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ABSTRACT Accurate prediction of volatility is one of the most important tasks in financial decision making.
Recently, the hybrid models integrating artificial neural networks with GARCH-type models have been
developed, and performance gains from the models have been found to be outstanding. However, there have
been few studies of hybrid models considering the nature of the distribution of financial data. Distribution of
volatility time-series is highly concentrated near zero, and such aspect can cause low prediction performance
on the whole domain of probability density function because weights in the networks can be trained to obtain
accurate prediction only for the high frequency region, that is, near zero. To overcome the challenge, we
propose a new hybrid model with GARCH-type models based on a novel non-linear filtering method to
mitigate concentration property of volatility. For the filtering, we utilize root-type functions that transform
extremely left-biased and pointed distribution of original volatility to a volume-upped (VU) distribution
shifted to the right. Long short-term memory (LSTM) is employed as the basic implementation model, and
the realized volatility of S&P 500 is predicted using the proposed models. It is found that the proposed
hybrid model (VU-GARCH-LSTM) obtains 21.03% performance gain with respect to the root mean square
error (RMSE) against the mean performances of the existing hybrid models integrating LSTM with GARCH-
type models. Furthermore, the proposed model improves prediction performance in the right domain region
of label probability density by making the prediction distribution comparable to the label distribution.

INDEX TERMS Stock market volatility, long short-term memory, GARCH models, distribution manipula-
tion.

I. INTRODUCTION

In the financial market, one of the most important issues
is an exact prediction of stock market volatility. Volatility
in finance presents generally the amount of fluctuation of
financial time-series data and is used as risk measure since
investment risk depends on volatility of underlying asset.
Therefore, an accurate prediction of volatility is clearly an
important issue for financial practitioners, such as investors,
traders and risk managers, who want to gain stable profits.
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However, the accurate prediction of volatility has been still
a challenging task because the volatility is an unobserved
latent variable and has complex features as heavy tail and
non-stationary behavior. Motivated by these, we study a new
novel model to improve the accuracy of prediction of stock
market volatility.

There have been statistical models for predicting volatil-
ity that has the time-varying characteristics. As the para-
metric model to describe the conditional heteroscedasticity
of financial volatility, the ARCH (Autoregressive Condi-
tional Heteroskedasticity) model was suggested by Engle [1].
Bollerslev [2] generalized the ARCH model with the
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moving average terms and introduced the GARCH
(Generalized ARCH) model. Since GARCH model was
introduced, GARCH-type models have been improved by
many researchers. GARCH model of Bollerslev has the
limitation that can not capture the leverage effect. To over-
come this limitation and to provide more accurate pre-
diction of volatility, Nelson [3] and Zakoian [4] proposed
the EGARCH (Exponential GARCH) and the TGARCH
(Threshold GARCH), respectively. In addition, there have
been various extensions of the GARCH model in model-
ing stochastic volatility, and various GARCH-type models
have been developed by many researchers [4]-[8]. How-
ever, GARCH-type models are difficult to capture complex
fluctuation and nonlinear correlation of financial time-series
data. In this study, we overcome the shortcomings using
long short-term memory (LSTM) approach which is one of
non-parametric models and improve in accuracy of volatility
forecasts.

ANN is one of non-parametric models and can capture
complex non-linear relationships between predictors and
responses. Since ANN does not need the strict assumptions
to predict time-series data, ANN has been used widely for the
prediction of financial time-series. Hamid and Igbal [9] pre-
dicted implied volatility from S&P 500 Index futures options
using ANN approach and found that forecasts from ANN
outperform implied volatility forecasts. Sermpinis et al. [10]
used higher order neural network (HONN) approach to
improve a forecasting performance of the realized volatility
of the FTSE 100 futures. Xu et al. [11] suggested a novel
UMIDAS-SVQR model combing unrestricted mixed data
sampling (UMIDAS) and support vector quantile regres-
sion (SVQR) and showed that the model is superior to sev-
eral models in terms of accuracy. Ramos-Pérez et al. [12]
introduced a new model with the stacked algorithms based
on a set of machine learning techniques and predicted
S&P 500 volatility. In addition, Idrees et al. [13] predicted
efficiently the Indian stock market volatility to construct
an appropriate ARIMA model. Wang et al. [14] proposed a
hybrid time-series predictive neural network (HTPNN) by
learning the fusion feature of news and time-series to pro-
mote the prediction accuracy. Furthermore, there have been
various hybrid models based on machine learning approach
for predicting of financial time-series [15]-[17].

