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ABSTRACT A histopathological analysis performed by pathologists plays a key role in the diagnosis of
breast cancer. A novel approach based on an image processing technique is proposed to help pathologists
efficiently produce accurate diagnoses, that is composed of two modules, namely, anomaly detection with a
support vector machine (ADSVM) method and a resolution adaptive network (RANet) model. The ADSVM
method screens mislabeled patches to improve the training performance of the RANet model. In the RANet
model, subnetworks with variable resolutions and depths are utilized to classify images according to the
classification difficulty. This adaptive mechanism potentially increases the computational efficiency and
prediction accuracy. The proposed RANet-ADSVM approach is evaluated using two public datasets: the
BreaKHis and BACH 2018 datasets. Binary and multiclass classifications of patient and image levels at
different magnification factors are conducted on the BreaKHis dataset. The best accuracies of 98.83% and
99.14% are obtained for the binary classification at 200× magnification at the patient and image levels,
respectively. For the BACH 2018 dataset, binary and multiclass classifications on patch and image levels are
performed. Experimental results show that the best accuracies for multiclass and binary classifications at the
image level are 97.75% and 99.25%, respectively. Additionally, comparative experiments are performed and
indicated that the proposed approach achieves significant improvements in both the classification accuracy
and computational efficiency. Compared with similar networks (ResNet and DenseNet), the computational
time is reduced by approximately 50%.

INDEX TERMS Breast cancer image classification, resolution adaptive network, anomaly detection, support
vector machine, convolutional neural network.

I. INTRODUCTION
Breast cancer is the leading cause of morbidity and mortality
in women worldwide. According to a study reported by the
International Agency for Research on Cancer (IARC) [1],
approximately 9.2 million new cancer cases in women were
reported in 2020, of which 2.29 million were breast cancer
cases. Breast cancer accounted for 15.5% of all 4.4 million
cancer-related deaths in women. Early diagnosis is critical for
increasing the survival rate and improving the quality of life
of the patients [2]. In breast cancer diagnosis, a histopatho-
logical analysis of breast tissue biopsy images is essential.

The associate editor coordinating the review of this manuscript and
approving it for publication was Francesco Piccialli.

Breast tissues are classified into four types: normal tis-
sues, benign lesions, in situ carcinomas, and invasive carcino-
mas. Benign lesions occur in the normal tissue of the breast
parenchyma and are unrelated to malignant carcinogenesis.
In situ carcinomas and invasive carcinomas are two types
of malignant breast cancer. The cancerous cells are limited
inside the mammary ductal-lobular system in in situ tissue,
whereas the cells spread beyond the structure in invasive
tissue. Pathologists analyze the microstructure in images
of a biopsy stained with hematoxylin and eosin (H&E) to
grade and stage the tissue [3]. Image translation, rotation,
and scaling operations are required during the analysis. This
diagnostic process requires well-experienced specialists and
considerable time and effort. Due to the complexity and
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variability among histopathological images, the average diag-
nostic accuracy of pathologists is only 75% [4].

During the last decade, different machine-learning meth-
ods have been applied to breast cancer classification from
histopathological images [5]–[7]. Early researchers mostly
used traditional machine-learning methods and evaluated
their methods using private datasets with a small sample
size [8]–[10]. As a result, these methods do not meet the
expectation in clinical practice. Recently, convolutional neu-
ral networks (CNNs) have been widely used for breast cancer
classification [11]–[13]. Methods based on classic networks
(e.g., ResNet [14] and DenseNet [15]) have been proposed
and have yielded remarkable results.

However, in the previous CNN models, the original image
is commonly subdivided into patches for follow-up CNN
processing. These patchesweremarkedwith the same label as
that of the corresponding image. Because malignant images
may contain benign issues, this operation may cause the CNN
to be trained on mislabeled patches, which may reduce the
performance of the model. In addition, complex CNNmodels
are utilized to achieve accurate classification results, which
reduces the computational efficiency.

In this study, a deep learning approach based on an
anomaly detection with a support vector machine (ADSVM)
method and a resolution adaptive network (RANet) model is
proposed for breast cancer classification. The main contribu-
tions of our work are summarized below.

1) A patch screening method based on ADSVM is pro-
posed. In the method, a soft-margin SVM classifier is
trained for binary classification (benign vs. malignant).
The trained SVM classifier is used to recognize the
benign patches, which are mislabeled as malignant,
subdivided from malignant images. As a result, the
ADSVM method reduces the number of mislabeled
patches and increases the follow-up training perfor-
mance.

2) A RANet model [16] is proposed for breast cancer clas-
sification from histopathological images. The RANet
model is composed of subnetworks with adaptive input
resolution feature maps to reduce the computational
cost. Using different subnetworks, the images are clas-
sified based on distinguishing difficulty. The ‘‘easy’’
images are recognized by a low-resolution subnetwork
with few convolutional layers, while the ‘‘hard’’ images
are processed by a high-resolution subnetwork. This
adaptive mechanism increases the computational effi-
ciency based on the premise of prediction accuracy.

