
Received March 19, 2022, accepted March 28, 2022, date of publication March 31, 2022, date of current version April 7, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3163754

Detecting and Diagnosing Process Nonlinearity-
Induced Unit-Wide Oscillations Based on an
Optimized Multivariate Variational Mode
Decomposition Method
ZHULIANG LIN1, MIN SUN2, AND XIALAI WU 3
1Xingzhi College, Zhejiang Normal University, Lanxi 321017, China
2Zhejiang Kende Mechanical and Electrical Company Ltd., Taizhou 318050, China
3School of Engineering, Huzhou University, Huzhou, Zhejiang 313000, China

Corresponding author: Xialai Wu (xlaihzh@126.com)

This work was supported in part by the Grant from the Major Project of Science and Technology Plan of Jinhua, China, under
Grant 2021-1-012; and in part by the Natural Science Foundation of Huzhou, China, under Grant 2021YZ05.

ABSTRACT In process control system, nonlinearity-induced unit-wide oscillations are a common fault,
which degrades the control performance and threaten the stability. It is important to detect and diagnose
the nonlinearity-induced unit-wide oscillations to improve the process control performance. In this paper,
a novel method, termed as SSA-MVMD, is proposed by combining the sparrow search algorithm (SSA)
and multivariate variational mode decomposition (MVMD) to detect and diagnose the nonlinearity-induced
unit-wide oscillations. MVMD is an advanced signal decomposition and time-frequency method. However,
its performance is affected by the mode number K and penalty coefficient α. SSA is adopted to optimize
the parameters of MVMD. Then, a novel SSA-MVMD-based detector is presented to detect and diagnose
the nonlinearity-induced unit-wide oscillations. The proposed method is model-free and data-driven thus
requiring no prior knowledge about the process dynamics. Compared with the latest related works, the
proposed method can better decompose the multivariate nonstationary signals and adaptively analyze the
unit-wide oscillations. In the end, the effectiveness and advantages are demonstrated by simulations as well
as industrial cases.

INDEX TERMS Oscillation detection, multivariate variational mode decomposition, signal decomposition,
control performance assessment.

I. INTRODUCTION
Oscillations in the process control system are a very common
problem [1]. The existence of oscillation in the control loop
increases the deviation from the set value of process vari-
ables, resulting in poor quality products, larger rejection rate,
increased energy consumption and reduced average through-
put. There are several reasons for the oscillation in the control
loop. They may be caused by excessive controller gain or
external disturbance, but a more common cause of oscillation
is valve stiction, which is the most typical nonlinear fault in
process control system [2], [3]. Due to the interconnection
between loops, the oscillation generated by one control loop
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is easy to be transmitted to other loops to form unit-wide
oscillations [4]. Therefore, the motivation of this work is to
detect and diagnose the nonlinearity-induced unit-wide oscil-
lations in the process control system to improve the safety and
economy.

Unit-wide oscillation detection and diagnosis technol-
ogy has been developed for more than twenty years [5].
A direct idea for unit-wide oscillation detection is to detect
each control loop one by one through using the single-loop
oscillation analysis methods, such as integral absolute
error (IAE) [6], zero-crossing [7], auto-covariance function
(ACF) [8], autoregressive moving average model [9], and
so on. However, these methods have the shortcoming of not
considering the connectivity of the control loops. In fact,
control loops are not isolated from each other. Specifically,
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the reason for oscillation of a control loop may be that it is
interfered by disturbance from other loops. Therefore, it is
necessary to use multivariate analysis technology to detect
and diagnose unit-wide oscillations.

Recently, with the development of signal processing tech-
nology, signal decomposition methods are widely used in
oscillation detection and diagnose, because these methods
are able to process nonlinear and nonstationary signals. Sig-
nal processing methods have been used in many engineer-
ing fields, such as motor bearing fault detection [10] and
cognitive computing [11]. The research on process oscilla-
tion detection and diagnosis mainly used signal decompo-
sition methods. Srinivasan et al. [12] proposed a modified
empirical mode decomposition (EMD) method to detect the
process oscillations. Following, the local mean decomposi-
tion (LMD) [13], intrinsic time-scale decomposition (ITD)
[14], [15], and variational mode decomposition (VMD) [16]
are utilized to analyze specific types of oscillations in
succession.

However, the univariate signal decomposition method is
not suitable for processing multivariate signals, because mul-
tivariate signal decomposition has two requirements [17]:
(i) alignment of frequency information across multiple chan-
nels in each mode, termed as mode-alignment; (ii) incorpo-
rating any correlation between multiple data channels. The
most straightforward method for multivariate signal process-
ing is analyzing each channel of a multivariate signal sepa-
rately using univariate signal processing techniques. In this
way, the results would not fulfill the above requirements,
because the mutual relationships among channels are not
considered [18].

