure, the
checksum computation time in the receiver system occupies
54% of the entire data transfer time. Moreover, the write and
read operations account for 12% to 17% of the entire data

VOLUME 10, 2022

transfer time. If we consider the internal structure of SSD,
the entire data transfer time with verification becomes longer,
because we should perform data verification after it is guaran-
teed that the data has been written to NAND flash memory of
SSD. Therefore, to perform integrity verification efficiently,
we adopted page-level checksum computation, which verifies
a single file concurrently using multiple threads.

IIl. RELATED WORK

A. DATA INTEGRITY VERIFICATION

Several studies have analyzed how to provide data integrity
verification efficiently. Globus [5] introduced file-level over-
lapping data transfer and checksum computation to optimize
the entire data transfer time. Liu ef al. [3] also overlapped
data transfer and checksum computation but performed an
integrity verification at the block level. They divided a single
file into different sized blocks and performed experiments
to determine the optimal block size for different datasets.
Arslan et al. [2] introduced FIVER, which cooperates with
the data transfer and integrity verification process. They pro-
posed overlapping during the data transfer and verification
using cooperating processes to perform the verification pro-
cess that takes a longer time.

Our scheme is similar to these approaches [2], [3], [5] in
that it overlaps the data transfer and verification operations
to optimize the large-scale data transfer time. However, our
scheme uses multiple threads to optimize the verification
operation itself. In addition, we focused on scheduling data
I/0O operations while considering the internal structure of SSD
to perform an integrity verification of the data written to
NAND flash memory.

To provide the integrity verification with the data stored
in the storage device, Charyyev et al. [4] proposed a robust
integrity verification algorithm (RIVA). RIVA focuses on
detecting possible data corruption in the process of moving
the data from host memory to the storage device. To detect
such silent data corruption, RIVA deletes the file content in
the page cache of host memory by invalidating the page cache
and reading the content directly from the disk to perform the
integrity verification.

Our scheme is similar to that for RIVA in that it provides
the integrity verification with the data stored on the storage
device. However, our scheme schedules I/O operations and
checksum computations by considering the internal structure
of SSD so that we perform the integrity verification of the
data written to NAND flash memory, which is the actual final
destination.

B. DATA CORRUPTION INSIDE FLASH-BASED SSD

Several studies have investigated possible data cor-
ruption using the characteristics of flash-based SSDs.
Ahmadian et al. [30] analyzed and investigated the various
failures of SSD. They implemented a platform that detects
physical failures inside SSD. Cai et al. [29] explored the fun-
damentals and recent research on flash-based SSD reliability.

36353



IEEE Access

H. Kim et al.: Concurrent and Robust End-to-End Data Integrity Verification Scheme

‘ Concurrency Controller ‘

launch processes schedule 1/Os Memory
| ;r}}}, :};ﬁ:ﬁ:ﬁ:ﬁ:ﬁ:ﬁ:ﬁ:ﬁ:ﬁ‘ :} *3 ! 5};}}}};}}}}}}_}} ﬁi Mana ger
‘ Data Verifier JJJ ‘ I/0O Manager ‘J}‘
integrity verification read file |—T memory allocation
l memory comparison I cache invalidation lpage cache invalidation
‘ Host Memory
l write file

‘ Storage Device ‘

FIGURE 4. Overall architecture.

They investigated several studies on error mitigation and
data recovery and suggested a system-memory codesign to
enhance the reliability of flash-based SSD. Grupp et al. [33]
investigated the characteristics of several commodity SSDs
in terms of performance, power, and reliability. Based on
the characteristics, they performed application case studies,
improving the performance while extending the lifetime of
the storage devices.

Jaffer et al. [12] investigated the resilience of popular file
systems to various errors in flash-based SSDs. They also
introduced a fault injection framework and performed an
extensive study over a thousand error cases. Meza et al. [31]
performed an extensive analysis of flash-based SSD reliabil-
ity trends in the field. They analyzed various internal and
external characteristics of SSDs and investigated how these
characteristics affect failures. Narayanan et al. [32] presented
an extensive SSD failure characterization in production data
centers using field data. They also investigated several fac-
tors that affect SSD failures and used machine learning
approaches to evaluate the influence of relevant factors on
failures.

Our scheme is in line with these approaches
[12], [29]-[33] in terms of investigating data corruption
inside flash-based SSDs. However, these approaches con-
centrate on data corruption in a single system, whereas the
proposed scheme focuses on detecting data corruption while
transferring data over the network between remote systems.

IV. DESIGN AND IMPLEMENTATION
A. OVERALL ARCHITECTURE
Previous studies have mainly focused on reducing the data
transfer time, and robustly providing integrity verification of
transferred data has been overlooked. To address this prob-
lem, research such as RIVA [4] that invalidates data cached
during the transmission process and performs integrity ver-
ification with data stored in the storage device has been
proposed. Considering the internal structure of SSD, there
is still a possibility that corruption may occur in the process
of data is stored on the final destination, which is hard to be
detected using existing schemes.

Performing integrity verification by reading the data
after stored on NAND flash memory increases the entire

36354

data transfer time and degrades the performance. To effi-
ciently perform the entire data transfer while ensuring robust
integrity verification, we parallelize checksum computation
procedure by involving multiple threads and overlap it with
I/O operations. We control the order of I/O operations to
detect data corruption that occurred inside the storage device;
thus retransmission can be performed immediately to prevent
corrupted data from being used for subsequent processing.