In recent years, the hybrid models that incorporate
GARCH-type models into the ANN models have been pro-
posed for better prediction of financial time-series. In gen-
eral, outputs of GARCH-type models have been used as
input of the ANN models, and the hybrid models have been
called ‘ANN-GARCH’ models. More specifically, ANN-
GARCH hybrid models have shown the improvements of
prediction accuracy of financial time-series such as stock
market indices, gold price, oil price, metals, exchange rate
and cryptocurrency, etc [18]-[27]. That is, the results with
ANN-GARCH hybrid models have indicated that the mod-
els improve the traditional GARCH-type models and ANN
models in predictive ability.
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Various combinations of GARCH and ANN models have
been used to improve the prediction performance of stock
market volatility. However, the performance on the right
region of the target distribution (i.e. abnormal events) is still
lacking, and the improvement of a breakthrough method-
ology for the challenge is still meager. The volatility has
an extremely biased distribution to the left, which is a
major impediment to improve the prediction performance.
To address this, we propose a methodology for reducing the
extremeness by manipulating the volatility distribution artifi-
cially. More specifically, for the prediction of realized volatil-
ity, we propose a hybrid model that combines GARCH-types
models and LSTM with a novel data filtering methodology
that manipulates distributions of input data. The followings
are our contributions:

e A novel data filtering methodology is proposed to allevi-
ate the extreme bias of volatility distribution.

e The proposed method outperforms the benchmarked
strategies (various combinations of GARCH-type models
and LSTM) in whole domain region, with exceptional
performance in the right domain region of the target
distribution.

e The proposed method makes the distribution of predic-
tion similar to the target distribution.

The remainder of this paper is structured as follows.
In Section II, we review the basic models used in this paper.
In Section III, we introduce the data for the prediction and
propose new hybrid models by integrating LSTM with the
GARCH-type models and the proposed strategy based on
the distribution manipulation. In Section IV, we present the
experimental results of the proposed hybrid models with
some meaningful figures and tables. Finally, the conclusion
is given in Section V.

Il. MODELS

A. GARCH-TYPE MODELS

1) GARCH

The ARCH model [1] is a method that describes explicitly
the change in variance over time in stochastic time-series.
It estimates current volatility of a time-series using a linear
combination of error terms which involve the Gaussian ran-
dom noise and past information of volatilities. ARCH (g) with
order g is defined by

yt :Mt+UtZIaZtNN(Oa 1)5 (1)

& = 0121, &1 Fi—1 ~ N(0, o), 2)
q

0,2 = oo+ Za,-s,z_,-, 3)
i=1

where y; is a given stochastic time-series, and u, is its
drift. o;, F; and N(0O, 1) denote the volatility at time f,
information up to time ¢ and the standard Gaussian distri-
bution, respectively, and all coefficients are set to be non-
negative. GARCH [2] is an extension of the ARCH model that
supplements a moving average component to autoregressive
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component. GARCH (p, ¢) is defined by

Yt = Mt + 012ty 2 ™ N(O, 1),
& = 0121, &1 Fi—1 ~ N(0, o), Q)

q p
of =w+ Yy ciEl i+ Y piot, ©)
i=1 i=1

where all coefficients are positive. In (6), the volatility is pre-
dicted by taking the weighted sum of the predicted variance
(second term) and observed volatilities (third term).

2) EGARCH

Unlike GARCH model, EGARCH allows the coefficients to
be negative [3]. Consequently, the model can reflect the lever-
age effect that is an asymmetric information effects. Namely,
anegative shock has greater effect on the volatility rather than
a positive shock with the same magnitude. EGARCH (p, g) is
defined by

& = 0121, &1l Fr—1 ~ N(0, o), (7

q P
In(o7) = o+ Y cig@—) + Y _ filn(ol ). (8)

i=1 i=1

2
8z)=0z+w <|z:| - \/;> , ©)

where «o;, B;, 0 and w are parameters to be estimated. The
function g(z;) is linear in z; with slope 8 4+ w (or 6 — w) if
Z; 1s positive (or negative).

3) TGARCH
TGARCH has utilized flexible lag structure in the volatility

keeping the GARCH tractability, and improved the complex-
ity of EGARCH [4]. TGARCH (p, g) is defined by

& = o1z, 7 ~ N(O, 1), &|Fi—1 ~ N, 0?), (10)

&7 = max(g, 0), e~ = max(—¢, 0),

q p
of = a0+ ) lai(e )’ +anle )1+ ) _Biol
i=1 =1

(1D

where o9 > 0, a;; > 0, ajp > 0, B; > 0 for all . EGARCH
and TGARCH have some similarities since the models can
detect asymmetries in volatility. However, EGARCH imposes
a constant structure at all lags while different lags may yield
opposite contributions in TGARCH.