Lang et al. [19] pioneered the use of multivariate empir-
ical mode decomposition (MEMD) [20] for detecting
unit-wide oscillations. Then, Aftab et al. [21] further uti-
lized the MEMD and its noise-assisted version, namely
NA-MEMD [22], to detect and diagnose the unit-wide oscil-
lations. Due to the low computational efficiency of MEMD,
Lang et al. [23] proposed a fast MEMD (FMEMD) algorithm
to reduce the computational complexity. Later, the FMEMD
algorithm is adopted to monitoring unit-wide oscillations
in noisy process [24]. Apart from MEMD class methods,
Lang et al. developed the indirect and direct multivariate
intrinsic time-scale decomposition, namely IMITD [25] and
DMITD [26], to analyze the unit-wide oscillations. The above
multivariate signal decomposition-based methods consider
the multivariate relationship of unit-wide oscillations, but
signal decomposition methods are empirical in themselves
and lack of theoretical basis. In addition, the performance of
these multivariate signal decomposition methods depends on
the direction and number of projection vectors, which is an
unsolved problem.

More recently, Rehman and Aftab [17] proposed the
multivariate variational mode decomposition (MVMD) algo-
rithm, which is based on mathematical optimization the-
ory and outperforms the MEMD in noisy environment.
At present, MVMD has been applied in biomedical

signal processing [27], time series prediction [28], and so on.
The MVMD-based unit-wide oscillation detection and diag-
nosis has not been reported. Therefore, this paper aims to
use the MVMD to detect and diagnosis the unit-wide oscilla-
tions in process industries. AlthoughMVMDshows attractive
properties, its performance relies on the selection of mode
number and penalty coefficient. At present, there are few
reports on this issue.

To tackle this issue, this paper utilizes the sparrow search
algorithm (SSA) [29] to search the optimal parameters of
MVMD, thus an SSA-MVMD algorithm is successfully pro-
posed. The SSA-MVMD algorithm can adaptively decom-
pose the complex unit-wide oscillations into a series of modes
and provide the corresponding center frequencies. Based
on the decomposition results, a novel oscillation detector is
developed by combining the normalized correlation coeffi-
cient and sparseness index, which is able to automatically
identify significant oscillating modes. Enlightened by the
fact that the nonlinearity-induced oscillations contain higher
order harmonics [30], thus the presence of harmonics can
be used as an indicator of nonlinearity problems. Following,
a process nonlinearity-induced unit-wide oscillation diag-
nosis method is proposed through calculating the oscilla-
tion frequency relationship among modes. Although SSA
and MVMD have been applied in other fields respectively,
there is no report on the joint use of these two methods
in process oscillation detection and diagnosis. Therefore,
the proposed method is novel, and its application to
detecting and diagnosing nonlinearity-induced unit-wide
oscillations also enriches and improves the control system
monitoring performance. The contributions of this work are
as follows,

(i) An SSA-MVMD algorithm is proposed to improve the
performance of the basic MVMD algorithm. In addition, the
proposedmethod also outperformsMEMD, IMITD,DMITD,
and MNCMD in decomposition performance;

(ii) A novel SSA-MVMD-based oscillation detector is
developed by combining the normalized correlation coeffi-
cient and sparseness index to identify the significant oscillat-
ing modes of process variables;

(iii) A novel nonlinearity-induced unit-wide oscillation
diagnosis strategy is presented through investigating the
oscillating frequency relationship among different modes;

(iv) Compared with the existing works, such as
MEMD-based or MITD-based methods, the proposed
method shows better adaptability and decomposition perfor-
mance, thus providing more accurate and reliable detection
and diagnosis results.

This paper hereafter is organized as follows. The multi-
variate variational mode decomposition and sparrow search
algorithm are briefly introduced in Section II. The pro-
posed method is elaborated in Section III, which includes
SSA-MVMD algorithm and its application in detecting and
diagnosing oscillations. Simulations and industrial cases are
provided in Section IV and V, respectively, followed by
conclusions.
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II. PRELIMINARIES
A. MULTIVARIATE VARIATIONAL MODE DECOMPOSITION
MVMD is a nature multivariate extension of univariate
VMD [17]. It first defines the multivariate mode, which is
expressed in a vector form,

uk,q (t) =


uk,1
uk,2
...

uk,Q

 =

ak,1
ak,2
...

ak,Q

 cos (ϕk (t)) (1)

where Q is the channel number. This definition considers
the relationship between different channels of multivariate
signals [31]. The original multivariate signals is x (t) =[
x1 (t) , x2 (t) , . . . , xQ (t)

]
, and

x (t) =
K∑
k=1

uk (t) (2)

where uk (t) =
[
u1 (t) , u2 (t) , . . . , uQ (t)

]
. Next, the ana-

lytic representation of the vector signal uk,q (t) can be
obtained by employing the Hilbert transform operator,

uAk,q (t) = uk,q (t)+ jH
(
uk,q (t)

)
=


ak,1
ak,2
...