Fig. 4 illustrates the overall architecture of the proposed
system. As illustrated in the figure, our system consists
of four components, including a memory manager, 1/O
manager, data verifier, and concurrency controller. When a
file is transferred over the network, the memory manager first
allocates memory to store the file content. After the transfer
is complete, the I/O manager writes the file to the storage
device. When the file is completely written to the storage
device, the memory manager deletes the file content in mem-
ory by invalidating the page caches to prevent performing
integrity verification with cached data. The concurrency con-
troller schedules I/O operations so that the file to be verified is
written to NAND flash memory. Then, the concurrency con-
troller requests the I/0 manager to read the file to be verified.
The concurrency controller launches multiple data verifier
threads to perform integrity verification for a single file. The
data verifier computes the checksum of a partial range of the
file and compares it with the values from the sender system.
The concurrency controller schedules multiple data verifier
threads and I/O operations in parallel to minimize the entire
data transfer time.

B. MEMORY MANAGER

The memory manager is responsible for memory allocation,
deallocation, and cache invalidation after the transferred data
are completely written to the storage device. The memory
manager allocates and deallocates memory using the mmap,
munmap, and mincore system calls to efficiently manage
page caches of the receiver system. During file transfer, the
data are buffered in the memory region created by the mmap
system call. When receiving and writing the file to the stor-
age device are finished, the memory region used to buffer
the file should be cleared to ensure the data verification is
performed with the file stored in the storage medium, which
is the actual final destination. To remove data of the file
buffered in memory, we use the munmap and mincore
system calls. Because the munmap system call deletes the
mappings for the specified address range, it causes a page
fault on further references to the unmapped memory region.
Although the munmap system call deletes the mappings at
once, the memory manager uses the mincore system call to
ensure that all pages in the specified range have been deleted.
By invalidating cached data, our scheme ensures robust data
integrity for transferred data so that prevents corrupted data
is used in any subsequent processing.

C. CONCURRENCY CONTROLLER
The concurrency controller is responsible for scheduling I/O
operations and integrity verification procedures so that the

VOLUME 10, 2022



H. Kim et al.: Concurrent and Robust End-to-End Data Integrity Verification Scheme

IEEE Access

| [(W) Write | [ (R) Read | [ (V) Verify | (F) File

[W)F1] [(RF1] ] (V) F1 [ f[mF2] [ (R F2 ]|

(V) F2 [ (M F3 ][ (R F3]] (V) F3

Timeline

(a) Scheduling example of the existing scheme.

® File | [WF2 ] [WF3 ] [(WFa][WFs | [WFe][WFT][WF8]
[WF2] [WF3 ] [MF][mFs][WFe][WMFT]|[WF8]
[WF2 ] [WF3 ] [(WmFA][wFs][WFe] [ MFT]|[WF8]
[wF2] [wFs] [mF][WF5][wF6][WF7][vF8]

[(WmF ] [mF2][WF][WF4] [WF5]| [ (RF][WF6][RF2][WF|[RF]|[WEF][RF]|[RF]|[(RF|[(RF][RF8]

Timeline

(b) Scheduling example of the proposed scheme.

FIGURE 5. Scheduling example of the existing and proposed schemes. Each box represents the execution of corresponding process, such as write a file to
the storage device, read a file from the storage device, and verify integrity of the file. Each number indicates a different file.

entire data transfer is performed efficiently. The integrity
verification procedure performs two types of I/O operations:
writing the transferred file to the storage device and reading
the file for integrity verification. The concurrency controller
reduces the data verification time by overlapping the I/O
operations and the verification process performed by the data
verifier.

1) SUPPORTING DATA VERIFICATION SCHEDULING

The important role of the concurrency controller is to sched-
ule I/O operations regarding the size of the buffer cache of
SSD, which in general is 0.1% of the storage capacity [15].
We ensure the robustness of data integrity by verifying the
file written in NAND flash memory. To do this, we read the
file to be verified from the storage device after sufficient data
are written. To write sufficient data to the storage device,
the concurrency controller maintains the accumulated size
of files that stay in the buffer cache before being flushed to
NAND flash memory of SSD. In addition, using the verifi-
cation waiting list, the concurrency controller memorizes the
files for which the integrity verification should be performed
next.

For example, suppose that the buffer cache size of SSD
is 4 GiB and that the dataset to be transferred consists of eight
1-GiB files. When a single file of 1 GiB is transferred, the
concurrency controller schedules the I/0O manager to write
the file and adds the file information to the waiting list. After
the written data exceed the buffer cache size, the concurrency
controller schedules the I/O manager to read the file to be ver-
ified directly from the storage device. In this example, after
writing five files, the concurrency controller reads the file and
performs the verification. Then, the concurrency controller
launches the I/O manager and data verifier simultaneously
to write the transferred file to the storage device and perform
the checksum computation for the file in the waiting list in
parallel.

Fig. 5 illustrates the scheduling example of the concur-
rency controller in the case of transferring the dataset consist-
ing of eight files of 1 GiB. In the existing scheme (Fig. 5(a)),
each file is read from the storage device immediately after

VOLUME 10, 2022

write performed, then perform integrity verification using a
single thread. As can be seen, the procedures for write, read,
and verify data are performed sequentially for each file in the
existing scheme. In contrast, as shown in Fig. 5(b), we control
the order of each procedure corresponding to individual files
to guarantee that the integrity verification is performed with
data written on NAND flash memory.

