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ABSTRACT Recent years have witnessed a growing interest in the use of U-Net and its improvement.
It is one of the classic semantic segmentation networks with an encoder-decoder architecture and is widely
used in medical image segmentation. In the series versions of U-Net, U-Net++ has been developed as an
improvedU-Net by designing an architecture with nested and dense skip connections, andU-Net 3+ has been
developed as an improved U-Net++ by taking advantage of full-scale skip connections and deep supervision
on full-scale aggregated feature maps. Each network architecture has its own advantages in the use of the
encoder and decoder. In this paper, we propose an efficient and lightweight U-Net (ELU-Net) with deep skip
connections. The deep skip connections include same- and large-scale skip connections from the encoder to
fully extract the features of the encoder. In addition, the proposed ELU-Net with different loss functions is
discussed to improve the effect of brain tumor learning including WT (whole tumor), TC (tumor core) and
ET (enhance tumor) and a new loss function DFK is designed. The effectiveness of the proposed method is
demonstrated for a brain tumor dataset used in the BraTS 2018 Challenge and liver dataset used in the ISBI
LiTS 2017 Challenge.

INDEX TERMS Semantic segmentation, medical imaging, deep skip connection, lightweight architecture.

I. INTRODUCTION
The rapid development of deep learning has been widely
used in the medical, industrial, agriculture, and transporta-
tion fields. It is gradually playing a huge role in people’s
productivity and life due to its efficient performance, and
has received increasing attention and applications from scien-
tific researchers. Its application in medical imaging has also
become a current research hotspot.

The most widely used medical imaging technique is image
semantic segmentation, which is used in automatic segmen-
tation and recognition of organs and lesions. Typical image
semantic segmentation algorithms include FCN [1], SegNet
[2], U-Net [3], PSPNet [4], series versions of Deeplab [5]–[7],
DANet [8], etc. Among them, U-Net is more suitable for
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medical segmentation tasks due to its unique architecture.
A large number of researchers have made many improve-
ments and attempts on this basis, and have achieved a
series of gratifying achievements. For example, U-Net and
its improved versions [9] are used to separate out blad-
der cancer cells [10], predict skin lesions [11], and seg-
ment gallstones [12], liver [13], liver tumors [14], and brain
tumor [15], [16], etc.

For the series versions of U-Net, U-Net uses skip con-
nections to combine the high-level semantic feature maps
from the decoder and corresponding low-level detailed fea-
ture maps from the encoder. U-Net++ introduces the nested
and dense skip connections from DenseNet [17] to further
strengthen the plain skip connections for reducing the seman-
tic gap between the encoder and decoder [18]. In U-Net 3+,
each decoder layer incorporates both smaller- and same-scale
feature maps from the encoder and larger-scale feature
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FIGURE 1. Different modalities of MRI in the BraTS 2018 challenge. (a) Flair, (b) T1, (c) contrast enhanced T1, (d) T2, and (e) ground truth of
brain tumor and its sub-regions.

maps from the decoder to capture fine-grained details and
coarse-grained semantics in full scales [19]. Despite achiev-
ing better performance, the series versions of U-Net are still
incapable of exploring sufficient information from full scales
of the encoder to give full play to the real ability of the
U-shaped network in semantic segmentation. In addition,
they have a large number of parameters. We focus on the real
ability of a U-shaped network with fewer parameters.

Two datasets were selected to verify the effectiveness
of our proposed method, one of which is the brain tumor
dataset from the Brain Tumor Segmentation Benchmark
(BraTS) 2018 Challenge with multi-classification tasks
(https://aistudio.baidu.com/aistudio/datasetdetail/64660), and
the other is the liver dataset from the Liver Tumor Segmen-
tation Benchmark Challenge organized by the 2017 IEEE
International Symposium on Biomedical Imaging (ISBI
LiTS 2017 Challenge) with two-classification tasks (https://
aistudio.baidu.com/aistudio/datasetdetail/79729). Glioma,
a type of brain tumor including LGG (low-grade glioma) and
HGG (high-grade glioma), has received general concern from
researchers [20] due to its difficulty in recognition and the
public challenges. In the BraTS 2018 challenge, there are
four modalities of brain MRI, Flair, T1, contrast enhanced
T1, and T2, available for prediction, and the segmentation
task consists of three nested brain tumor sub-regions: WT
(whole tumor), TC (tumor core) and ET (enhance tumor),
as shown in Figure 1. In the ISBI LiTS 2017 Challenge, the
segmentation task was the liver region.