ak,Q

 exp (jϕk (t)) (3)

whereH (·) is Hilbert transform operator.
The goal of MVMD is to extract an ensemble of modes
{uk (t)}, k = 1, 2, . . . ,K in the input signal. These modes
satisfy the conditions that (i) the sum of bandwidths of these
modes is minimum and (ii) they can exactly reconstruct the
original input data. To achieve this goal, the resulting cost
function of MVMD is established as follows,

min
{uk,q(t)},{ωk }


K∑
k=1

Q∑
q=1

∥∥∥∂t [uAk,q (t)] e−jωk t∥∥∥22


s.t.
K∑
k=1

uk,q (t) = xq (t) , q = 1, 2, . . . ,Q (4)

The corresponding augmented Lagrangian function of this
constrained optimization problem is

L = α
K∑
k=1

Q∑
q=1

∥∥∥∂t [uAk,q (t)] e−jωk t∥∥∥22
+

Q∑
q=1

∥∥∥∥∥xq (t)−
K∑
k=1

uk,q (t)

∥∥∥∥∥
2

2

+

Q∑
q=1

〈
λq (t) , xq (t)−

K∑
k=1

uk,q (t)

〉
(5)

where α stands for the penalty coefficient; λq and 〈·, ·〉
represent the Lagrangian multipliers and inner product,
respectively.

The solution of the original optimization problem can be
founded as the saddle point of the Lagrangian function, which
is solved by ADMM (Alternating DirectionMethod ofMulti-
pliers) [17]. ADMM can disassemble the complete optimiza-
tion problem into a sequence of iterative sub-optimization
problems. MVMD can extract the modes and center frequen-
cies by alternately updating themodes and center frequencies.
The detailed algorithm can be found in reference [17]. It can
be observed from (5) that MVMD requires users to specify
the mode number K and penalty coefficient α in advance.

B. SPARROW SEARCH ALGORITHM
SSA is a new swarm intelligence optimization algorithm
proposed in recent years [29]. It has the advantages of
strong optimization, low restriction on objectives and less
adjustment parameters. This algorithm has been success-
fully applied to some practical engineering fields, such as
biomedical engineering [27], clutter filtering [32], and so on.
At present, the application of SSA in unit-wide oscillation
analysis has not been reported. Therefore, this paper proposes
to use SSA to optimize the parameters of MVMD in order to
improve the performance of unit-wide oscillation detection
and diagnosis.

In SSA, the sparrow population is divided into two types,
namely, producer and scrounger. For simplicity, the proce-
dures of SSA are summarized as follows:

(i) Initialize sparrow population location, which is
expressed as

S =


s1,1 s1,2 · · · s1,dim
s2,1 s2,2 · · · s1,dim
...

...
. . .

...

sn,1 sn,2 · · · sn,dim

 (6)

where n is the number of sparrows and dim is the variable
dimension of the problem to be optimized. The fitness value
of the initial population can be obtained through the matrix,

fs =


f
([

s1,1 s1,1 · · · s1,dim
])

f
([

s2,1 s2,2 · · · s2,dim
])

...

f
([

sn,1 sn,2 · · · sn,dim
])

 (7)

where fs and f represent the fitness value and fitness function,
respectively.
(ii) Producers in the population are responsible for finding

the direction and location of food, and leading scroungers
to approach the direction of food. Once a sparrow finds the
trace of a predator, it will sound to warn the population.When
the warning signal value is greater than the safety threshold,
the producer will lead the whole population to move to the
safe area. Therefore, the producer position in the population
is updated as follows

Sm+1i,j =

{
Smi,j · e

−
1
ϑ ·M , if R2 < ST

Smi,j + G · L, if R2 ≥ ST
(8)
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where m stands for the current iteration; M is a constant
with the largest number of iterations; ϑ ∈ (0, 1] indicates
a random number; R2 ∈ [0, 1] and ST ∈ [0.5, 1.0] denotes
warning signal value and safety threshold, respectively;
G is a random number which obeys normal distribution;
L shows a matrix of 1 × d for which each element inside
is 1.

(iii) When the fitness value of the producer’s location is
low, some hungry scroungers may move to other locations
to get food. At the same time, scroungers will constantly
monitor producers and then compete for food resources in
oder to improve their predation rate. Therefore, the location
of scrounger in the population is updated as follows

Sm+1i,j =

G · e−
Sworst−Smi,j

i2 , if i >
n
2

Sm+1p +

∣∣∣Smi,j−Sm+1i,j

∣∣∣·A+ ·L, if i ≤
n
2

(9)

where A stands for a matrix of 1× d for which each element
inside is randomly assigned 1 or −1, and A+ = AT

(
AAT

)−1;
Sp is the optimal position occupied by the producer; Sworst
represents the current global worst location.