2) SUPPORTING PIPELINED DATA VERIFICATION

Another key role of the concurrency controller is overlap-
ping I/O operations with checksum computation procedures.
Based on the bottleneck analysis described in Section II-C,
we identify that checksum computation occupies 54% of the
entire procedure. Thus, we overlap the procedure of integrity
verification for a given file with I/O operations, such as write
the file to the storage device or read the file from the storage
device.

In the illustrated example of Fig. 5(b), integrity verification
for file 1 ((V) F1) is executed concurrently with the write
operation for file 6 (W) F6). Read operations can also be exe-
cuted concurrently with integrity verification. In the example,
read operations for files 5 — 8 ((R) F5 — F8) are overlapped
with the integrity verification for files 4 — 7 (V) F4 — F7),
respectively.

Through such overlapping, our scheme enables efficient
data transfer including verification despite the overhead of
read files after write them to NAND flash memory.

3) SUPPORTING CONCURRENT DATA VERIFICATION

The last key role of the concurrency controller is executing
multiple verification procedures for a single file in parallel
by dividing the range. As described in Section II, the check-
sum computation time is a major bottleneck in the integrity
verification procedure. Therefore, we perform verification
for a single file using multiple threads by dividing the file
depending on the number of threads, in addition to pipelined
data verification. To simplify the task of dividing the file by
a varied number of threads, we adopt a page-level check-
sum. The concurrency controller divides the memory area
that contains file content according to the number of threads

36355



IEEE Access

H. Kim et al.: Concurrent and Robust End-to-End Data Integrity Verification Scheme

executing the verification and launches multiple data verifier
threads. When launching a thread, the concurrency controller
passes the memory range information (e.g., start address,
length) of the data to be verified to each thread and checksum
value of the corresponding range transferred from the sender.

In the example of Fig. 5, the number of threads that are
concurrently executed for the integrity verification is four.
If we increase the number of threads, the verification time and
entire data transfer time decreases. However, if we decrease
the number of threads, it takes a longer time to verify and
transfer the data.

The number of threads to perform verification is config-
urable depending on the computation resource (e.g., CPU)
and the size of the file to be verified. We analyze the cor-
relation between the number of threads and the computation
resources through evaluation results in Section VI.

D. I/0 MANAGER

The I/0 manager is responsible for I/O operations scheduled
by the concurrency controller. The I/O manager writes file
contents from host memory to the storage device when the file
transfer is completed. Before closing the file, the /O manager
synchronizes the file state with the storage device using the
fsync system call. After writing the file to the storage
device, the I/O manager notifies the memory manager, so that
the memory manager deletes the content of the file from
host memory. In addition, the I/O manager reads the file to
perform the integrity verification from the storage device and
transfers the file location in memory to the data verifier. The
I/0 manager uses synchronous calls to ensure that all I/O
operations are performed immediately.

E. DATA VERIFIER

The data verifier performs the checksum computation for a
single file scheduled by the concurrency controller. When
performing the verification, multiple verification threads can
be executed in parallel by the concurrency controller. The
concurrency controller divides and assigns the range of the
file to be verified in each thread. Then, the concurrency con-
troller passes the range to each thread with a list of checksum
values transferred from the sender. Each verification thread
computes the checksum values for pages that correspond to
the specific range of the file. When the computation is fin-
ished, the data verifier validates the results by comparing the
memory region of the corresponding checksum values using
the memcmp system call. The reason for validating results
by comparing memory is to provide a constant validation
time. Instead of comparing memory regions, if we validate
results by comparing values, the verification time increases
in proportion to the number of pages verified in each thread,
which can lead to a new bottleneck.

V. ERROR DETECTION BY INJECTING FAULTS

To investigate our scheme detects errors on each layer of the
storage stack, we implement a prototype that intentionally
corrupts data written on the specific storage layer, as shown

36356

Host Memory —

1 |

Buffer Cache (RAM Buffer)

Storage Device

Fault
Injector

@ corrupts data on host memory by modifying page cache
@ corrupts data on buffer cache of SSD by flipping bit
® corrupts data on NAND flash memory by flushing flipped data

FIGURE 6. Prototype implementation to inject faults.

TABLE 1. Specification of the machines.

Processor || 4-way Intel E7-8870@2.1GHz
Memory 256 GiB

Storage Samsung PM983 NVMe SSD, 3.84TB
(0N Ubuntu 16.04

Kernel kernel v4.4.0

in Fig. 6. Basically, we inject faults by modifying the stored
file in each layer as follows. Transferred file is first written to
host memory, then stored on the storage device. In the storage
device, a file is first stored on the buffer cache and then stored
on NAND flash memory, the actual final destination. Thus,
the prototype fault injector corrupts the data in the order in
which the file is written to the storage stack.