II. RELATED WORK
It is worth noting that the U-Net improved strategy has
received extensive attention. On the basis of U-Net, a resid-
ual module was introduced to reduce the complexity of the
network architecture [21]; a U-Net network with a residual
module was connected in series to avoid or minimize the nat-
ural information loss that occurs following image shrinkage
[22]; Two-Pathway-Residual (TPR) blocks were designed to
replace linear blocks in the U-Net network to solve the gradi-
ent degradation problem [23]; non-linear multi-level residual
blocks were incorporated into skip connections to reduce the
semantic gap [24]; a attention gate was introduced to focus
onto the target [25]; a weighted attention mechanism was
introduced into the U-Net network containing residual mod-
ules [26], and on this basis, a tightly connected network was

introduced to improve the utilization of model feature infor-
mation and reduce the complexity of network learning param-
eters [27]; a small change was designed so that each layer in
the encoder as connected with the same-size layer in scaled
original image pyramids to capture the large-scale detailed
information and small-scale contour information [28]; Based
on the U-Net with a ResNet50 convolution block, the feature
maps of different scales obtained by the decoder can be used
to obtain the segmentation output using the feature pyra-
mid network [29]; a dual-channel encoder was designed to
obtain a larger receptive field and retain spatial information,
including the context channel by multi-scale convolution and
the spatial channel by using a large convolution kernel [30];
a dual encoder was designed by simultaneously extracting
both the zero filled k-space data and undersampled image
for reconstruction, which provides better representation at
the bottleneck region and supplements the decoder with skip
connections [31].

Furthermore, Abd-Ellah et al. [32] designed a two-parallel
U-Net with asymmetric residual blocks to extract local and
global features in parallel paths. Wang et al. [33] pro-
posed a wide residual network and pyramid pool network
(WRN-PPNet), in which the wide residual network (WRN)
was used to extract features of multimodal brain tumor
slices and the pyramid pool network (PPNet) was used to
obtain the global prior representation with a different level.
Tan et al. [34] replaced the ordinary architecture in U-Net
with deep separable convolutional layers to distinguish the
spatial correlation and appearance correlation of the mapped
convolutional channel, and then introduced a residual skip
connection to heighten the propagation capacity of features
and increase the convergence speed. Myronenko [35] added
Resnet-based skip connections and designed a VAE (Varia-
tional AutoEncoder) architecture based on the U-Net, which
won 1st place on the BraTS 2018 challenge validation dataset
with a Dice score value of 0.91000, 0.86680 and 0.82330 for
WT, TC and ET, respectively. Ahmad [36] proposed a multi-
scale hierarchical-based U-Net, which introduced a hier-
archical block for merging features to extract multi-scale
information.

In this paper, we proposed an efficient and lightweight
U-Net (ELU-Net) with deep skip connections. Our main
contributions are three-fold: (i) devising a novel ELU-Net to
make full use of the full-scale features from the encoder by
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introducing deep skip connections, which incorporate same-
and large-scale feature maps of the encoder; (ii) discussing
different loss functions and their combination to the effect
of feature learning, and designing a new loss function to
maximize the performance of the proposed network; (iii)
conducting extensive experiments on the brain tumor dataset
from the BraTS 2018 Challenge and liver dataset from the
ISBI LiTS 2017 Challenge, where ELU-Net with the fewest
parameters is not inferior or even better in many typical
algorithms.

The remainder of this paper is organized as follows:
Section 3 describes the ELU-Net network architecture and
the calculated parameters for ELU-Net with Vgg16 and
ResNet34. Section 4 discusses the ELU-Net with different
loss functions for the brain tumor dataset and the design of
a novel loss function by combination. Section 5 conducts
extensive experiments on the liver dataset to verify the effec-
tiveness of the proposed network and compares it with other
representative state-of-the-art methods. In the final section,
some concluding comments are made.

III. METHODS
Figure 2 gives simplified overviews of U-Net, U-Net++,
U-Net 3+ and the ELU-Net. The U-Net, including encoder
and decoder, is the most popular convolutional network archi-
tecture for biomedical image segmentation to predict the
segmentation mask at the pixel-level rather than image-level
classification. First, the image is taken into the encoder to
extract the higher-level features by down-sampling the output
of the previous encoder layer. Second, the output from each
encoder layer is taken into the corresponding decoder layer to
classify the pixels by concatenating the feature maps from the
output of the last encoder layer or previous decoder layer by
up-sampling to keep the scale consistent. Finally, the output
of the last decoder layer is activated by the softmax to output
the segmentation result.