3) The image-level and patient-level evaluations are per-
formed on the BreaKHis dataset for binary and multi-
class classification with different magnifications.

4) The patch-level and image-level evaluations are per-
formed on the BACH 2018 dataset for binary and mul-
ticlass classification.

5) The recognition performance and computational cost
are compared with similar studies. Our approach out-

performs other models in terms of classification accu-
racy and computational efficiency.

The remaining parts of the manuscript are organized as fol-
lows: Section II discusses related works, the datasets used in
this study are described in Section III, the proposed approach
is presented in detail in Section IV, Section V presents the
classification experiments and results, and Section VI con-
cludes the paper.

II. RELATED WORKS
As a result of advances in machine learning and image pro-
cessing techniques, a significant increase in interest in the
computer-aided diagnosis of breast cancer has been noted
in the last decade [5]–[7]. Early researchers mainly used
traditional machine-learning methods for breast cancer clas-
sification [8]–[10]. These approaches were always composed
of two modules: a handcrafted feature extraction phase and a
classifier. The feature extractionmethods (e.g., scale invariant
feature extraction (SIFT), local binary patterning (LBP), and
local phase quantization (LPQ)) were used to extract local
features from the input image. These features were then
applied to a classifier (e.g., SVM, principle component anal-
ysis (PCA), random forest (RF), etc.) for binary classification
(benign vs. malignant). These approaches were evaluated
using a private dataset with a small sample size. As a result,
these methods do not retain their accuracy and robustness in
clinical practice.

Recently, convolutional neural networks (CNNs) have
been widely used for breast cancer classification using
well-known public datasets and have achieved satisfactory
performances [11]–[13]. Spanhol et al. [17] proposed a
method based on a pre-trained AlexNet model. The method
was evaluated for patient-level and image-level classifica-
tion of images with different magnifications in a popular
database named BreakHis. At the patient level, the accuracy
ranged from 84% to 90%. At the image level, the accu-
racy ranged from 80.8% to 85.6%. Dalal et al. [18] pro-
posed a CNN-based approach for automatic binary andmulti-
class classification of the BreaKHis dataset. The CNN-based
approach was compared with traditional machine learning
approaches based on handcrafted features. The experimental
results showed that the CNN-based approach achieved the
best accuracy of 83.31% to 88.23% for multiclass classifica-
tion. Although these CNN-based methods have achieved bet-
ter performance than traditional machine learning methods,
their classification performance has room for improvement.

With the developments in CNN models, classic networks
(e.g., ResNet and DenseNet) have been proposed for image
classification and have yielded remarkable results. Man et al.
[19] constructed aDenseNet121-based network for the classi-
fication of breast cancer images in the BreaKHis dataset. The
method achieved accuracies ranging from 85.16% to 96.32%
for patient-level classification and 85.20% to 99.13% for
image-level classification. Wang et al. [20] proposed another
deep learning approach based on the FE-BkCapsNet model.
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This approach combined the CNNmodel (focused on seman-
tics) and CapsNet (focused on spatial features). The results
showed accuracies ranging from 92.71% to 94.52% for clas-
sification of images in the BreaKHis dataset. However, these
CNN models use a large number of convolutional layers
and parameters to achieve accurate results, which increases
computing resources and time.

Similar studies have been conducted using other pub-
lic datasets. Teresa et al. [21] presented a Bioimaging2015
dataset and conducted two approaches based on a CNN and a
CNN+ SVMmodel for binary and multiclass classifications.
High-resolution images were divided into 512 × 512 pixels
patches to reduce the computational resources. The results
showed an accuracy of 83.3% for binary classification and
77.8% for four-class classification. Moreover, Aresta et al.
[22] introduced the BACH 2018 dataset, which contains
more images than the Bioimaging2015 dataset. The high-
est classification accuracy of 87% was achieved using the
DenseNet121 model. Similarly, Nawaz et al. [23] proposed
an AlexNet-based approach to breast cancer classification.
The experimental results showed that the approach obtained a
patch-wise accuracy of 75.73% and an image-wise accuracy
of 81.25% for multiclass classification of the BACH 2018
dataset. In addition, Yao et al. [24] developed a parallel struc-
ture that combined a CNN and a recurrent neural network
(RNN). Different approaches have been evaluated using the
BACH 2018 dataset. The highest overall accuracy was 92%
for multiclass classification. In general, the classification
accuracy and computational efficiency still require improve-
ment for both the Bioimaging2015 and BACH 2018 datasets.

III. MATERIALS
The proposed approach was evaluated using two public
datasets: the BreaKHis and BACH 2018 datasets. The
datasets used in this study are described in detail below.