(iv) When an individual in the population perceives dan-
ger, the individual at the edge will move towards the safe
area, and the sparrow originally located in the center of the
population will move randomly to form a new population,
namely,

Sm+1i,j =


Smbest + γ

∣∣∣Smi,j − Smbest ∣∣∣ , if fi > fg

Smi,j + ξ

∣∣∣Smi,j − Smworst ∣∣∣
fi − fw + ε

, if fi = fg

(10)

where Smbest is the current global optimal location; γ repre-
sents the step size, which is a normal distribution of random
numbers with a mean value of 0 and a variance of 1. fi, fg
and fw denote the fitness value of the present sparrow, the
current global best and worst fitness values, respectively. ε is
the smallest constant so as to avoid zero-division-error.

III. PROPOSED METHOD
MVMD is a promising multivariate signal processing tool.
However, its performance relies on the selection of mode
number K and penalty coefficient α. SSA is utilized in this
section to search the optimal parameters of MVMD.

A. SSA-MVMD
It is necessary to define an appropriate objective function to
optimize MVMD using SSA. Because MVMD is expected
to decompose process variables into regular oscillations, the
approximate entropy (AE) is adopted to measure the regular-
ity. AE is mainly used to characterize the complexity of time
series. It has the advantages of short points for calculating
data, strong anti-noise and anti-interference ability. It is also
applicable to both deterministic signals and random signals.
More specifically, AE distinguishes various processes by
calculating the edge probability distribution of time series.

It can quantitatively describe the randomness and irregularity
of time series. The greater the complexity of the series, the
larger the approximate entropy. The calculation process is
shown in Algorithm 1.

Algorithm 1 Calculation Process of AE
1: Denote the decomposed mode as uk,q (t) = {u (n)} =
{u (1) , u (2) , . . . u (N )}, where N is the data length;

2: Given a data pattern number τ in advance, the
sequence is formed into an τ -dimensional vector
Uτ (1) ,Uτ (2) , . . . ,Uτ (N − τ + 1), where

Uτ (i) = {u (i) , u (i+ 1) , . . . , u (i+ τ − 1)}
i = 1, 2, . . . ,N − τ + 1

; (11)

3: Define the distance between vectors Uτ (i) and Uτ (j) as

d [Uτ (i) ,Uτ (j)]= max
ς∈[0,τ−1]

|u (i+ς)−u (j+ς)| ; (12)

4: Assume the similarity tolerance is r and count
the number satisfying d [Uτ (i) ,Uτ (j)] < r ,
Uτ (j) (1 ≤ j ≤ N − τ + 1). Denote the ratio of
num {d [Uτ (i) ,Uτ (j)] < r} and total number
N − τ + 1 as

B(τ )i (r)=
1

N−τ + 1
num {d [Uτ (i) ,Uτ (j)]<r} ;

(13)

5: Calculate the logarithmic mean of B(τ )i (r),

B(τ ) (r) =
1

N − τ + 1

N−τ+1∑
i=1

lnB(τ )i (r); (14)

6: Increase the vector dimension tom+1 and repeat step 11
- 14 to obtain B(τ+1) (r);

7: The approximate entropy is calculated as

AE = B(τ+1) (r)− B(τ ) (r) . (15)

It can be seen from (15) that AE is a dimensionless scalar,
and its value is related to τ and r . A large number of statistical
results show that when τ = 2 and r = 0.2, the AE has
reasonable statistics [33].

AE can only measure the complexity of the mode itself, but
cannot reflect the relationship between the mode uk,q (t) and
the original signal xq (t). Therefore, the Pearson correlation
coefficient (PCC) [16] is adopted,

ρk,q =
Cov

(
xq (t) , uk,q (t)

)√
Var

(
xq (t)

)
Var

(
uk,q (t)

) (16)

where Cov (·, ·) and Var (·) represent the covariance and vari-
ance, respectively.

Herein, combining AE and PCC, this paper proposes
a novel fitness function for SSA-MVMD, which is
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expressed as
fitness = max

∑
k

∑
q

ρk,q

AEk,q


s.t. α ∈

[
10−1, 105

]
K = 1, 2, . . . , 15

(17)

where k and q are mode index and channel index, respec-
tively. The fitness function

∑
k

∑
q

ρk,q
AEk,q

comprehensively con-

siders the complexity of the mode itself and the relationship
with the original signal, which is used to quantitatively eval-
uate the decomposition performance. The optimal parameter
pairs K and α of MVMD can be obtained by SSA. The
procedures of SSA-MVMD are summarized in Algorithm 2.

Algorithm 2MVMD-SSA
1: Initialize SSA parameters, such as maximum iterations

and population number;
2: while m < M do
3: MVMD is performed for producers and scroungers in

each location, and the initial fitness value is calculated;
4: Update the producer location (Eq. (8)) according to the

alarming value, and then update the scrounger location
(Eq. (9));

5: According to Eq. (10), update the location of sparrows
that find predators;

6: Update fitness values, best location, and worst loca-
tion;

7: end while
8: Return the optimal parameters K and α.

B. DETECTING AND DIAGNOSING UNIT-WIDE
OSCILLATIONS
After using SSA-MVMD to decompose process variables, the
next step is to detect whether these modes are significantly
oscillatory modes.