The superiority and effectiveness of U-Net are well known.
Based on U-Net, U-Net++ replaces the plain skip con-
nection with the nested and dense skip connection, and
U-Net 3+ replaces the plain skip connection with the full-
scale skip connection. Furthermore, the proposed ELU-Net

FIGURE 2. Comparison of U-Net (a), U-Net++ (b), U-Net 3+ (c) and the proposed ELU-Net (d). The number of the output channel of each node is
presented below the circle.
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replaces the initial plain skip connection with a deep skip
connection.

By analyzing the series versions of the U-Net architecture,
it is not difficult to find that the features of the encoder are
the key to image segmentation. To fully extract the features
of the encoder, the deep skip connection includes a plain skip
connection from the corresponding encoder layer and skip
connections from all deeper encoder layers except the last
encoder layer. Use of the deep skip connections can enable
one to fully capture fine-grained details and coarse-grained
semantics in the encoder.

Formally, the parameters of the ELU-Net architecture are
formulated as follows: let N refer to the total number of the
encoder layer, and i index the down-sampling layer along the
encoder. Each encoder layer X iEn extracts the smaller-scale
feature maps from the encoder to obtain the higher semantic
feature. Each decoder layer X iDe incorporates all the larger-
and same-scale feature maps from the encoder except for the
last encoder layer, and larger-scale feature maps from the
decoder or the last encoder layer to obtain the segmentation
result with pixel classification.

Here, each decoder layer X iDe can be computed as follows:

X iDe =



2

0 (X iEn) , 0 (U (X kEn))N−1i+1 ,

0
(
U
(
X i+1De

))
 ,

i = 1, · · · ,N − 2

2
([
0
(
X iEn

)
, 0
(
U
(
X i+1En

))])
,

i = N − 1

(1)

where function 2(·) realizes the feature aggregation mech-
anism with two convolution operations followed by a
batch normalization and a ReLU activation function, 0 (·)
represents a convolution operation, U (·) represents an
up-sampling operation by utilizing a bilinear interpolation
operation, and [·] denotes a concatenation operation.

FIGURE 3. Illustration of how to construct the aggregated feature map of
the second decoder layer X2,3

De , where the four dotted lines represent the
source.

Preferably, the total number of encoder layers N takes a
value of 5. Take X2

De as an example, as shown in Figure 3.

The feature map of X2
De is constructed by the same- and

larger-scale encoder layer X2
En, X

3
En and X4

En, and the larger-
scale decoder layer X3

De. This incorporates the same four
resolution feature maps from the encoder and decoder to
seamlessly merge the shallow exquisite information with
deep semantic information.

Similarly in U-Net, the number of channels of the decoder
feature map in ELU-Net are symmetric to that of the encoder,
and, thus, X iEn and X

i
De both have 2i−1n channels.

The number of parameters in the ith decoder layer of
ELU-Net, Pi, can be computed as follows:

Pi = k2e

 d
(
N−1∑
k=i

X kEn + X
i+1
De

)
d
(
X iDe

)
+ d

(
(N − i+ 1)X iDe

)
d
(
X iDe

)
+ d

(
X iDe

)2


=

(
N−1∑
k=i

2k−i + N − i+ 4

)
22i−2n2k2e (2)

where ke represents the convolution kernel size, and d (·)
represents the number of channels of the notes.

Vgg16 and ResNet34 are chosen for the backbone network
architecture of ELU-Net. The number of parameters for ELU-
Net with Vgg16, Pv, can be computed as follows:

Pv =
[
n0d

(
X1
En

)
+ d

(
X1
En

)2]
k2e

+

N∑
i=2

[
d
(
X i−1En

)
d
(
X iEn

)
+ d

(
X iEn

)2]
k2e

+

4∑
i=1

Pi + ncd
(
X1
De

)
= 1118n2k2e + n0nk

2
e + ncn (3)

where n0 represents the number of channels of the input, nc
represents the number of output categories of the segmenta-
tion result.