B. LSTM

Recurrent neural network (RNN) is a class of artificial neural
networks, which is designed for the prediction of sequential
data including time-series data [28]. RNN consists of input,
hidden, and output layers, and can unfold with a certain depth
suitable to input dataset. Classical RNN has a defect called
the vanishing gradient problem [29], and LSTM overcame
the problem by modifying and improving its structure [30].
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The feed-forwarding process of LSTM for the input data x;
and hidden state %; at time-step ¢ can be formulated as

i = oW1 X + by), (12)
fi = o(WaX + by), (13)
0; = o(W3X + b3), (14)
g = tanh(W4X + by), (15)
Ct = Cr—1 *ft + g x I, (16)
h; = tanh(c;) * oy, a7

where W; and b; are weights and bias terms, respectively,

and X = ** ). Functions o and tanh are defined by

he—1
o = 1/(1+e*)and tanh = ifij , respectively. The symbol
'+’ means the elementwise product of two vectors. Net flow in
a LSTM block is illustrated in Fig. 1. It can be shown that the
total number of parameters in LSTM is 4(K; Ky + K 13) where

K; and Ky indicate the dimension of x; and &, respectively.

1Il. DATA AND PROPOSED STRATEGY

A. EXPLANATORY VARIABLES

In this study, 16 financial indices are employed as the input
explanatory variables. The variables are listed in Table 1.
For each variable, the common daily closed values from
1st-Jan-2004 to 30th-Nov-2020 (the total size of data is
3179 x 19) are used. The variables are selected based on
the works of [31]—[33], and downloaded from Yahoo Finance
website. Except for VIX, we change each original price
(closed price) into the square of log return. That is, we use
y; defined by y; = (In(R; /R,_l))z, where R; is closed price
at time 7.

TABLE 1. 16 explanatory input variables employed in this study.

Input variables Description
JPY/USD Exchange rate of Japan Yen to United States Dollar
Nikkei 225 Nikkei index
CNY/USD Exchange rate of China Yuan to United States Dollar
SSE Shanghai Composite Index
SEHK Hang Seng Composite Index
GBP/USD Exchange rate of British Pound to United States Dollar
EUR/USD Exchange rate of Euro to United States Dollar
CAC 40 France Stock Market Index
DAX German Stock Market Index
VIX Chicago Board Options Exchange Volatility Index
US Bond Yields 10-year/long term yields
Crude Oil Crude Oil Price
Gold Gold price
Nasdaq Nasdaq Composite Index in the United States
Dow Jones Dow Jones Index in the United States
S&P 500 S&P 500 Stock Market Index in the United States

We employ realized volatility of S&P 500 as the label
(target value). The realized volatility represents how much the
stock price has changed during a certain period, and defined
by

1< —
RV, ==Y (Liyi— LY,
p i=1
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FIGURE 1. Structure of the LSTM cell (left) and a schematic diagram (right) for the process of the unfolded LSTM.

where p, L;, and L are the period, the log return rate of S&P
500 at time ¢, and the averaged value of the log return rate
during p days, respectively. In this study, we set p = 5. This
means that RV; is estimated from the data of one-week trading
days. S&P 500 price is used not only as an input variable
but also as the target value, to take full use of its historical
information. However, the realized volatility is only used in
the label.

B. VOLUME-UP STRATEGY
In this subsection, we propose a novel method termed
Volume-Up (VU) as a non-linear filtering of input data. The
distribution of the volatility time-series is extremely concen-
trated close to zero, but the low-frequency events distributed
to the right domain of the label probability density func-
tion (PDF) have a practical significance. However, because
the general loss function in a neural network only measures
the average of total errors and the network is learned to
decrease the average, such network properties can degrade
the prediction performance of the (low-frequency) events.
VU has been developed to mitigate the nature of biased input
distribution, and to shift the distribution to the right in the
label PDF domain. In this study, we evaluate the relation-
ship between the artificial mitigation of the biased aspect of
volatility distribution using VU strategy and the improvement
in prediction performances in terms of various error metrics.
Let X and Y be two random variables, and let their corre-
sponding PDFs and cumulative distribution functions (CDFs)
be fx, fr and Fx, Fy, respectively. Let g(x) be an increasing
function such that ¥ = g(X). Then, we have