A. BREAKHIS DATASET
The BreaKHis dataset was developed by Spanhol et al
[25]. It consists of 7909 breast cancer histological images
from 82 patients, who were enrolled in a clinical study in
2014. Images were generated from breast tissue biopsy slides
stained with hematoxylin and eosin, using an Olympus BX-
50 system microscope and a Samsung Digital Color Camera
SCC-131AN. They are captured in 3-channel RGB color with
a 700×460 pixels resolution at 40×, 100×, 200×, and 400×
magnification. Each sample was diagnosed by an experienced
pathologist and confirmed by complementary examinations.
Images were classified into benign and malignant categories.
Each category has four subclasses: adenosis (A), fibroade-
noma (F), phyllodes tumor (PT), and tubular adenoma (TA)
for benign lesions; and ductal carcinoma (DC), lobular car-
cinoma (LC), mucinous carcinoma (MC), and papillary car-
cinoma (PC) for malignant cancer. Table 1 summarizes the
statistics for the BreaKHis dataset. Fig. 1 shows images of
some samples at 200× magnification.

TABLE 1. Statistics for the BreaKHis dataset.

B. BACH 2018 DATASET
The BACH 2018 dataset was constructed by Teresa et al.
[22]. It comprises breast cancer histological images available
from the Breast Cancer 2018 Grand Challenge. Images were
obtained from breast tissue biopsy slides and stained with
hematoxylin and eosin. These images were acquired under
the same conditions using a Leica DM 20000 LED micro-
scope and a Leica ICC50 high-definition camera. Each image
had a size of 2048 × 1536 pixels and was captured at 200×
magnification and a pixel scale of 0.42 µm × 0.42 µm. The
entire dataset contained 400 images collected from different
patients in Covilh and Porto. These images were labeled by
two medical experts and classified into four categories of the
same size: normal tissue, benign lesion, in situ carcinoma,
and invasive carcinoma. Fig. 2 shows sample images of these
four categories.

IV. METHODOLOGY
Fig. 3 shows the schematic of the proposed approach. This
approach consists of three parts.

1) Pre-processing: First, the input images were normal-
ized to solve the inter-image variability caused by the
staining and image acquisition process. Second, the
original images were subdivided into small patches
using a patch extraction approach to reduce the com-
plexity of the model. Third, a data augmentation
method was used to enlarge the dataset for model train-
ing.

2) Patch screening: An ADSVM algorithm was used to
screen the mislabeled patches in the malignant images.
SURFs were extracted from the patches and then the
features were encoded using the LLC method to con-
duct an SVM classifier.

3) RANet classification: Patches were used to train a
RANet model for cancer classification. RANet selects
a resolution adaptive subnetwork for the input image
based on the recognition difficulty.

A. IMAGE NORMALIZATION
Histological images were acquired under different conditions
(including different staining protocols, staining materials,
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FIGURE 1. Images of some samples at 200× magnification in the BreaKHis dataset. The top row shows the four types of benign tumors and the bottom
row shows the malignant tumors.

FIGURE 2. Samples images of four categories in the BACH. 2018 dataset.

FIGURE 3. The schematic illustration of the proposed classification approach for breast cancer histopathological images.

and acquisition times); thus they, presented color differ-
ences. These differences may cause overfitting in the sub-
sequent model training process. Image normalization poten-
tially eliminates color variability, thereby improving the
robustness and accuracy [26]–[28].

In the present study, the images were normalized using a
novel approach. The normalization algorithm is composed

of two procedures based on Retinex theory [29] and the
histogram equalization technique [30]. The Retinex method
divides the illuminance and reflection components using a
logarithmic algorithm. These components were then filtered
using a function that simulates human vision. Thus, the
low-frequency part of the illuminance component decreased,
whereas the high-frequency part of the reflection component
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FIGURE 4. The performance of image normalization. Left is the original
image and right is the normalized image.

was enhanced. In addition, a histogram equalization method
was used for image normalization. A level adaptive his-
togram equalization (LAHE) method was applied to each
color component. Histogram equalization was performed on
the patches subdivided from the original image to avoid
over-enhancement. Histograms were clipped to adjust the
color component. Fig. 4 shows the image normalization
results.

B. IMAGE SUBDIVISION
Extensive computational resources and a long time are
required when a CNN model is trained on high-resolution
images. The high-resolution images were subdivided into
patches for subsequent model training to improve the
computing efficiency. Image level classification results
were obtained by combining the corresponding patch level
results.

The input images should be subdivided into patches with
appropriate sizes that contain sufficient tissue information
for the diagnosis to achieve great classification performance.
Small patches with a size of 32× 32 pixels or 64× 64 pixels
do not provide sufficient tissue information for classifica-
tion [17], [21]. Meanwhile, considering the structure of the
RANet model, the size of subdivided patches should be set
to 112 × 112, 224 × 224, or 448 × 448 pixels, suggesting
that the base feature maps with four different scales (56×56,
28 × 28, 14 × 14, and 7 × 7 pixels) can be easily generated
from the input patches using a convolution layer (7× 7 conv)
and a max pooling layer (3 × 3 max pool) with different
strides of 1 or 2. The classification performance on different
patch sizes was evaluated using the BreaKHis and BACH
2018 datasets. Experimental results show that the patch with a
size of 224×224 pixels achieved the overall best performance
for image classification in the BreaKHis and the BACH 2018
datasets. Therefore, the images were subdivided into patches
with a size of 224× 224 pixels in our study.