The number of parameters for ELU-Net with ResNet34,
Pr , can be computed as follows:

Pr = n0d
(
X1
En

)
k2e +

N∑
i=2

[
d
(
X i−1En

)
d
(
X iEn

)]
+

N∑
i=2

[
d
(
X i−1En

)
d
(
X iEn

)
+ (2wi − 1) d

(
X iEn

)2]
k2e

+

4∑
i=1

Pi + ncd
(
X1
De

)
= 2893n2k2e + n0nk

2
e + 170n2 + ncn (4)

where wi represents the number of Basic blocks for the ith
layer in ResNet34 and w = [w2 w3 w4 w5 ] = [ 3 4 6 3 ].
In order to make the network parameters lightweight and

facilitate training and transplantation, the number of channels
of the first encoder layer in ELU-Net, n, takes a value of 8,
which is much less than the value of 64 or 32 used in the
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other series versions of U-Net. The convolution kernel size,
ke, takes a value of 3. Pv and Pr can be computed as follows:{

Pv = 643968+ 72n0 + 8nc
Pr = 1677248+ 72n0 + 8nc

(5)

It is worth mentioning that the fifth encoder layer is not
necessarily the deepest level. The value of N can be 5, 6,
or any number. Of course, it is not clear if a bigger value of N
will lead to a better segmentation result. This depends on the
type of datasets and computing power. In this paper, 5 layers
are competent for this segmentation task, which is relatively
friendly considering the requirements of computing power.

IV. DISCUSSION OF THE LOSS FUNCTION
A. LOSS FUNCTION
In order to give full play to the effect of the proposed ELU-Net
as much as possible, it is necessary to choose a suitable loss
function [37], which is used to evaluate the matching degree
between the predicted label of the segmentation result and the
true label.

Cross entropy loss (CE), as a widely used loss function,
can be expressed as follows:

LCE = −
1
Nb

Nb∑
i=1

C∑
c=1

ytrue log
(
ypred

)
(6)

where ytrue represents the true label for the segmentation
task, ypred represents the predictive label of the segmenta-
tion result, Nb represents the number of the batch size used
for training, and C represents the number of segmentation
classes.

Then, 8 other loss functions including L2 loss (F2),
smoothF1 loss (SF), bce loss (BCE), bcewithlogits loss
(BCL), dice loss (DL), Tversky loss (TL), focal loss (FL)
and KL divergence loss (KL), were selected, which can be
expressed as

LF2 = −
1
Nb

Nb∑
i=1

C∑
c=1

(
ytrue − ypred

)2 (7)

LSF = −
1
Nb

Nb∑
i=1

C∑
c=1

×

{
0.5

(
ytrue − ypred

)2
,

∣∣ytrue − ypred ∣∣ < 1∣∣ytrue − ypred ∣∣− 0.5, otherwise
(8)

LBCE = −
1
Nb

Nb∑
i=1

C∑
c=1

[
ytrue log

(
ypred

)
+ (1− ytrue) log

(
1− ypred

) ] (9)

LBCL = −
1
Nb

Nb∑
i=1

C∑
c=1

[
ytrue log σ

(
ypred

)
+ (1− ytrue) log

(
1− σ

(
ypred

)) ]
(10)

LDL =
1
C

C∑
c=1

1
Nb

1−

2
Nb∑
i=1

ytrueypred

Nb∑
i=1

y2true +
Nb∑
i=1

y2pred

 (11)

TABLE 1. Confusion matrix.

TABLE 2. The Dice coefficients for the segmentation result obtained for
the ELU-Net with Vgg16 and ResNet34.



LTL = 1−
1
Nb

(
tp

tp + αfp + βfn

)
tp =

Nb∑
i=1

C∑
c=1

ytrueypred

fp =
Nb∑
i=1

C∑
c=1

(1− ytrue) ypred

fn =
Nb∑
i=1

C∑
c=1

ytrue
(
1− ypred

)
(12)

LFL = −
1
Nb

Nb∑
i=1

C∑
c=1

λ
(
1− ypred

)γ ytrue log (ypred) (13)

LKL =
1
Nb

Nb∑
i=1

C∑
c=1

ytrue
(
log ytrue − log

(
σypred

))
(14)

where σ represents the sigmoid function, α and β represent
the hyperparameter of the Tversky loss, λ represents the bal-
ance factor of the focal loss, and γ represents the exponential
factor of the focal loss.

B. DATASET AND EVALUATION METRIC
The brain tumor dataset using in the BraTS 2018 challenge
with multi-classification tasks was selected to discuss the
effect of the proposed ELU-Net with the 9 loss functions
and their combinations. It contains 210 cases for HGG and
75 cases for LGG. According to the size of the brain MRI, all
slices were extracted for each case except the slices in whose
corresponding segmentation result the number of pixels clas-
sified as ET were less than 20, of which 90% slices and 10%
slices were used for training and testing for the ELU-Net,
respectively.