Firstly, because the spurious modes are weakly corre-
lated with the original signal, correlation coefficients are
commonly adopted to quantify this relationship. Herein,
we use normalized correlation coefficient to eliminate spu-
rious modes. The normalized correlation coefficient is calcu-
lated as,

$k,q =
ρk,q

max
{
ρ1,q, ρ2,q, . . . , ρK ,q

} (18)

Only modes with $k,q >
_
$ can be retained as significant

components, where _
$ denotes the threshold. _

$ = 0.15 is
recommended by references [34]

Having selected the significant modes, the next task is to
evaluate the oscillation degree of these modes, because there
is no need to analyze the slightly oscillating modes [25].
For process oscillations, they often have obvious peaks in
the spectrum, while the amplitudes at other frequencies are

Algorithm 3 MVMD-SSA-Based Detection and Diagnosis
Method
Input: Process variables x (t) =

[
x1 (t) , x2 (t) , . . . , xQ (t)

]
;

Output: Whether the unit-wide oscillation is induced by non-
linearity problems;

1: Decompose the multivariate signal x (t) using MVMD-
SSA, which is detailed in Algorithm 2. Thus modes
uk,q (t), k = 1, 2, . . . ,K , q = 1, 2, . . . ,Q can be obtained;

2: for q = 1, 2, . . . ,Q do
3: for k = 1, 2, . . . ,K do
4: Detect the oscillating modes according to the condi-

tions$k,q >
_
$ and ζk,q >

_

ζ ;
5: end for
6: Assume there are Dq significant oscillating modes. For

these modes, calculate their mean frequency, maximum
frequency, and minimum frequency by (21), (22), and
(23), respectively;

7: for i = 1, 2, . . . ,Dq do
8: if Minjf ≤ zM i

f ≤ Max jf , i = 1, 2, . . . ,Dq, j 6= i, and
z is an integer then

9: The z-th order harmonic is detected in the q-
th variable/loop, which means the presence of
nonlinearity-induced oscillations;

10: else
11: This variable/loop is not influenced by nonlinearity

problems.
12: end if
13: end for
14: end for

very small. Therefore, the oscillation degree can be quantified
by evaluating the sparsity of the spectrum vector. Sparseness
index [12] is an ideal indicator to achieve this goal

ζk,q =

√
N −

∑
n |ûk,q(n)|√∑
n |ûk,q(n)|

2

√
N − 1

(19)

where ûk,q (n) stands for the frequency response of mode
uk,q (t); N is the vector length. ζk,q is a number between
0 and 1. The closer it is to 1, the more significant the oscilla-
tion degree is. According to references [5], [21], if ζk,q >

_

ζ ,

where
_

ζ = 0.58, the corresponding mode can be regraded to
be oscillatory.

When the oscillations are detected, they can be diagnosed
whether the oscillation is caused by nonlinearity problem.
Inspired by the idea that oscillations caused by nonlinearities
contain higher order harmonics [35], this paper presents an
SSA-MVMD-based strategy to diagnose the unit-wide oscil-
lations by investigating the oscillation period relationship
among different modes. More specifically, if1tk,q represents
the time interval between two successive zero crossings of
the significant oscillating mode, then the average time P̄
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FIGURE 1. The proposed workflow for detecting and diagnosing the nonlinearity-induced unit-wide oscillations based on the SSA-MVMD algorithm.

for I = 11 such intervals will be given by [5]

P̄k,q =

2
I∑
i=1
1t(i)k,q

I
(20)

The corresponding mean frequency, maximum frequency,
and minimum frequency are

Mf =
1

P̄
(21)

Maxf =
1

P̄− Std (1t)
(22)

Minf =
1

P̄+ Std (1t)
(23)

respectively, where Std (1t) is the standard deviation of the
time intervals between zero crossings. The presence of har-
monics is established if there exists mean time periods of
modes that are integral multiples.

The detection and diagnosis steps are listed in Algorithm 3.
The complete flow of the proposed method is shown in

FIGURE 2. The SSA fitness curve for MVMD parameter optimization
process. It can be observed that this curve shows a trend of convergence.

Figure 1, which includes SSA-MVMD algorithm, oscillation
detection and diagnosis.
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FIGURE 3. The decomposition results of SSA-MVMD. The black line indicates the input signal. The blue solid line and the red dotted
line represent the decomposed mode and the actual mode respectively. It can be seen that the blue lines and the red lines basically
coincide, which indicates that the mode extraction is correct.

FIGURE 4. The decomposition results of MVMD without optimizing the α parameter. The blue solid line and the red dotted line
represent the decomposed mode and the actual mode respectively. It can be seen that the MVMD cannot properly decompose the
signal under this condition.