Additionally, data imbalance affects the performance of the
CNN model, and the classification results are biased toward
the major category. An adaptive patch number approach is
proposed to reduce the influence of data imbalance. For the
k th category in n classes, the number of patches subdivided

per image Nk is [19]:

Nk =


n∑
i=1

xi

n× xk
× α

 (1)

where xk refers the image number of the k th category and α
is a control parameter.

After the size and the number of the patches were deter-
mined, a sliding window process was used to select the Nk
patches from each input image. Because the breast cancer
diagnosis mainly focuses on nuclear features, the patches are
chosen based on the nuclear density, and thus the first Nk
patches with high entropy were selected.

C. DATA AUGMENTATION
The data augmentation approach may extend the image
dataset from the original dataset to avoid overfitting [31],
[32]. Regarding the analysis process for histopathological
images, the data augmentation methods based on geometric
transform were used to increase the quantity of data. The
geometric transform includes rotation, flipping, and shifting
which maintain the histopathological characteristic of the
tissues without altering the classification results [33], [34].
The classification performance of these methods (including
rotation with different degrees, flipping, and shifting) was
evaluated using the BreaKHis and the BACH 2018 datasets to
select appropriate transform methods for data augmentation.
The experimental results show that the rotation + shifting +
flipping method achieved the best performance.

Therefore, each patch was randomly rotated from 0 to
90 degrees to generated four new patches initially, and then
shifted horizontally and vertically by a random pixel within
56 pixels (the size of the stride for the sliding windows
process in the image subdivision method). Next, the rotated
and shifted patches were flipped horizontally and vertically.
Therefore, 36 patches were generated from each input patch.

D. PATCH SCREENING
Because the histology images in most datasets are classi-
fied at the image-level, the patches obtained from the image
subdivision and data augmentation methods are marked with
the same label as the whole image. However, a malignant
image may contain benign and normal tissues, and thus, some
patches are mislabeled. This mislabeling reduces the recogni-
tion performance of the follow-up model. A mislabeled patch
screeningmethod based on anomaly detection using a support
vector machine (ADSVM) is proposed to solve this problem.

Fig. 5 shows a schematic of the ADSVM method. It con-
sists of three parts: speeded-up robust feature (SURF)
extraction, locality constrained linear coding (LLC), and
SVM classification. In the proposed method, the SURFs are
extracted from the patches and encoded using the locality
constrained linear coding (LLC) method. Then, the encoded
features are used to train a soft-margin SVM classifier for
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FIGURE 5. The schematic of patch screening based on the ADSVM method.

binary classification (benign vs. malignant). Finally, the
trained SVM classifier is used to recognized the benign
patches, which are mislabeled as malignant, subdivided from
malignant images. These mislabeled patches are replaced by
new patches extracted from the corresponding image with
malignant results. As a result, the ADSVM method reduces
the number of mislabeled patches and increases the follow-up
training performance.

1) SPEED-UP ROBUST FEATURE EXTRACTION
SURF [35] is a fast and robust local feature extraction method
based on the scale invariant feature transform (SIFT) method.
The method comprises three main parts: scale-space con-
struction, local feature point detection, and feature point
description. The specific implementation process is described
as follows:

1) Constructing a scale-space representation of the image,
2) Creating a Hessian matrix and generating points of

interest for feature extraction,
3) Detecting the position and orientation of points of inter-

est, and
4) Constructing the descriptor for points of interest.

2) LOCALITY CONSTRAINED LINEAR CODING
The local feature descriptors applied to SVM classifiers must
have a fixed length, whereas the number of SURFs extracted
from the image varies. Thus, feature coding is an essential
procedure that must be conducted between SUEF extraction
and SVM classification. The LLC method was used to map
the features into an image presentation.

LLC is a simple and effective feature coding method [36].
It projects the local feature descriptors into a local-coordinate
space. Then the image presentation is obtained by maximum
pooling of the projection results.

LetX = [x1, x2, . . . , xN ] ∈ RD×N denote the local feature
descriptors. The LLCmethod utilizes the following criteria to
obtain the codes C = [c1, c2, . . . , cN ] ∈ RM×N [36]:

min
C

N∑
i=1

‖xi − Bci‖2 + λ ‖di ⊗ ci‖2

s.t. 1T ci = 1, ∀i (2)

where B = [b1,b2, . . . ,bM ] ∈ RD×M is the codebook
presenting the local-coordinate space,⊗ denotes the element-

wise multiplication, and di ∈ RM is the locality adaptor [36]:

di = exp
(
dist (xi,B)

σ

)
(3)

where dist (xi,B) = [dist (xi,b1) , . . . , dist (xi,bM )]T

denotes the Euclidean distance between the xi and B; σ is
a parameter that controls the distance weight for di.