We utilized the Adam algorithm for optimization. Its learn-
ing rate was set to 1e-4, and was reduced to one tenth of the
previous rate whenever the evaluation metric of verification
dataset had been not updated for 20 consecutive generations.
Its weight decay was set to 0.002.

The input of ELU-Net cascades 4 slices corresponding
to the four modalities of brain MRI including Flair, T1,
contrast enhanced T1, and T2, and each slice has 3 chan-
nels, and thus a n0 value of 12. The output of ELU-Net is
4 channels (nc =4) corresponding to the background and
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TABLE 3. The Dice coefficients for the segmentation result obtained for the ELU-Net with ResNet34 by different loss functions. The best result is
highlighted in bold.

three categories including enhancing tumor (ET), peritumoral
edema (ED), and non-enhancing tumor (NET). They consti-
tute three nested brain tumor sub-regions, WT, TC and ET,
as the image segmentation result:

WT = ET+ ED+ NET
TC = ET+ NET
ET = ET

(15)

A confusion matrix was introduced to evaluate the results
and the basic parameters are listed in Table 1.

In Table 1, TP refers to the number for which the true
value is positive and the predictive value is positive. FN refers
to the number for which the true value is positive and the
predictive value is negative. FP refers to the number for which
the true value is negative and the predictive value is positive.
TN refers to the number for which the true value is negative
and the predictive value is negative.

The Dice coefficient was used as the evaluation metric for
each segmentation result, which is expressed as follows:

Dice =
2TP

FP+ 2TP+ FN
(16)

C. DISCUSSION
First, under the cross entropy loss (CE), we compared the
segmentation result obtained for the proposed ELU-Net with
Vgg16 and ResNet34. The Dice coefficients of the three
nested brain tumor sub-regions on the BraTS 2018 validation
dataset are listed in Table 2.

In Table 2, the ELU-Net with ResNet34 achieves a better
performance, which exceeds 0.03721 than Vgg16 on average.

In order to give further play to the advantage of the
ELU-Net with ResNet34, another 8 loss functions and their
combinations were compared and their corresponding Dice

coefficients on the BraTS 2018 validation dataset are listed
in Table 3.

As given in Table 3, the combination with dice loss and
focal loss achieves a best performance on average, 0.87095,
and the focal loss achieves a best performance on average
among the alone loss function, 0.86937, followed by the dice
loss, 0.86863. As for the sole sub-region, the cross entropy
loss, focal loss and the combination with dice loss and focal
loss shows the best performance for WT, TC and ET of
0.93619, 0.86115, 0.81850, respectively.

Based on a combination of dice loss and focal loss, a novel
loss function with dice loss, focal loss and KL divergence
loss, DFK, was designed as follows:

LDFK = 3 logDL2 + logFL2 + 0.1 logKL2 (17)

The Dice coefficients for the three nested brain tumor sub-
regions on the BraTS 2018 validation dataset were obtained
through training the proposed ELU-Net with Vgg16 and
ResNet34 by the loss function with dice loss, focal loss
and KL divergence loss (DFK), which are compared with
other state-of-the-art methods in Table 4. Some segmentation
results obtained using the ELU-Net with ResNet34 and DFK
on the BraTS 2018 validation dataset are shown in Figure 4,
which show good performance.

As given in Table 4, with the help of DFK, the ELU-Net
with ResNet34 achieves on average the best performance
compared to other state-of-the-art methods. For the sole sub-
region, the ELU-Net with ResNet34 shows an obvious advan-
tage on WT, 0.93498, and considerable performance on TC
and ET, 0.86023 and 0.81779, which are just reduced by
0.00657 and 0.00551, respectively, with fewer parameters
compared with the best results obtained by the other state-
of-the-art methods. According to Eq. (5), the numbers of
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FIGURE 4. The segmentation result obtained for the BraTS 2018 validation dataset by the ELU-Net with ResNet34 and DFK.

TABLE 4. Comparison of our methods and other state-of-the-art methods
on the BraTS 2018 validation dataset. The best result is highlighted in
bold.

parameters for the ELU-Net with Vgg16 and ResNet34 are
only 644, 864 and 1, 678, 144, respectively.