Fy(y) = P(Y <y) =PgX) <y
= PX < g ') = Fx(g ')
where g(x) is a monotonic function. Differentiation on both

side of (18) yields

d
fr@) = Fy(y) = d—ny<g—1<y>>

(18)

d
= fx(g_l()’))ag_l(y) (19)

where F’ and g~! denote derivative of F and inverse of g,
respectively. The equation (19) implies that PDF of Y can be
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expressed explicitly in terms of PDF of X and inverse of g.
In this study, we apply a root type function to the function g in
above calculations. That is, we define the function g as g(x) =
x%,0 < @ < 1, where the number « is the hyperparameter
of VU to be analyzed. In this study, the hyperparameter is
tested with nine values « = i/10,i = 1,2, ---,9. By direct
calculation using (19), we can obtain
fro) =fx(yl/“)$yl_l/“- (20)
In (20), for example, if « = 1/2, then fy(y) =
fX(yz)%. We state some remarks on VU. First, the function
root-type function is intentionally chosen to make it similar
trait of Fx(x). It can be shown from (18) and (19) that if
g(x) = Fx(x), then the random variable Y has an uniform
distribution. That is, applying CDF of X to g(x) makes PDF
of Y to be flattened. Functions with CDF-like shaped would
alleviate the extremely biased property of input-data distri-
bution. Second, the function g(x) maps a narrower interval
near zero into a wider interval near zero, and a wider interval
far from zero into a narrower interval far from zero. Third,
the distribution of ¥ = g(X) is pulled to the right direction.
Fourth, as the hyperparameter o approaches to 1 (from the
left side), g(x) approaches to the identity filtering. Fifth, the
decoding process is simple. The final prediction is obtain-
able by applying g~!(x) = x!/* to the output. Distribution
changes of S&P 500 volatility by g(x) are illustrated in Fig. 2.

C. PROPOSED HYBRID MODELS: INTEGRATION OF
GARCH MODELS, LSTM WITH VU STRATEGY

Numerous studies have shown that the incorporation of neural
networks (NN) and GARCH-type models improves predic-
tion performances of stock market volatility compared to
applying GARCH-type models only [25], [31], [34]. Also,
Kim and Won [35] reported that employing information
extracted by multiple GARCH-type models as inputs yields
better performance than by a single GARCH model. In this
study, we propose a new hybrid model combining LSTM,
GARCH-type models and VU strategy. In particular, to clar-
ify the performance gains from the VU, we divide the exper-
iments into the VU-applied cases and the native (non-VU)
cases.
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FIGURE 2. Squared volatility time-series of S&P 500 used in this study from 1st January 2004 to 30th November 2020. Black
corresponds to the original data. Red and green correspond to VU applied data with hyperparameter «=0.7 and «=0.8,
respectively. Left and right indicate three time-series and their distributions, respectively.
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FIGURE 3. Rolling window method. Green squares are obtained from each of GARCH models using previous information
(fixed-length gray rectangles), and used as part of the inputs of LSTM.

The rolling window method is employed for the exper-
iments. The method continuously incorporates relatively
recent observations to the model fitting and prediction, which
can help the networks adapt well to the current economic
situation. Fig. 3 shows the method in detail. We apply the
method to outputs of GARCH-type models (as well as other
explanatory variables) to make them the input of the proposed
model. Based on works of [31], [36], we employ 9 mod-
els GARCH (1,1), GARCH (2,2), GARCH (3,3), EGARCH
(1,1), EGARCH (2,2), EGARCH (3,3), TGARCH (1,1),
TGARCH (2,2), and TGARCH (3,3) as the GARCH-type
models to be tested. For the simplicity, we denote the predic-
tions obtained from the models as G1, G2, G3, El, E2, E3,
T1, T2, and T3, respectively. We also present the residuals of
all invited GARCH-type models for S&P 500 in Fig. 4.