A simplified approximate calculation for the LLC method
was conducted by ignoring the second part of Equation (2).
The K-means method was also employed to accelerate the
process. For the descriptor xi, only the K-nearest neighbors
were used to calculate the code coefficients, whereas the other
coefficients were set to 0. Then, the codes were maximally
pooled to generate the final image presentation.

3) SUPPORT VECTOR MACHINE CLASSIFICATION
Using the final image presentation as the input, a linear
SVM classifier for binary classification was trained. The
trained SVM classifier then recognized and screened the
non-malignant patches from the malignant images. However,
the screening process may lead to a data imbalance. The
screened patch was replaced with a new patch extracted from
the corresponding image with a malignant result to solve this
problem.

E. RESOLUTION ADAPTIVE NETWORK
Recently, researchers have mainly exploited the CNN model
architecture in network depth or width to achieve outperfor-
mance, which increases the model complexity and compu-
tational resources. A RANet model based on a multi-scale
dense connection (MSDNet) [37] was proposed for clas-
sification to increase the computational efficiency without
sacrificing accuracy.

In the RANet model, input images are classified using
different subnetworks according to classification difficulty.
The ‘‘easy’’ images are processed by sub-networks that use
low-resolution feature maps and consist of few convolutional
layers. These subnetworks produce classification results in
much less time than that of the deeper networks used in
classic models (e.g., ResNet [14] and DenseNet [15]). The
‘‘hard’’ images are predicted by deeper sub-networks using
higher resolution feature maps. Compared with the networks
in classic models, these subnetworks use more convolutional
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FIGURE 6. The structure of the RANet model.

layers to increase the prediction accuracy. Although the oper-
ation increases the computational time of ‘‘hard’’ images, the
computational time for the whole model is reduced because
most images are ‘‘easy’’ images. Consequently, the RANet
model increases the computational efficiency based on the
premise of prediction accuracy.

The global structure of the RANetmodel is shown in Fig. 6.
In the illustration, the model is composed of an initial layer
and subnetworks in S scales. xs,h0 denotes the feature maps
obtained from the input image at scale s for subnetwork h.
The prediction process is first implemented via subnetwork
1 with the feature maps x1,h0 as input. If subnetwork 1 fails
to obtain a convincing result, subnetwork 2 that works on
higher-resolution feature maps is used for classification. This
process is repeated until a convincing classification result is
achieved or the last subnetwork is utilized.

The RANet architecture includes the important compo-
nents described below.
Initial layer: In the initial layer, the base feature maps

are obtained from the input image. The highest-resolution
feature maps are generated from a Regular-Conv layer [15],
composed of aBottleneck layer [15] and a regular convolution
layer. These two layers consist of aBatch Normalization (BN)
layer [38], a ReLU layer [39], and a convolution layer. Small-
scale feature maps are generated from the larger-scale feature
maps by a Strided-Conv layer, which is similar to a Regular-
Conv layer. Here, the stride of the second convolution layer
was 2.
Subnetwork 1: Subnetwork 1 works on the coarsest-scale

feature map x1,h0 . As shown in Fig. 7 (a), subnetwork 1 con-
sists of Dense Blocks [15] with l layers. In each Dense Block,
the output feature maps x1,hi from the i-th layer are reused in
subnetwork 2. Subnetwork 1 is perceived as DenseNet [15]
utilizing coarsest-scale feature maps.
Subnetwork s: Subnetwork s (s > 1) utilizes the base fea-

ture maps xs,h0 and lower-resolution feature maps from sub-
network (s – 1) for classification. As shown in Fig. 7 (b, c),
Dense Blocks with feature fusion are called Fusion Blocks.

FIGURE 7. The dense block (a) and fusion blocks (b, c) in the RANet
model.

The Fusion Block processes feature maps from two
sources.

Two different feature fusion methods are used. The method
shown in Fig. 7 (b) maintains the same output feature map
resolution as the input features, while the other method shown
in Fig. 7 (c) reduces the output resolution using a Strided-
Conv layer. As shown in Fig. 7 (b), the new feature maps
xs,h1 are first obtained from the input feature maps xs,hin using
a Regular-Conv layer. Then, the input feature maps xs−1,hin
from the lower sub-network are handled by an Up-Conv
layer, consisting of a Regular-Conv layer and an up-sampling
bilinear interpolation. Feature maps with the same resolution
were concatenated using dense connections.