Remark 1: The proposed method aims to use SSA to opti-
mize the parameter pair of MVMD. Therefore, its complexity
is mainly composed of SSA andMVMD. Both SSA andMVMD
are very new. However, the rigorous complexity analysis of
SSA and MVMD has not been reported. This problem is
beyond the scope of this study and we would like to investigate
the complexity of SSA and MVMD in the future. In this
paper, we focus on detecting and diagnosing the process
nonlinearity-induced unit-wide oscillations. This task is com-
pleted off-line and does not require on-line implementation,
so the requirement for complexity is not high. The existing
reference [29] shows that SSA is a new fast convergence

algorithm. This is one of the reasons why we choose this
optimization algorithm. In all cases, the proposedmethod can
complete the operations (including optimization, decompo-
sition, detection and diagnosis) in less than half a minute.
This time complexity is sufficient to meet the needs of process
oscillation detection and diagnosis [34].

IV. SIMULATIONS
In this section, a numerical case and a control system are
investigated to test the effectiveness and advantages of the
proposed method.
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FIGURE 5. The decomposition results of MVMD with K = 2, which is subjected to under-decomposition issue [36]. The black line
and the blue line represent the input signal and the decomposed signal, respectively.

FIGURE 6. The decomposition results of MVMD with K = 4, which meets over-decomposition problem [36]. The black line and the
blue line represent the input signal and the decomposed signal, respectively.

A. NUMERICAL EXAMPLE
The first example is a four-channel signal (24), which is
used to illustrate the excellent decomposition performance
of SSA-MVMD.

x1 (t) = 2 cos (2π × 10t)+ 0.66 cos (2π × 30t)
+ 0.4 cos (2π × 50t)

x2 (t) = 1.9 cos (2π × 10t)+ 0.7 cos (2π × 30t)
x3 (t) = 0.8 cos (2π × 30t)+ 0.3 cos (2π × 50t)
x4 (t) = 2.4 cos (2π × 10t)

(24)

To simulate disturbances, multivariate signal (24) is contam-
inated by noise η ∼ N (0, 0.1). The maximum iteration of
SSA is set asM = 25, according to reference [29].

Remark 2: We use the signal model (24) mainly for the
following two reasons: (i) (24) is multivariate, thus it can
simulate the signals sampled from multi-loops. Experiments
on this signal can test the decomposition performance of the
proposed method for unit-wide oscillations. (ii) This signal
model is composed of several higher order harmonics, which
is the typical characteristics of nonlinearity-induced oscilla-
tions. Therefore, testing on this signal model can effectively
simulate the performance of the proposed method in detect-
ing and diagnosing process nonlinearity-induced unit-wide
oscillations.

Figure 2 displays the fitness trend of SSA-MVMD param-
eter optimization process. It can be observed that the fit-
ness curve shows a trend of gradual convergence. And the
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FIGURE 7. The decomposition results of MEMD [20] for signal (24). It can be observed that MEMD is subjected to mode-splitting
issue [23].

TABLE 1. The unit-wide oscillation detection and diagnosis results of the simulated control system based on SSA-MVMD.

optimization result reports that the optimal parameter is
K = 3 and α = 3144. The decomposition results of

SSA-MVMD with optimal parameter pairs are presented in
Figure 3, in which the blue solid line and the red dotted
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FIGURE 8. The decomposition results of IMITD [25] for signal (24). It can be seen that IMITD suffers from both mode-mixing and
end-effect issue [34].

FIGURE 9. The decomposition results of DMITD [25] for signal (24). It is observed that DMITD produces redundant modes and cannot
correctly extract modes.

line represent the decomposed mode and the actual mode
respectively. The better the coincidence of blue line and red
line, the more satisfactory the decomposition performance
is. It can be seen from Figure 3 that the all modes are well
extracted by SSA-MVMD.

By contrast, Figure 4 provides the decomposition results of
MVMD without optimizing the α parameter. The quadratic
penalty term α used by the original MVMDmethod is 500 in
Sections IV and V. The modes center frequencies initializa-
tion method in MVMD used in Section IV is random. It can

be observed that MVMD encountered difficulties and its per-
formance was relatively poor in this case. Thus, it is inferred
that optimizing the α value is very meaningful to improve the
MVMD performance. In order to illustrate the influence of
mode number K , Figure 5 and 6 display the decomposition
results of MVMD with K = 2 and K = 4, respectively.
It can be seen that MVMD shows under-decomposition and
over-decomposition issue [36], [37] in Figure 5 and 6, respec-
tively.Therefore, it implies that determining the appropriate
mode number is necessary for MVMD to decompose signals
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FIGURE 10. The decomposition results of MNCMD. The blue solid line and the red dotted line represent the decomposed mode and
the actual mode, respectively. It can be observed that MNCMD suffers from serious mode-mixing issue.

correctly. These comparative experimental results show that
the proposed SSA-MVMD effectively improves the decom-
position performance of the original MVMD by optimizing
the parameter pairs.