In the case of injecting faults into files on host memory,
we change the file contents by manipulating cached page
data((D). However, in the case of injecting faults into files
on the buffer cache or NAND flash memory, the process of
injecting faults is more complicated. Because observing the
internal failure of SSD in the real system is costly, we injected
faults into the files in NAND flash memory in SSD, the
final destination of the file transmission. We directly injected
faults into a file in the buffer cache of SSD(®) and wrote
dummy data sequentially to flush the corrupted data from the
buffer cache to NAND flash memory(()). We write dummy
data that are larger than the capacity of SSD buffer cache,
so that guarantee corrupted data are written to NAND flash
memory. More specifically, at first, we copied the data from
a transferred 1-GiB file and modified it by flipping the least
significant bit in every 4-KiB page. After the original file is
flushed to NAND flash memory, the fault injector overwrites
it with the corrupted data and writes enough dummy data to
flush the corrupted data to NAND flash memory.

VI. PERFORMANCE EVALUATION

A. EXPERIMENTAL SETUP

We evaluated the performance of our integrity verification
scheme using two machines connected by a 10 Gbps net-
work. Each machine has 72 physical cores that support

VOLUME 10, 2022



H. Kim et al.: Concurrent and Robust End-to-End Data Integrity Verification Scheme

IEEE Access

—+—Normalized Verification Time

mmVerification Time
8000
7000
£ 6000
g 5000
E 4000
g 3000
[3)
€ 2000
w
1000

N w B (¢} [} ~
Normalized Improvements

-

lIIlIIIIo

16 32 64 128 256 512 1024
Number of Threads

1 2 4

(a) Data verification time

=N W H o
[=N==eNeNeNe]

Normalized Number of
Context Switch

1 2 4 8 16 32 64 128 256 512 1024
Number of Threads

(b) Normalized number of context switch

FIGURE 7. Data verification time.

hyperthreading and is equipped with a 3.84 TB Samsung
PM983 NVMe SSD. The detailed specifications of the
machine are described in Table 1.

Through the experiments, we focused on demonstrating
that our scheme provides robust and reliable data transfer
without sacrificing performance with the help of additional
20% computing resources. To demonstrate the efficiency of
the proposed scheme, we first conduct the experiment to
investigate the effect of the concurrent integrity verification
using multiple threads. We evaluated the proposed scheme
with a realistic workload that transfers 20 files of 1 GiB over
the network. We evaluated the entire data transfer time of the
proposed scheme by changing the number of data verifiers
and compare it with the sequential approach. In order to inves-
tigate how much more computing resources required for the
proposed scheme, we analyzed the average and total CPU uti-
lization during data transfer including integrity verification.
Then, we evaluated the entire data transfer time by changing
file sizes and compare it with the existing schemes, including
the sequential, file-level pipelining [3], and RIVA [4] which
is the most recent state-of-the-art scheme. Finally, to val-
idate the proposed scheme guarantees robust and reliable
data integrity verification, we analyzed the changes of each
layer of the storage stack as data move from host memory
to NAND flash memory. With the prototype implementation,
we investigated fault detection by the existing and proposed
schemes by injecting faults into different storage layers of the
receiver system.

In the following experiments, each evaluation point
is obtained by averaging the results of 5 independent
executions.

VOLUME 10, 2022

Il Sequential
m Proposed_SP

Proposed_SPC

250

210

200

150

100

Execution Time (s)

50

2 4 8 16 32 64 128 256 512 1024
Number of Concurrent Verifiers
(a) The entire data transfer time

o a NN
o o o O

Normalized Number of
Context Switch

1

2 4 8 16 32 64 128 256 512 1024
Number of Concurrent Verifiers
(b) Normalized number of context switch

FIGURE 8. The entire data transfer time.

B. DATA VERIFICATION TIME

We used a single file of size 1 GiB to demonstrate the
effectiveness of concurrent computation. In this experiment,
we focused on the effectiveness of concurrent verification
rather than other techniques, so we used the file already stored
in the storage device. Fig. 7(a) presents the data verification
time when performing multiple integrity verification proce-
dures concurrently using multiple threads.

When we measured the verification time by doubling the
number of threads, the verification time reduced until the
number of threads reached 32. The reason is that the data size
assigned to each thread is halved when we double the number
of threads performing the computation. However, when the
number of threads is more than 32, the verification time is
almost the same, but when the number of threads is more than
256, the verification time increases. This is because, when
numerous threads are executed concurrently, the management
overhead, such as thread creation and context switching,
greatly increases.

To identify the management overhead, we measure the
number of context switches during data verification. Fig. 7(b)
shows the normalized number of context switches as the
number of threads increases. As can be seen, until the number
of threads reaches 32, the number of context switch increase
is insignificant. However, the number of context switches
increases exponentially when more than 128 threads are used
to perform the verification. As a result, the verification time
increases despite doubling the number of threads.

C. ENTIRE DATA TRANSFER TIME

Fig. 8(a) presents the entire data transfer time of the exist-
ing sequential scheme and the proposed scheme. The entire