To evaluate the prediction performances of the proposed
hybrid models, total 10 comparative experiments have been
conducted (Table 2). The experiments consist of the fol-
lowing: 1) Pure-LSTM (P-LSTM) that only use explanatory
variables as input data, 2) GARCH applied LSTM (G-LSTM)
that uses G1, G2, and G3 as input data, 3) EGARCH applied
LSTM (E-LSTM) that uses El, E2, and E3 as input data,
4) TGARCH applied LSTM (T-LSTM) that uses T1, T2,
and T3 as input data, 5) Mixed GARCH models applied
LSTM (GET-LSTM), that uses predictions obtained from all
GARCH-type models as input data, 6) VU applied LSTM for
each of fore-mentioned 5 experiments (denote them as VU-P-
LSTM, VU-G-LSTM, VU-E-LSTM, VU-T-LSTM, and VU-
GET-LSTM, respectively).
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In GET-LSTM, if we employ all predictions obtained by
three GARCH models as input data, the input dimension
would be different compared to other single GARCH based
models. Also, the experiments have concerns about overfit-
ting caused by a large input dimension. In order to avoid
the problem, we use Bayesian information criterion (BIC) to
select only three of the nine inputs. BIC is an estimator of
prediction error for statistical model selection, and defined by
BIC = kIn(n) — 2 ln(i) where k is the number of estimated
parameters in the model, [ is the maximum value of the
likelihood function for the model, and » indicates the number
of sample size. For a fixed window size W, we select three of
the nine input candidates with the lowest BIC values, and use
them as the input data of GET-LSTM.

IV. EXPERIMENTS AND RESULTS

A. EXPERIMENTS

1) SETUP

As described in Section II-B, the total number of parameters
in LSTM is 4(K;Ky + K}) where K; and Ky denote input
dimension and hidden dimension (dimension of each gate),
respectively. The input dimension K; for each experiment
is presented in Table 2. The hidden dimension is set to be
Ky 4 which has been found as the best number in
between over-fitting and under-fitting conditions. The RELU
function [37] defined by RELU(x) = max(x, 0) is set to be
located in the output layer as an activation function. Batch
size and epochs are set to be 512 and 200, respectively.
Linear decreasing learning rate (from 0.005 to 0.0005 as
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plots (Q-Q plots), and the residual distributions for all invited GARCH models.

epochs increase) is employed. The ratio of train, validation,
test of dataset is chosen to 6:2:2. The Adam optimizer [38]
is applied as an optimization tool, which combines the gra-
dient descent with momentum [39], moving average, and
RMSprop [40]. Mean square error loss function defined by
Iiv Zg\;l(yi — 9i)? is used as the loss function where N, vy, y
denote number of samples, label, predictions, respectively.
We used the uniform normalization method, which assigns
maximum and minimum of data to be 1 and 0. Also, the
uniform parameter initialization on [-0.2, 0.2] is chosen. For
the hyperparameters (hidden dimension for each gate, depth
of LSTM, learning rate, epochs, and batch size) selection,
we use a mixture of random search method and grid search
method. The learning rate, batch size, and epochs are firstly
extracted using the random search method. And then, using
the grid search method, we extract the other hyperparameters
whose candidates are selected near values that performed well
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in the random search step. All hyperparameters are selected
so that the error induced from the validation dataset can be
minimized.

2) ERROR METRICS

The performances are measured with four error metrics. Root
mean square error (RMSE) (defined by ,/ ziv va: 10 = %)
where N, y, ¥ denote number of samples, label, predictions,
respectively) and correlation coefficient (CC) (defined by
cov(y, y)/ (oyo3) where cov(x,y) indicates the covariance
between two variables and oy is a standard deviation of X) are
employed as basic tools for error measurement. In addition,
we adopt the area of the overlapping section of two distri-
butions (those of the label and predicted value) as an error
metric. Although a larger common section is not a necessary
and sufficient condition for a better prediction, we assume
that the overlapping distribution likely leads to performance

VOLUME 10, 2022
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TABLE 2. Configuration of input data in 10 experiments.

Input Data

Notation VU | Exp. Var. | G1,G2,G3 | E1,E2,E3 | T1,T2,T3 | Input Dimension
P-LSTM N Y N N N 16
VU-P-LSTM Y Y N N N 19
G-LSTM N Y Y N N 19
VU-G-LSTM Y Y Y N N 19
E-LSTM N Y N Y N 19
VU-E-LSTM Y Y N Y N 19
T-LSTM N Y N N Y 19
VU-T-LSTM Y Y N N Y 19
GET-LSTM N Y Best three with respect to BIC 19
VU-GET-LSTM Y Y Best three with respect to BIC 19

TABLE 3. BIC among all window size and GARCH models. Lowest three values for each window size are indicated in boldface.