The proposed SSA-MVMD also outperforms other clas-
sical multivariate signal decomposition methods, such as
MEMD [20], IMITD [25], DMITD [26], and MNCMD
(multivariate nonlinear chirp mode decomposition) [38].
Figure 7, 8, 9, and 10 shows the decomposition of MEMD,
IMITD, DMITD, and MNCMD, respectively. It can be
observed that these methods suffer from various difficul-
ties, such as mode-mixing and end-effect issue. To sum up,
SSA-MVMD not only outperforms the original MVMD,
but also shows more appealing results than MEMD [20],
IMITD [25], DMITD [26], and MNCMD [38]. These advan-
tages provide a reliable guarantee for unit-wide oscillation
detection and diagnosis in the following experiments.

We use the sum of mean square deviation error to quan-
tify the decomposition performance under different noise
sources,

error =
K∑
k=1

Q∑
q=1

√(
uk,q (t)− ũk,q (t)

)2
N

(25)

where uk,q (t) and ũk,q (t) are the true mode and estimated
mode, respectively. K and Q represent the mode number
and channel number, respectively. N is the data length. The
noise is η ∼ N (0, σ ). Herein, let σ gradually change
from 0 to 0.5 with interval 0.05. The decomposition perfor-
mance is plotted in Figure 11. It can be observed that the
proposed method does not fail until there is a lot of noise.
Thus, the proposed method is robust to noise.

In addition, we also test the decomposition performance
of the proposed method under colored noise. The colored

FIGURE 11. The decomposition performance of the proposed method
under different noise levels. It can be observed that the proposed method
does not fail until there is a lot of noise. Thus, the proposed method is
robust to noise.

noise is obtained by passing white noise through the filter
1
/(

1− 0.7z−1
)
. The whiter noise follows η ∼ N (0, 0.1).

The decomposition results of the proposed method are pro-
vided in Figure 12. It is observed that the proposed method
also maintains good decomposition performance under col-
ored noise.

B. CONTROL SYSTEM
An example control system is developed to test the method
presented in this work. The fundamental model of this system
is modeled in Simulink [39]. A description of this system is
provided here. The chosen example system consists of two
tanks. A diagram of the system is shown in Figure 13. The
outlet from the tank B flows into the tank A. Each tank has
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FIGURE 12. The decomposition results of the proposed method under colored noise. The blue solid line and the red dotted line
represent the decomposed mode and the actual mode, respectively.

FIGURE 13. Control system structure diagram.

its own supply of cold water with a control valve to control
the level of each tank. Each tank also exchanges heat with a
steam line. The temperature in the tanks is controlled using
the control valves on the steam lines. The controllers used
are simple proportional integral derivative (PID) controllers

that change the values of the MVs (manipulated variables)
according to the deviation of the controlled variables from
their set-points.

The main variables of interest are the temperatures,
namely, the inlet temperature of tank A (TA,in), the temper-
ature of tank A (TA), the inlet temperature of tank B (TB,in),
and the temperature of tank B (TB). The unit of temperature
is Celsius. These data have been standardized, so the unit
annotation is omitted. For convenience, there four variables
are noted as x1, x2, x3, and x4, respectively. In this experiment,
a valve-nonlinearity problem is introduced into the control
loop where the inlet temperature of tank B TB,in (x3) is
located. Due to the valve-nonlinearity problem, the whole
control system shows a unit-wide oscillation, which can be
observed in the first row of Figure 14.

Herein, the SSA-MVMD is applied to the multivariate
signal x (t) = [x1 (t) , x2 (t) , x3 (t) , x4 (t)] and the corre-
sponding decomposition results are displayed in Figure 14.
The corresponding oscillation detection indicators are listed
in Table 1. To intuitively represent the detection results, Fig-
ure 15 visualizes the modes satisfying the oscillation con-
ditions $k,q >

_
$ and ζk,q >

_

ζ in Figure 14. The black
blocks in Figure 15 correspond to the oscillating modes in
Figure 14. It can be observed from Figure 14 and 15 that
both x1 and x2 only contains one oscillating mode. Therefore,
only the first harmonic exists in these two variables. And the
oscillation of these two variables is unlikely to be caused by
nonlinearity. Both x3 and x4 displays higher order harmonics
according to Algorithm 3, thus the unit-wide oscillation is
induced by nonlinearity problem. Note that the different parts
of a unit tend to behave as low pass mechanical filters and
thus filter out the higher harmonics as we move away from
the source of nonlinearity [30]. Because the harmonic order
of x3 is higher, it is more probable to be the source of the
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FIGURE 14. The process variables (the first row) and decomposition results obtained from SSA-MVMD of the unit-wide oscillations.

FIGURE 15. Visualization of oscillation detection indicators. These black blocks correspond to the oscillating modes in
Figure 14, which satisfy the conditions $k,q >

_
$ and ζk,q >

_
ζ .

FIGURE 16. Industrial refinery separation unit diagram. This system
showed a unit-wide oscillation in the distillation column.

nonlinearity-induced unit-wide oscillations. This conclusion
conforms to the predefined settings. Therefore, it can be

concluded that the proposed method is able to detect and
diagnose the nonlinearity-induced unit-wide oscillations.