Another Fusion Block in Fig. 7 (c) reduces the feature
resolution using a Strided-Conv layer at the end of the block,
and the feature maps generated from the previous layers in
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the block are concatenated after a down-sampling operation.
Meanwhile, the feature maps from the lower subnetwork
are processed using a Regular-Conv layer. Finally, the two
categories of feature maps are concatenated by a dense con-
nection.
Transition layer: Transition layers are utilized to reduce

the number of feature maps between Dense Blocks, thus
reducing the computational cost. A transition layer consists
of a BN layer, a ReLU layer, and a 1 × 1 convolution layer.
In Fig. 6, the transition layers are omitted to simplify the
flowchart.
Classifiers and loss function: Four classifiers are placed at

the end block of each subnetwork shown in Fig. 6. The output
of the k-th classifier is defined as follows [16]:

pk = [pk1, . . . , p
k
C ]

T
∈ RC (4)

where pkc ∈ [0, 1] is the prediction probability for the c-th
category. Prediction results were obtained only if the pre-
diction probability pkc was larger than ε. Here ε denotes a
threshold that adjusts the tradeoff between the accuracy and
efficiency. Additionally, softmax classifiers were used, and
the final results were predictions from the first classifier
with the prediction confidence reaching the threshold. The
classifiers used the following criteria [16]:

k∗ = min
{
k|max

c
pkc ≥ ε

}
(5)

_y ∈ arg max
c
pk
∗

c (6)

Each classifier used a cross-entropy loss function. The
overall loss function is the weighted cumulative loss of all
classifiers.

V. EXPERIMENTS AND RESULTS
A. EXPERIMENTAL SETUP
As shown in Fig. 3, the image classification process is com-
posed of a preprocessing phase, patch screening phase, and
RANet classification phase.

In the preprocessing phase, the input images were first
normalized using the Retinex and LAHE methods. Then, the
normalized images were subdivided into patches using the
sliding window approach. For the BreaKHis dataset, each
image with a resolution of 700 × 460 pixels was divided
into 45 patches of 224 × 224 pixels. Here, the sliding stride
was set to 56 and the parameter α was set to 32. Then, the
number of patches subdivided per image Nk was calculated.
The first Nk patches with high entropy were selected for
subsequent processing. The same operations were performed
on the BACH 2018 dataset. Images with 2040× 1536 pixels
were subdivided into 792 patches, and the parameter α was
set to 640.

The patch screening phase consisted of SURF extraction,
LLC, and SVM classification. The sample was first processed
using SURF extraction to obtain 64-dimensional feature vec-
tors. For LLC, the K-means method was used to cluster the
20 nearest neighbors (K = 20), and then a max-pooling oper-
ation was conducted to pool the sparse codes. A codebook

with 1500 visual words was also generated using theK-means
method. The SVM classifier was applied using the Libsvm
library [40].

The RANet architecture is composed of an initial layer and
subnetworks in 4 scales. In the initial layer, feature maps with
56 × 56 pixels were generated from input patches of 224 ×
224 pixels utilizing a convolution layer (7× 7 conv, stride =
2) and a max pooling layer (3×3 max pool, stride= 2) firstly.
Then base feature maps with four different scales (56 × 56,
28× 28, 14× 14, and 7× 7) for corresponding subnetworks
were generated using a Regular-Conv layer or a Strided-Conv
layer. The numbers of base feature channels for the four scales
were 32, 64, 64, and 128, respectively.

The four subnetworks consisted of 2, 4, 6, and 8 blocks
with growth rates of 64, 32, 32, and 16, respectively. The layer
number in each block was 8. The stride of the last convolution
layer (3× 3 conv) was 2 in the even Fusion Block. This is to
reduce the feature resolution. The stride of the other convo-
lution layers in subnetworks was 1. A compression factor of
0.25 was applied to each Fusion Block. Thus, 75% of the fea-
ture maps were generated from the current subnetwork, and
the others were generated from the previous low-resolution
subnetwork. The transition layers were utilized to reduce the
number of feature maps between blocks by 50%. In addition,
the classification layer consisted of a global average pooling
layer (7 × 7 conv, stride = 1), a fully connected layer and
a softmax layer. In addition, the threshold ε was set to 0.8,
indicating that the classification results were obtained only
when the prediction confidence pkc was larger than 0.8.
Moreover, the RANet model was trained using the stochas-

tic gradient descent (SGD) optimizer with a batch size of 64.
The RANet model was pretrained on the ImageNet dataset
[41]. The model was trained for 100 epochs, with an initial
learning rate of 0.01 and the learning rate was decreased by
a factor of 10 after 50 epochs. The momentum and weight
decay were set to 0.9 and 0.0001, respectively.

B. RESULTS FOR THE BREAKHIS DATASET
As shown in Table 1, images from the BreaKHis dataset were
classified into eight categories within two classes (benign
and malignant). Additionally, the images were classified at
the patient level. Thus, we evaluated the performance of
the breast cancer classification approach for multiclass and
binary classes at the image and patient levels, respectively.
Meanwhile, we conducted the analysis with different classi-
fication systems based on the RANet model with and without
these modules to evaluate the effects of the new algorithm
modules (data balance and ADSVM) described in the previ-
ous sections.

Fig. 8 shows the training and validation accuracy curves
for the eight-class classification at different magnification
levels. Accordingly, the training and validation processes
were affected by magnification factors. The best training and
validation accuracies were achieved at 200× magnification.