36357



IEEE Access

H. Kim et al.: Concurrent and Robust End-to-End Data Integrity Verification Scheme

ESequential | H Em Proposed_SPC ESequential
3 "Proposed_SPH H W H = - ®Proposed_SP
o
c 7.0 _
2 6.0 Ec
© o O
N 50 s
= o 8
5 4.0 8 =
2 30 s 2
O 20 £E2
o 20
21.0 z
g 0.0
3: ’ 2 4 8 16 32 64 128256 512 1024 2 4 8 16 32 64128256 5121024
Number of Concurrent Verifiers Number of Concurrent Verifiers
a) Average utihization otal utilization
) Average CPU utilizati (b) Total CPU utilizati
FIGURE 9. CPU utilization comparison.
® Sequential mRIVA = Proposed_SP = Proposed_SPC (32) mSequential =RIVA Proposed_SP = Proposed_SPC (32)
25 1000
900
520 - 800
2 % 700
£ 15 E 600
.E S 500
3 10 £ 400
2 g 300
s w290 I
CRe— |
0 , WY m N
100 MiB 500 MiB 1GiB 5GiB 10 GiB 20 GiB 30 GiB 50 GiB
File Size File Size
(a) The entire data transfer time with file size under 5 GiB (b) The entire data transfer time with file size over 10 GiB
FIGURE 10. Data transfer time comparison changing file size.
Host Memory Host Memory Host Memory Host Memory
[ F5 | ~|LF ] (L JlFm ][R | ~~ |[F ][ F]
- . =2
SSD — [ssD = [ssD = = |ssD
Buffer Cache g Buffer Cache a Buffer Cache = E Buffer Cache
HF1\F2\F3\F4H_HFZ\F?.\M\FSH<HF3\F4\F5\F1H~._MF4\F5\F1\F6H
~ = A
NAND Flash Memory % NAND Flash Memory -4 NAND Flash Memory E B NAND Flash Memory
| = [ | [Cr e ]
Timeline

FIGURE 11. Host memory and SSD status changes over time.

data transfer time includes the data transfer time between
the sender and receiver systems, the data writing time to
the storage device of the receiver system, and the data
integrity verification time. In the figure, we denote the exist-
ing sequential scheme as Sequential and the proposed scheme
as Proposed_SP and Proposed_SPC. In the proposed scheme
notations, S, P, and C stand for scheduling, pipelining, and
concurrent verification, respectively. The evaluation results
indicate that the entire transfer time is reduced by 58%
with the Proposed_SP scheme compared with the Sequential
scheme. Similar to the file-level pipelining introduced in
the previous study [3], the overlapping computation and I/O

36358

operation reduced the entire transfer time by 58%. The differ-
ence between file-level pipelining and the proposed scheme
is that the proposed scheme delays performing the integrity
verification until the file is written to NAND flash memory.
As a result, the proposed scheme provides robust integrity
verification compared with the file-level pipelining scheme
while efficiently transferring files.

When we applied the concurrent verification using
multiple threads (Proposed_SPC), the entire data transfer
time was reduced by 62% and 10% compared with the exist-
ing sequential scheme (Sequential) and proposed scheme
without concurrent verification (Proposed_SP), respectively.

VOLUME 10, 2022



H. Kim et al.: Concurrent and Robust End-to-End Data Integrity Verification Scheme

IEEE Access

The entire data transfer time gradually decreased until
the number of concurrent verification threads reaches 32.
As depicted in the figure, when we performed the integrity
verification in parallel with 32 threads, the entire data transfer
time was the most shortened, which is a 62% reduction
compared with the existing sequential scheme.

However, using more than 32 threads for integrity ver-
ification increased the entire data transfer time. When too
many threads were executed in parallel, thread management
tasks (e.g., thread creation, clean up, context switch, etc.)
took a longer time, as mentioned in Section VI-B. Fig. 8(b)
reveals that the number of context switches increased rapidly
when we used more than 64 concurrent verifiers. Moreover,
the concurrency controller maintained the total size of the
verified data as a global variable. Because each verification
thread accesses the global variable, performing verification
with many threads causes memory access contention. As a
result, the entire data transfer time increased.

D. RESOURCE UTILIZATION

As we created multiple threads to concurrently verify the
integrity of the file, we measured the CPU utilization of each
scheme over time, as presented in Fig. 9. Figs. 9(a) and 9(b)
list the average and total CPU utilization for each scheme,
respectively. The average CPU utilization of the proposed
scheme is 6%, which is 3 times higher than that of the existing
sequential scheme (2%). However, Fig. 8(a) indicates that the
entire data transfer time of the existing sequential scheme is
up to 2.7 times longer than that of the proposed scheme. As a
result, the total CPU utilization of the proposed scheme is
from 10% to 60% higher than that of the existing sequential
scheme (Fig. 9(b)).

The difference in the gap depends on the number of con-
current verifiers. For example, using 32 concurrent verifiers,
the proposed scheme completes the data transfer and verifi-
cation 2.7 times faster using 20% more of the total resources,
compared with the existing sequential scheme.

In summary, with the proposed scheme, we can reduce the
entire data transfer and verification time by up to 62% by
intensively investing computing resources in a short time.

E. ENTIRE DATA TRANSFER TIME WITH

DIFFERENT FILE SIZES

Fig. 10 shows the entire data transfer time of each scheme
with various file size. In the experiments, we compare the
entire data transfer time including verification with the exist-
ing schemes that performs data verification in the order in
which files were transferred (Sequential) and the state-of-the-
art robust data transfer scheme (RIVA) [4]. We used a single
file of different sizes from 100 MiB to 50 GiB to demonstrate
the effectiveness of concurrent verification with various file
sizes. As shown in the aforementioned experiments, using
32 concurrent verifiers is the most efficient in terms of per-
formance and resource utilization, we configured the number
of data verifiers to 32 in subsequent experiments.