Window size 30 60 90 120 | 150 | 180 | 210 | 240 | 270 | 300 | 330 360 390 420 450 480
Gl 108 | 200 | 290 | 379 | 466 | 553 | 640 | 726 | 812 | 898 | 984 1070 1155 1241 1326 | 1411
G2 102 193 | 282 | 371 | 458 | 544 | 631 | 717 | 803 | 888 | 974 1060 | 1145 1231 1316 | 1401
G3 96 186 | 275 | 363 | 450 | 536 | 622 | 708 | 794 | 880 | 964 1051 1137 1222 1307 1392
El 99 212 | 303 | 396 | 478 | 574 | 634 | 719 | 808 | 895 | 985 1063 1146 1225 1309 1390
I E2 94 210 | 285 | 375 | 463 | 546 | 618 | 717 | 787 | 874 | 965 | 1048 | 1129 | 1214 | 1294 | 1377
E3 87 180 | 264 | 351 | 432 | 520 | 601 | 687 | 769 | 853 | 938 | 1019 | 1102 | 1187 | 1268 | 1354
T1 114 | 207 | 296 | 384 | 471 | 556 [ 641 | 727 | 812 | 897 | 982 1067 1151 1236 | 1320 | 1404
T2 106 197 | 286 | 373 | 458 | 543 | 628 | 713 | 798 | 882 | 967 1052 1136 | 1220 | 1304 | 1388
T3 98 187 | 274 | 361 | 446 | 531 | 615 | 700 | 784 | 869 | 953 | 1038 | 1122 | 1206 | 1290 | 1374

gains in this study. RMSE on the extreme region is employed
as another error metric to evaluate the prediction performance
of rapid changes in financial indices. The extreme region is
defined by [/, co) where P(I < x) = 0.2. In other words,
the extreme region corresponds to the rightmost 20% of the
probability.

B. RESULTS

1) DETERMINATION OF WINDOW SIZE

In this study, the performances are tested using 16 values
of window size W (W 30 x i,i = 1,2,---,16) and
evaluated using four error metrics. Also, to determine input
datain GET-LSTM model, we investigate BIC values for each
of 9 GARCH models (Table 3), and choose lowest three of
them for each window size.

As mentioned in Section III-B, nine values of the hyper-
parameter o (o i/10,i = 1,2,---,9) are tested to
evaluate the VU strategy for each experiment. We firstly
define a ’positive section’ as the set of values of « at which
the performance of VU is better than the native (non-VU)
strategy. According to the results in the next section, the pos-
itive section accounts for about 70% of the possible -region,
that is, the interval (0,1) for each implementation model and
error metric. To determine the window size, we present the
prediction performances by comparing the proposed model
and native experiments for each implementation model and
error metric in Fig. 5.

According to Fig. 5, the performance at W = 180 (trading
days) outperforms the other cases in general. This aspect
means that variations of log-return for the S&P 500 dataset
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are more influenced by the relatively recent observation than
by historical information longer than about 180 trading days.
We present the best performance (for each model and error
metric) and corresponding window size in Table 4. For a more
detailed evaluation of the proposed model, we focus on the
case of W = 180 in the next subsection.

2) ANALYSIS FOR WINDOW SIZE OF 180 TRADING DAYS

In this section, fixing the window size to be 180 trading days,
we evaluate the proposed hybrid model against the native
model in terms of three measurements: 1) Mean performance
over all values of hyperparameter «, 2) Mean performance for
« in the positive section, 3) Best performance corresponding
to a specific «.

In Fig. 6, we compare the performances according to
GARCH models, error metrics and hyperparameter ¢, 0 <
o < 1. For RMSE, the performance gains of G-LSTM, E-
LSTM and T-LSTM against P-LSTM are 6.9%, 7.3% and
10.8%, respectively. Furthermore, the performance gain of
GET-LSTM against P-LSTM is 12.5%. This result shows that
the addition of informations obtained from multiple GARCH
models to the explanatory input data improves performances
even more compared to the case of adding single GARCH
model information. In the VU-applied case, we find that the
performance gain is outstanding compared to the existing
model (non-VU), the corresponding results are presented in
Table 5 and Tabel 6. In general, VU-GARCH models based
LSTM (VU-G-LSTM, VU-E-LSTM, VU-T-LSTM and VU-
GET-LSTM) show better performance in the positive section
and lower performance outside the positive section compared
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TABLE 4. Window size corresponding to the best performance for each error metric.