V. INDUSTRIAL CASES
The industrial case study concerns the chemical process [40].
The data are from an Australian refinery separation unit,
whose diagram is shown in Figure 16. The sampling interval
is 20 s. The data set includes the analyser AC1, steam flow
FC1, and temperature TC1 measurements. These data have
been standardized, so the unit annotation is omitted. For
convenience, this work records these three variables AC1,
FC1, and TC1 as x1, x2, and x3 respectively.

During production, the operator found that this system
showed a unit-wide oscillation in the distillation column.
The time trend of the analyser indicates the composition of
the product leaving the top of column was varying in an
undesirable behavior. Through a full analysis and research,
it is known that the there was a nonlinearity fault in the steam
flow loop FC1. It was an orifice plate flowmeter but there was
noweep-hole in the plate which had the effect that condensate
collected on the upstream side until it reached a critical level,
and the accumulated liquid would then periodically clear
itself by siphoning through the orifice [41]. The challenge for
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FIGURE 17. The process variables (the first row) and decomposition results obtained from SSA-MVMD of the industrial unit-wide
oscillations.

FIGURE 18. Visualization of oscillation detection indicators of industrial case. These black blocks correspond to the oscillating
modes in Figure 17, which satisfy the conditions $k,q >

_
$ and ζk,q >

_
ζ .

TABLE 2. The unit-wide oscillation detection and diagnosis results of the industrial refinery separation unit.

the analysis of this system is to verify that the nonlinearity
faulty steam flow loop is the root cause of the unit-wide
oscillations [4].

Figure 17 provides the process variables of these three
loops in the first row. The corresponding decomposition
results of SSA-MVMD are shown in the subgraphs of the
second and third rows in blue lines. The details of detection
and diagnosis are listed in Table 2. For visualization, the
corresponding detection results are visualized in Figure 18,
where the black block represents the oscillation mode. It can
be clearly seen from Table 2 and Figure 18 that except the

second variable x2 contains higher harmonics, all other
variables have only first harmonics. According to Algo-
rithm 3, the oscillations contained in x2 are nonlinearity-
induced oscillations. And the reason for the oscillation of
variables x1 and x3 is that the nonlinearity-induced oscilla-
tion of x2 propagates to these loops, causing the unit-wide
oscillations. In addition, the loop where the second variable
is located can be considered to be closer to the unit-wide
oscillation source, because the harmonic contained in x2 has
the highest order. The detection and diagnosis results are
completely consistent with the ground truth [41].
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FIGURE 19. The process variables (the first row) and decomposition results obtained from the original MVMD of the industrial
unit-wide oscillations. It is clear that the original MVMD does not extract the higher order harmonics contained in variable x2. Thus,
it cannot correctly detect and diagnose the nonlinearity-induced unit-wide oscillations.

FIGURE 20. The process variables (the first row) and decomposition results obtained from MEMD of the industrial unit-wide
oscillations. The mode-mixing issue is apparent, which will degrade the detection and diagnosis performance of unit-wide oscillations.

In order to highlight the advantages of the proposed
method, the original MVMD- and MEMD-based meth-
ods [17], [21] are applied to this industrial case. Figure 19

shows the decomposition results of original MVMD [17].
It can be seen from Figure 19 that the original MVMD
does not completely extract the second order harmonic
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contained in the unit-wide oscillation, which will result in
failure to diagnose nonlinearity problem. With respective
to the MEMD-based method [21], Figure 20 indicates that
MEMD not only produces too many redundant modes, but
also encounters serious mode-mixing issue, which will lead
to the distortion of oscillation frequency. Therefore, it can
be concluded that the proposed outperforms the original
MVMD and MEMD-based methods [17], [21] in detecting
and diagnosing the unit-wide oscillations in real industrial
environment.

VI. CONCLUSION
An SSA-MVMD algorithm is proposed to solve the param-
eter pair optimization problem of the original MVMD.
Experimental results show that SSA-MVMD algorithm is
not only better than the original MVMD, but also outper-
forms the classical MEMD [20], IMITD [25], DMITD [26],
and MNCMD [38] algorithms. Following, based on the
SSA-MVMD, a nonlinearity-induced unit-wide oscillation
detection and diagnosis method is proposed. The SSA-
MVMD-based detector combines the normalized correlation
coefficient and sparseness index to detect the significant
oscillating modes. Then, the presence of nonlinearity prob-
lem can be identified through investigating the frequency
relationship among these modes. In the end, the effectiveness
and advantages of the proposed method are demonstrated by
a series of simulations as well as industrial cases. Compared
with the latest related works [17], [21], this work shows better
decomposition performance, thus providing more reliable
and accurate detection results. Therefore, it can be concluded
that the proposed method shows great potential values for
control performance assessment and monitoring.

In the future, we would like to apply the proposed method
to detect and diagnose more types of process oscillations,
such as those caused by the controller.
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