Tables 2 and 3 show the testing accuracy for multi-
class classification and binary classification, respectively.
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FIGURE 8. The training and validation accuracy curves for multiclass classification with different magnification factors in the BreaKHis dataset.

TABLE 2. Breast cancer classification accuracy for multiclass (8 classes) in the BreaKHis dataset (with and without data balance, with and without
ADSVM). The best results are in bold.

TABLE 3. Breast cancer classification accuracy for binary classes (benign vs. malignant) in the BreaKHis dataset (with and without data balance, with and
without ADSVM). The best results are in bold.

In addition, other metrics, including precision, recall, and
F1score for binary classification, are also shown in Table 4.
As shown in Tables 2 and 3, the data balance method has
affected the system performance. In the image-level evalu-
ation, the average classification accuracy for the multiclass
analysis with the data balance approach was approximately
17% better than that of the model without it. The improve-
ment in the binary classification was 11%. Meanwhile, the
accuracies at the patient level were improved by approxi-
mately 16% and 10% for multiclass and binary classification,
respectively. In addition, other metrics showed that the data

balance method improved the performance of the classifica-
tion system. A potential explanation for this finding is that
the data balance method removes the uneven distribution
problem in the BreaKHis dataset and increases the quality of
the training data.

Additionally, according to Tables 2 and 3, the ADSVM
method improved the accuracy and other metrics for breast
cancer classification. For multiclass classification, the accu-
racies increased by approximately 6% at the patient and
image levels with magnification factors of 40×, 100×, and
200×. The improvement was approximately 3% at 400×
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FIGURE 9. The ROC curves with AUC for multiclass classification with
different magnification factors in the BreaKHis dataset.

magnification. Meanwhile, the accuracy of the binary clas-
sification was improved by approximately 1.7% and 4%
at 400× and other magnification levels, respectively. The
images captured at 400× magnification contained fewer
benign tissues than the images captured at other magnifica-
tions; thus, the number of mislabeled patches screened by
the ADSVM approach was less than that screened at other
resolutions.

In general, for the image-level evaluation, the best accura-
cies of 98.05% and 99.14% for multiclass and binary classi-
fication were obtained at 200× magnification, respectively.
The best precision of 98.62%, the best recall of 99.05%,
and the best F1score of 98.83% were achieved at the same
magnification. Meanwhile, the approach achieved the best
accuracies of 97.43% and 98.83% at 200× magnification in
the patient-level evaluation for multiclass and binary classifi-
cations, respectively. In addition, the worst classification per-
formance was obtained at a magnification of 400×, because
the subdivided patches with 224×224 pixels from the images
at this resolution do not contain sufficient information for
CNN model training.

Additionally, the performance of the RANet + ADSVM
model was analyzed by constructing receiver operating char-
acteristic (ROC) curves. Fig. 9 shows the ROC curves for
multiclass classification of images captured at different mag-
nifications. The area under curve (AUC) is also shown in
Fig. 9. Accordingly, the method achieved the best AUC of
0.9923, meaning that the best classification performance was
obtained at 200× magnification.

C. RESULTS FOR THE BACH 2018 DATASET
For the BACH 2018 dataset, the classification performance
was evaluated for multiclass and binary classes based on two
criteria: the image level and patch level [22], [34]. Addi-
tionally, different metrics were used to estimate the effect
of the ADSVM module on the classification system. During

FIGURE 10. The training and validation accuracy curves for multiclass
classification in the BACH 2018 dataset.

FIGURE 11. The ROC curves with AUC for multiclass classification in the
BACH 2018 dataset.

processing, each image was subdivided into 70 patches of
224 × 224 pixels for prediction. The classification result for
the original whole image was generated by combining the
results obtained from patches. Additionally, fusion methods
affect the classification results for the entire image. The
performances of the majority vote and maximum probability
fusion methods were evaluated. For the majority vote fusion
method, the image classification result was determined by the
label with the highest number within the subdivided patches.
In the maximum probability fusion method, the image label
was determined by the maximum probability among the sub-
divided patches.

The training and validation curves of the accuracy for the
four-class classification are shown in Fig. 10. Table 5 shows
the testing performance for multiclass and binary classifi-

35986 VOLUME 10, 2022



Y. Zhou et al.: Breast Cancer Classification From Histopathological Images Using RANet

TABLE 4. Breast cancer classification metrics (precision, recall, and F1score) for binary classes (benign vs. malignant) in the BreaKHis dataset (with and
without data balance, with and without ADSVM). The best results are in bold.

TABLE 5. Metrics (accuracy, precision, recall, and F1score) for multiclass (4 classes) and binary classification at patch level in the BACH 2018 dataset (with
and without ADSVM). The best results are in bold.