RMSE

CC Overlapping Area Extreme RMSE

G-LSTM /E-LSTM / T-LSTM / GET-LSTM

Native case

150/ 120/ 180 /390

210/120/180/390

450/180/360/270

150/120/180 /390

Mean performance for all o

180/180/180/ 180

240/450/210/390

180/180/180/ 180

180/180/180/ 180

Mean performance in positive section

180/180/180/ 180

210/360/180/390

450/180/450/ 180

180/180/180/ 180

Best performance among all «

180/180/180/ 180

240/420/180/390

180/180/180/ 180

180/180/180/ 180

TABLE 5. RMSE percentage gains against P-LSTM in various «-regions.

TABLE 6. RMSE percentage gains against VU-P-LSTM in various «-regions.

Model Mean over all @« | On Positive section | The best case Model Mean over all @ | On Positive section | The best case
VU-P-LSTM 2.8 20.0 25.6 VU-G-LSTM 0.2 1.7 2.1
VU-G-LSTM 3.1 21.1 27.2 VU-E-LSTM -3.7 0.3 -0.3
VU-E-LSTM -0.7 20.0 254 VU-T-LSTM 2.0 3.0 2.7
VU-T-LSTM 4.8 22.1 27.7 VU-GET-LSTM 1.2 7.5 7.0

VU-GET-LSTM 4.0 25.7 30.9

to VU-P-LSTM (Fig. 6 and Table 6). The performances
in terms of other error metrics (CC, overlapping area, and
RMSE on extreme region) show similar trends to RMSE. The
performance gains of VU-GET-LSTM against other models

are presented in Table 7.

34750

The comparative performances of all experiments are pre-
sented in Fig. 7. It can be found that if « is restricted in
the positive section then the proposed model outperforms the
existing model. It is noteworthy that VU-P-LSTM outper-
forms G-LSTM, E-LSTM, T-LSTM and GET-LSTM, which
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TABLE 7. Performance percentage gains of VU-GET-LSTM against other models in various «-regions.

Error metric Model Mean over all « | On Positive section | The best case

P-LSTM 4.0 25.7 30.9

RMSE VU-P-LSTM 1.2 7.5 7.0
GET-LSTM -9.7 15.2 21.0

P-LSTM 2.0 2.4 2.8

CcC VU-P-LSTM 0.8 0.9 1.0
GET-LSTM 0.4 0.8 1.2

P-LSTM 2.2 5.4 8.6

Area VU-P-LSTM 24 2.2 1.9
GET-LSTM 2.8 6.1 9.3

P-LSTM 2.2 24.9 30.1

Extreme VU-P-LSTM -0.1 5.7 4.8
GET-LSTM -10.7 15.0 20.9

implies performance gain from VU strategy is greater than the
gain from GARCH model for all error metrics. In addition,
it is not able to find that VU-G-LSTM, VU-E-LSTM, and
VU-T-LSTM have the model’s superiority. However, the pro-
posed VU-GET-LSTM model outperforms the other models.

Besides the evaluation with respect to the overlapping area
(over all region of label PDF domain), it is necessary to
investigate the overlapping region near the region because
most prediction and label are concentrated near zero. Fig. 8

VOLUME 10, 2022

shows comparative distribution (near zero) of P-LSTM, GET-
LSTM, and VU-GET-LSTM. It can be confirmed that the dis-
tribution of prediction obtained from VU-GET-LSTM model
become closer to that of label (realized volatility) compared
to other native models.

The proposed hybrid models do not show better predic-
tion performance for the hyperparameter o near zero (about
0 < a < 0.3) compared to models with native strategies.
However, based on the facts that the positive sections occupy
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TABLE 8. Sum of all absolute valued entries in 19 x 19 correlation coefficients matrix for each « in unit interval.

a 0.1 0.2 0.3 0.4

0.6 0.7 0.8 0.9 1

CCsum | 125.0 | 128.7 | 131.2 | 132.1

131.1 | 128.6 | 124.7 | 120.1 | 1153 | 110.4

P-LSTM, GET-LSTM and VU-GET-LSTM

17500

15000 T T : 14000

12000
12500

10000

g
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Probability density
g
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Variance (Sqaured Volatility)

FIGURE 8. Performance comparison in the distribution (PDF) near zero
between P-LSTM (black), GET-LSTM (green), and VU-GET-LSTM (darkred).
Solid curve in zoom-in figure represents the label.

wider domain than the non-positive sections for all error
metrics, we conclude that the models with VU outperform the
native models. Based on these results, we now summarize and
discuss our experimental results. First, the positive section
occupies more than 70% of interval (0, 1) for each error
metric and GARCH integrated model. Also the intersection of

34752

TABLE 9. Lengths of the confidence interval (C-1) for all experiments. The
values represent the mean (over all prediction) of 2K such that

P (ﬁ —K < label < pred +K ) = 0.95 with respect to the standard
normal distribution where pred denotes the sample mean of predictions.