In addition, the ELU-Net with ResNet34 achieves a bet-
ter performance than with Vgg16, exceeded by 0.03709 on
average and 0.02333, 0.03163 and 0.05632 on WT, TC and
ET, respectively, which proves the effectiveness and advan-
tage of the residual network. Based on the ResNet34 back-
bone network, compared with the result of the combination
with dice loss and focal loss, the DFK loss performs better
on WT and TC, exceeded by 0.00103 and 0.00037, and
a little poor on ET, reduced by 0.00071. In summary, the
ELU-Net with ResNet34 and DFK loss shows a better overall
performance.

Moreover, with the help of the trained weights for the
ELU-Net with ResNet34 and DFK, the Dice coefficients of
the three nested brain tumor sub-regions on the HGG and
LGG validation dataset were obtained by training, respec-
tively, and are listed in Table 5.

As given in Table 5, the ELU-Net with ResNet34 and
DFK shows a better performance on the HGG than that
on the LGG, which exceeds that on the whole dataset by
0.00812 and 0.02434 on TC and ET, respectively, and is
reduced by 0.00456 on WT. However, for the LGG, a better
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TABLE 5. The Dice coefficients for the segmentation result obtained for
the ELU-Net with ResNet34 and DFK on HGG and LGG.

FIGURE 5. The segmentation result obtained for the ISBI LITS 2017
validation dataset by the ELU-Net with ResNet34 and DFK.

performance on WT is obtained, which exceeds that on the
whole dataset by 0.02113.

V. COMPARISON WITH A LIVER DATASET
The liver dataset was selected to further validate the effec-
tiveness of the proposed ELU-Net, which is obtained from the
ISBI LiTS 2017 Challenge. It contains 131 contrast-enhanced
3D abdominal CT scans, of which 120 and 11 volumes were
used for training and testing, respectively. The 3most obvious
slices were extracted for each volume according to the size of
the liver. The other hyperparameters were consistent with the
aforementioned method.

The input of ELU-Net is 1 slice with 3 channels (n0 = 3),
and the output is 2 channels (nc = 2) including the back-
ground and liver region.

The proposed ELU-Net with Vgg16 and ResNet34 was
quantitatively compared with the other representative state-
of-the-art methods based on the Dice coefficients.

Moreover, it is worth mentioning that all results were
directly obtained from a single-model test without relying on
any post-processing tools and each network was optimized by

TABLE 6. Comparison of our methods and other state-of-the-art methods
applied to the ISBI LiTS 2017 validation dataset. The best result obtained
is highlighted in bold.

the loss function proposed in its own article. The input of our
segmentation network is directly obtained from the extracted
slices without relying on any filtering and enhancement pro-
cessing. The comparison result is shown in Table 6.

As given in Table 6, the ELU-Net with ResNet34 and DFK
greatly improves the performance of the U-shaped network.
It has the fewest parameters (1.68M), but it has an absolute
advantage, even for the other state-of-the-art network archi-
tectures with ResNet101 and shows some particular improve-
ments. Its Dice value exceeds that of the U-Net 3+ with
ResNet101 andHybrid loss andCGMby 0.615% and exceeds
that of the U-Net 3+ with Vgg16 by 1.865%, but the number
of its parameters is only 3.86% of that of the U-Net 3+ with
ResNet101 (43.55M) and 6.23% of that of the U-Net 3+with
Vgg16 (26.97M), which proves the lightweight and effective-
ness of the ELU-Net. Some segmentation results obtained for
the ISBI LiTS 2017 validation dataset are shown in Figure 5.

In addition, the ELU-Net with Vgg16 and DFK (644,
200 parameters) also shows a considerable performance,
which proves the effectiveness and advantage of our network
architecture.

VI. CONCLUSION
In this study, we proposed a novel ELU-Net with deep skip
connections to make full use of the features from the encoder
for realizing an efficient and lightweight segmentation net-
work architecture. The Vgg16 and ResNet34 backbone net-
work with many loss functions and their combinations is
found to give full play to the effect of our methods, and a
new loss function with dice loss, focal loss andKL divergence
loss, DFK, was designed based on the exponential and log-
arithmic advantages. The experimental results obtained for
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brain tumor and liver datasets demonstrate the effectiveness
and outstanding performance of the proposed ELU-Net archi-
tecture with fewer parameters. The ELU-Net with ResNet34
and DFK show Dice coefficients of 93.498%, 86.023% and
81.779% for WT, TC and ET with an average value of
87.100% for the BraTS 2018 validation dataset, and a value
of 97.365% for the ISBI LiTS 2017 validation dataset.
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