VOLUME 10, 2022

With the Proposed_SP scheme, there is an overhead due to
scheduling and time to write and read data on the final des-
tination, NAND flash memory, but it is negligible as shown
in the experimental results. The entire data transfer time of
the Proposed_SP scheme takes 1% to 5% longer than those of
Sequential and RIVA, regardless of the file size. With the Pro-
posed_SPC scheme, the entire data transfer time difference is
insignificant for the file size of 100 MiB. Different from the
Proposed_SP scheme, the Proposed_SPC scheme is effective
for data transfer including integrity verification as the file size
increases. As the file size increases, the entire transfer time
reduction reaches about 30% when the file size is 1 GiB or
more. The reason is that the Proposed_SPC scheme reduces
the time of data verification by involving multiple threads to
perform concurrent verification.

F. HOST MEMORY AND SSD STATUS ANALYSIS

To validate that the proposed scheme reads a file from NAND
flash memory of SSD, we analyzed the changes in the data
residing on each storage medium (e.g., host memory, buffer
cache of SSD, and NAND flash memory) over time. Fig. 11
illustrates changes of data residing on each storage medium
during data transfers. The figure presents the data change of
each storage medium from the time when the data written to
the buffer cache starts flushing to NAND flash memory.

When a newly transferred file (e.g., F5 in the figure) starts
to write to SSD, the SSD controller starts to flush the first
1-GiB file to NAND flash memory (e.g., F1 in the figure).
Simultaneously, a new file, F6, is transferred over the network
and written to host memory. The second state of the figure
displays the state of each storage medium after flushing file
F1 and writing file F5. In the second state, file F1 exists only
in NAND flash memory and is removed from the buffer cache
of SSD. Therefore, the concurrency controller schedules the
I/0 manager to read file F1 to start the verification. After
reading file F1 from SSD, the data on each storage medium
are shown in the third state of the figure. The SSD controller
flushes file F2 to make space in the buffer cache so that file F1
can be cached. In the third state, the concurrency controller
performs the integrity verification of file F1 in parallel using
multiple threads. The state after the verification completes
is presented in the last state of the figure. The concurrency
controller schedules the I/0 manager so that file F6 is written
to the storage device while the verification is performed. The
file transfer continues, and the new file F8 is transferred to
host memory.

The proposed scheme provides the improved robustness
of the integrity verification by scheduling the read and write
operations alternately. Moreover, the proposed scheme per-
forms the integrity verification after the file is written to
NAND flash memory.

G. DETECTING DATA CORRUPTION

To evaluate the robustness of the proposed scheme, we con-
ducted experiments to measure how many errors can be
detected in each scheme. In the experiments, we focused on

36359



IEEE Access

H. Kim et al.: Concurrent and Robust End-to-End Data Integrity Verification Scheme

@ fault injected to the file on host-memory

Host Memory

@ fault injected to the file
on buffer cache of the storage
Buffer Cache (RAM Buffer)

¥ ¥ A 2 A 2

NAND NAND NAND NAND
Flash Flash Flash Flash
Memory Memory Memory Memory

® fault injected to the file on NAND flash memory
FIGURE 12. Robustness test by injecting faults in different data storage

layers on the receiver system.

TABLE 2. The results of fault injection experiments in different storage
stack of the receiver system.

Host memory | Buffer cache | Flash memory

File-LevelPpl v - -
RIVA v v -
Proposed_SP v v v
Proposed_SPC v v v

whether each scheme can detect errors occurring in each layer
of the storage stack where data resides until the data transmit-
ted to the receiver system is stored in NAND flash memory
in SSD, the actual final destination of the transferred data.
With the prototype implementation, we adopted a mechanism
of injecting faults into files in different storage layers, host
memory, the buffer cache of SSD, and NAND flash memory,
as shown in Fig. 12.

Table 2 presents the result of detecting errors of each
scheme when injecting faults into different storage layers.
In the experiments, the proposed scheme (Proposed_SP,
Proposed_SPC) detects all errors in the transferred file
in NAND flash memory, while the other schemes do not
detect the errors that occurred in some layers. For example,
RIVA [4] could not detect errors that occurred in NAND
flash memory of SSD. On the other hand, file-level pipelining
(File-LevelPpl) [3] only detects errors that occurred in host
memory. This is because data verification is performed with
the data stored in the buffer cache of SSD or host mem-
ory with each scheme, not the data stored on NAND flash
memory in SSD. In contrast, the proposed scheme detects
the internal failures of the storage device because the data
verifier reads files to be verified directly from NAND flash
memory after guaranteeing the data are written to NAND
flash memory.

VII. CONCLUSION

In this paper, we propose a concurrent and reliable end-to-
end data integrity verification scheme for flash-based storage
devices. We schedule I/O operations considering the internal
structure and operation of the storage device to perform
an integrity verification with the data written on the final
storage media. By doing this, the proposed scheme detects

36360

data corruption that occurred across storage layers including
inside the storage device. To provide data transfer without
sacrificing performance, we concurrently perform I/O opera-
tions and integrity verification with the fine-grained data unit.
With the prototype implementation and storage medium state
analysis, we guarantee that the proposed scheme performs
robust integrity verification with the data written on the actual
final destination. The experimental results with realistic sce-
narios demonstrate that the proposed scheme provides robust
and reliable data transfer while reducing the entire data trans-
fer time by up to 62% compared with the existing scheme.

REFERENCES

[1] Y. Hu, S. Song, S. Xiao, Q. Xu, N. Xiao, and Z. Qin, “A dominating error
region strategy for improving the bit-flipping LDPC decoder of SSDs,”
IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 62, no. 6, pp. 578-582,
Jun. 2015.