Model C-1 Model C-I (C-I on positive section)
P-LSTM 0.208 VU-P-LSTM 0.129  (0.075)
G-LSTM 0.170 VU-G-LSTM 0.125 (0.068)
E-LSTM 0.197 VU-E-LSTM 0.130 (0.071)
T-LSTM 0.176 VU-T-LSTM 0.124  (0.069)

GET-LSTM | 0.181 | VU-GET-LSTM 0.125 (0.079)

16 positive sections in Fig. 6 contains (0.3, 1). That is, exclud-
ing root type functions that increase rapidly near zero (the
functions correspond to g(x) = x* in (18) for 0 < o < 0.3),
the hybrid models with VU outperform the native models for
most root type functions. Second, improvements in RMSE
on extreme region show that VU is an appropriate strategy
for predicting time-series that involve large volatilities. It is
expected that VU can be well applied in regression analysis
to detect abnormal events occurred in flood, financial crisis
prediction, and so on. Third, the positive section in error
metric CC (0.1 < o < 1in Fig. 6) occupies the widest region
compared to other error metrics. It can be estimated that VU
enhances prediction performance by making similar moving
trend of label and prediction. Meanwhile, it is found that VU
increases the sum of all correlation coefficients between all

VOLUME 10, 2022
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input indices (Fig. 9 and Table 8). However, higher corre-
lation coefficients of input do not guarantee better perfor-
mances. For example, correlation coefficients correspond to
a=0.2 and «=0.6 are similar (128.7 and 128.6, respectively
in Table 8), however, according to the Fig. 6, the performance
at «=0.6 is better than at «=0.2 for all error metrics. It is
noteworthy that =1 in Table 8 corresponds to the native
(Non-VU) case. Fourth, as o approaches to 1 from the left
side, the performance of proposed algorithm is reduced to that
of the native strategy. It is speculated that a filtering approach
using concave-up functions (instead of convex functions) is
an appropriate filtering strategy. Fifth, Table 9 shows that
when the VU strategy is applied, the length of the confidence
interval of the prediction is shorter (rather than non-VU case),
and it is also shorter on the positive section than on all «-
regions. This aspect demonstrates that the results obtained on
the positive section are more reliable. Sixth, in Fig. 4, it is
found that input data induced by various GARCH models
have outliers which usually affect model performance. How-
ever, the LSTM is used as the implementation model in this
study, and the sigmoid function and the tangent hyperbolic
function are located in the LSTM cell (from (12) to (17)). The
functions have the squashing effect, and prevent outliers of
input data from having an unduly large and disturbing effect
on the learning [41].

V. CONCLUSION

The distributions of various financial data including the
volatility of S&P 500 index are extremely biased to the
left and are concentrated near zero. This aspect can cause
low prediction performance on the right part of distribution
(abnormal events) as well as on whole probability density
domain. Meanwhile, incorporation of various explanatory
variables with GARCH-type models has been reported to
improve performance by adding reliable information to input
data in neural networks. To overcome the challenge of the
former with the advantage of the latter, we develop the hybrid
model using VU strategy to alleviate the biased property of
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financial data and to obtain better performance gain. Specifi-
cally, we use the outputs of GARCH-type models as input as
well as the explanatory variables and combine VU strategy.
The concave function x*,0 < « < 1 is employed in
VU strategy, and it plays a crucial role in mitigating biased
property of volatility.

In general, it is known that the current S&P500 index is
highly affected by relatively recent observations rather than
historical data far from the present time. Thus, we adopt the
rolling window method to obtain input of sequential struc-
ture. From the proposed model, we obtain several meaning-
ful results. Firstly, performances at a specific window size
(180 trading days in this experiment) are superior compared
to performances at other window size for each error metric.
Secondly, performance gains obtained from the proposed
model are conspicuous compared to the gains obtained from
GARCH based models as well as the native strategy. Espe-
cially, performance gains are noteworthy when the hyperpa-
rameter « is restricted on the positive section that occupies
more than 70% of the interval (0, 1). Thirdly, the proposed
model enhances performance on the right region as well
as other region of probability density. This shows that the
proposed algorithm is an appropriate approach to predict
abnormal events in financial market. Finally, we expect that
modifications of the concave function will improve predic-
tion performance further, and this will be considered in the
future work.
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