E. Arslan and A. Alhussen, ““A low-overhead integrity verification for big

data transfers,” in Proc. IEEE Int. Conf. Big Data (Big Data), Dec. 2018,

pp. 4227-4236.

S.Liu, E.-S. Jung, R. Kettimuthu, X.-H. Sun, and M. Papka, ‘““Towards opti-

mizing large-scale data transfers with end-to-end integrity verification,” in

Proc. IEEE Int. Conf. Big Data (Big Data), Dec. 2016, pp. 3002-3007.

B. Charyyev, A. Alhussen, H. Sapkota, E. Pouyoul, M. H. Gunes, and

E. Arslan, “Towards securing data transfers against silent data corrup-

tion,” in Proc. 19th IEEE/ACM Int. Symp. Cluster, Cloud Grid Comput.

(CCGRID), May 2019, pp. 262-271.

(2022). Globus. Accessed: Jan. 20, 2022. [Online]. Available:

https://www.globus.org/

0O.Rodeh, J. Bacik, and C. Mason, “BTRFS: The Linux B-tree filesystem,”

ACM Trans. Storage, vol. 9, no. 3, pp. 1-32, 2013.

[7]1 J. E. Boritz, “IS practitioners’ views on core concepts of informa-

tion integrity,” Int. J. Accounting Inf. Syst., vol. 6, no. 4, pp. 260-279,

Dec. 2005.

A. Mathur, M. Cao, S. Bhattacharya, A. Dilger, A. Tomas, and L. Vivier,

“The new ext4 filesystem: Current status and future plans,” in Proc. Linux

Symp., vol. 2, 2007, pp. 21-33.

Y. Zhang, A. Rajimwale, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau,

“End-to-end data integrity for file systems: A ZFS case study,” in Proc.

FAST, 2010, pp. 29-42.

[10] J. Yoo, Y. Won, J. Hwang, S. Kang, J. Choi, S. Yoon, and J. Cha, “VSSIM:
Virtual machine based SSD simulator,” in Proc. IEEE 29th Symp. Mass
Storage Syst. Technol. (MSST), May 2013, pp. 1-14.

[11] D. He, F. Wang, H. Jiang, D. Feng, J. N. Liu, W. Tong, and Z. Zhang,
“Improving hybrid FTL by fully exploiting internal SSD parallelism with
virtual blocks,” ACM Trans. Archit. Code Optim., vol. 11, no. 4, pp. 1-19,
Jan. 2015.

[12] S.Jaffer, S. Maneas, A. Hwang, and B. Schroeder, ““Evaluating file system
reliability on solid state drives,” in Proc. USENIX Annu. Tech. Conf., 2019,
pp. 783-798.

[13] Y. Lee, L. Barolli, and S.-H. Lim, “Mapping granularity and perfor-
mance tradeoffs for solid state drive,” J. Supercomput., vol. 65, no. 2,
pp- 507-523, Aug. 2013.

[14] E Chen, R. Lee, and X. Zhang, “Essential roles of exploiting internal
parallelism of flash memory based solid state drives in high-speed data
processing,” in Proc. IEEE 17th Int. Symp. High Perform. Comput. Archit.,
Feb. 2011, pp. 266-277.

[15] W.-H. Kang, S.-W. Lee, B. Moon, Y.-S. Kee, and M. Oh, “Durable write
cache in flash memory SSD for relational and NoSQL databases,” in Proc.
ACM SIGMOD Int. Conf. Manage. Data, Jun. 2014, pp. 529-540.

[16] (2022). NVMe-Flush—Flush Command. Accessed: Jan. 20, 2022.
[Online]. Available: https://www.mankier.com/1/nvme-flush

[17] (2022). Samsung PM983 Product Brief. Accessed: Jan. 20, 2022.
[Online].  Available: https://samsungsemiconductor-us.com/labs/pdfs/
Samsung_PMO983_Product_Brief.pdf

[18] (2022). XFS. Accessed: Jan. 20, 2022. [Online]. Available: https://wiki.
archlinux.org/index.php/XFS

[19] W. Xie and Y. Chen, “A cache management scheme for hiding garbage
collection latency in flash-based solid state drives,” in Proc. IEEE Int.
Conf. Cluster Comput., Sep. 2015, pp. 486-487.

2

—

3

—

[4

[l

[5

[l

[6

—

[8

—

9

—

VOLUME 10, 2022



H. Kim et al.: Concurrent and Robust End-to-End Data Integrity Verification Scheme

IEEE Access

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

M. Wajahat, A. Yele, T. Estro, A. Gandhi, and E. Zadok, “Distribution
fitting and performance modeling for storage traces,” in Proc. IEEE 27th
Int. Symp. Modeling, Anal., Simulation Comput. Telecommun. Syst. (MAS-
COTS), Oct. 2019, pp. 138-151.

M.-K. Seo and S.-H. Lim, “Deduplication flash file system with PRAM
for non-linear editing,” IEEE Trans. Consum. Electron., vol. 56, no. 3,
pp. 1502-1510, Aug. 2010.

C. Wang, S. S. Vazhkudai, X. Ma, F. Meng, Y. Kim, and C. Engelmann,
“NVMalloc: Exposing an aggregate SSD store as a memory partition in
extreme-scale machines,” in Proc. IEEE 26th Int. Parallel Distrib. Process.
Symp., May 2012, pp. 957-968.

Y.-H. Chang, J.-W. Hsieh, and T.-W. Kuo, “Endurance enhancement of
flash-memory storage, systems: An efficient static wear leveling design,”
in Proc. 44th ACM/IEEE Design Autom. Conf., Jun. 2007, pp. 212-217.
S. Mittal and J. S. Vetter, ““A survey of software techniques for using non-
volatile memories for storage and main memory systems,” IEEE Trans.
Farallel Distrib. Syst., vol. 27, no. 5, pp. 1537-1550, Jan. 2016.

D. Park and D. H. C. Du, “Hot data identification for flash-based storage
systems using multiple Bloom filters,” in Proc. IEEE 27th Symp. Mass
Storage Syst. Technol. (MSST), May 2011, pp. 1-11.

M. Murugan and D. H. C. Du, “Rejuvenator: A static wear leveling algo-
rithm for NAND flash memory with minimized overhead,” in Proc. IEEE
27th Symp. Mass Storage Syst. Technol. (MSST), May 2011, pp. 1-12.

G. Wu and X. He, “Delta-FTL: Improving SSD lifetime via exploiting
content locality,” in Proc. 7th ACM Eur. Conf. Comput. Syst., 2012,
pp. 253-266.

Y. Cai, S. Ghose, E. FE. Haratsch, Y. Luo, and O. Mutlu, “Errors in flash-
memory-based solid-state drives: Analysis, mitigation, and recovery,”
2017, arXiv:1711.11427.

Y. Cai, S. Ghose, E. F. Haratsch, Y. Luo, and O. Mutlu, “Error characteriza-
tion, mitigation, and recovery in flash-memory-based solid-state drives,”
Proc. IEEE, vol. 105, no. 9, pp. 1666-1704, Sep. 2017.

S. Ahmadian, F. Taheri, and H. Asadi, “Evaluating reliability of SSD-based
I/O caches in enterprise storage systems,” [EEE Trans. Emerg. Topics
Comput., vol. 9, no. 4, pp. 1914-1929, Oct. 2021.

J. Meza, Q. Wu, S. Kumar, and O. Mutlu, “A large-scale study of flash
memory failures in the field,” ACM SIGMETRICS Perform. Eval. Rev.,
vol. 43, no. 1, pp. 177-190, Jun. 2015.

I. Narayanan, D. Wang, M. Jeon, B. Sharma, L. Caulfield,
A. Sivasubramaniam, B. Cutler, J. Liu, B. M. Khessib, and K. Vaid,
“SSD failures in datacenters: What? When? and Why?”* in Proc. 9th ACM
Int. Syst. Storage Conf., 2016, pp. 1-11.

J. K. Wolf, P. H. Siegel, E. Yaakobi, S. Swanson, J. D. Coburn, A. M.
Caulfield, and L. M. Grupp, “Characterizing flash memory: Anomalies,
observations, and applications,” in Proc. 42nd Annu. IEEE/ACM Int. Symp.
Microarchitecture, Dec. 2009, pp. 24-33.

H. Kim, I. Hwang, and H. Y. Yeom, “Efficient and robust data integrity
verification scheme for high-performance storage devices,” in Proc. 36th
Annu. ACM Symp. Appl. Comput., Mar. 2021, pp. 1199-1202.

HWAJUNG KIM received the B.S. degree in
computer science and engineering from the
Pohang University of Science and Technology,
South Korea, in 2006, and the M.S. degree from
the Department of Computer Science and Engi-
neering, Seoul National University, South Korea,
in 2018, where she is currently pursuing the
Ph.D. degree in computer science and engineering.
From 2006 to 2018, she was a Research Engineer
at Samsung Electronics. Her research interests

include operating systems, distributed systems, and database systems.

VOLUME 10, 2022

INHWI HWANG received the B.B.A. and B.S.
degrees in computer science and engineering from
Seoul National University, in 2020, where he is
currently pursuing the M.S. degree in computer
science and engineering. His research interests
include operating systems and distributed systems.

JEONGEUN LEE received the B.S. degree in
software convergence technology from Ajou Uni-
versity, in 2020. He is currently pursuing the
M.S. degree in computer engineering with Seoul
National University. His research interests include
distributed computing and storage systems.

HEON Y. YEOM (Member, IEEE) received the
B.S. degree in computer science from Seoul
National University, in 1984, and the M.S.
and Ph.D. degrees in computer science from
Texas A&M University, in 1986 and 1992, respec-
tively. From 1986 to 1990, he worked with
the Texas Transportation Institute as a Systems
Analyst, and from 1992 to 1993, he was with
Samsung Data Systems as a Research Scientist.
He joined the Department of Computer Science,
Seoul National University, in 1993, where he currently is a Professor with
the School of Computer Science and Engineering. He teaches and researches
on distributed systems and transaction processing.

HANUL SUNG received the B.S. degree in com-
puter science from Sangmyung University (SMU),
Seoul, South Korea, in 2012, and the M.S. and
Ph.D. degrees in computer science and engi-
. neering from Seoul National University (SNU),
- Seoul, in 2020. She is currently an Assistant
Professor with the Department of Game Design
and Development. Her main research interests
include distributed systems, operating systems,
high performance storage systems, and cloud
computing.

3)
i)

36361