TABLE 6. Metrics (accuracy, precision, recall, and F1score) for multiclass (4 classes) and binary classification at image level in the BACH 2018 dataset
(majority vote and maximum probability). The best results are in bold.

cation at the patch level. Table 6 shows the performance
for multiclass and binary classification at the image level.
As shown in Table 5, the best accuracies of 96.37% and
97.43%were achieved formulticlass and binary classification
at the patch level, respectively. Similar to the performance of
the model in analyzing the BreaKHis dataset, the accuracy
was reduced by 4.6% and 1.7% for multiclass and binary
classifications without the ADSVM method, respectively.
In addition, the best precision of 96.38%, the best recall of
96.37%, and the best F1score of 96.36% were obtained for
multiclass classification. For binary classification, the best
precision reached 96.32%, the best recall reached 98.64%,
and the best F1score reached 97.46%.
As shown in Table 6, for the image-level evaluation, the

classification system with the majority vote method achieved
better performance than that with the maximum probabil-
ity method. The highest accuracies of 97.75% and 99.25%
were obtained using the majority vote method for multiclass

and binary classifications, respectively. This accuracy was
3% better than that of the maximum probability method for
both multiclass and binary classifications. In general, the
model achieved the highest precision of 97.93% and 99.01%
for multiclass and binary classifications, respectively. Mean-
while, the best recall of 97.75% and 99.50%, and the best
F1score of 97.76% and 99.25% were achieved for multiclass
and binary classifications, respectively. Additionally, Fig. 11
shows the ROC curves for multiclass classification using
these voting methods. A higher AUC of 0.9892 was obtained
using the majority vote method.

D. COMPARISON WITH OTHER CNN MODELS
Different approaches based on other CNN models were
applied to the two datasets to evaluate the classification
accuracy and computational efficiency of the proposed
approach. The results of the comparison between the pro-
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FIGURE 12. The ROC curves of different CNN models with AUC for binary classification. (a): ROC curves in the BreaKHis dataset. (b) ROC curves in the
BACH 2018 dataset.

TABLE 7. Classification performance and computational time of different CNN models (ResNet101, DenseNet121, and RANet) in two datasets. The best
results are in bold.

posed approach and the approaches based on ResNet101 [14]
and DenseNet121 [15] are shown in Table 7. Additionally,
Fig 12 shows the comparison of the ROC curves.

For the BreaKHis dataset, these approaches were eval-
uated for binary classification at the image level using a
magnification factor of 200×. Our approach achieved the
highest accuracy of 99.14% compared with the accuracies
of 96.74% and 91.43% for DenseNet121 and ResNet101,
respectively. Meanwhile, our approach achieved the best pre-
cision of 98.62%, the best recall of 99.05%, the best AUC
of 0.9953 and the best Gini coefficient of 0.6851 compared
with the other models. In addition, the computational time per
image using our approach was 0.57s, which was less than that
of DenseNet121 (1.23 s) and ResNet101 (0.92 s).

For the BACH 2018 dataset, our approach achieved
99.25% accuracy for binary classification at the image
level, which was better than the accuracy of 96.38% for
DenseNet121 and 91.53% for ResNet101. Meanwhile, a pre-
cision of 99.01%, a recall of 99.50%, an AUC of 0.9981 and a
Gini coefficient of 0.4981 were achieved using our approach,
which were better than those of the other models. In addition,
the computational time per image using our approach was
3.16 s, which was less than that of DenseNet121 (7.24 s) and
ResNet101 (5.40 s).

In general, compared with the DenseNet121 and
ResNet101 models, our RANet+ ADSVM approach signifi-
cantly improves both the classification accuracy and compu-
tational efficiency.

E. COMPARISON WITH SIMILAR WORKS
In this section, we compare the performance of the RANet+
ADSVM approach with methods proposed in recent studies.
Table 8 shows the accuracy for multiclass classification at the
image level and patient level with different magnification fac-
tors for the BreaKHis dataset. Our approach achieved the best
performance for classification at the image and patient levels
with magnification factors of 100× and 200×. However,
the classification accuracies of our approach were 94.16%
and 94.43% at the patient level and image level at 40×
magnification, respectively, which were less than the accura-
cies of 96.32% and 99.13% obtained with the DenseNet121-
AnoGAN approach [19]. A potential explanation for this
finding is that patches from images captured at 40×magnifi-
cation represent larger breast tissues than those from images
captured at other magnifications. The patches divided from
malignant images may contain more benign tissues, and these
patches may be misclassified by the low-resolution subnet-
work in the RANet model. Moreover, the approach based
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TABLE 8. Performance comparison with similar works for binary classification in the BreaKHis dataset. The best results are in bold.

TABLE 9. Performance comparison with similar works for multiclass classification in the BACH 2018 dataset. The best results are in bold.

on the FE-BkCapsNet model [20] achieved an accuracy of
93.54% for image-level classification at 400×magnification,
which was better than the accuracy of 93.35% using our
approach. In our approach, images are subdivided into 224×
224 pixels patches, whichmay not contain sufficient informa-
tion for the follow-up classification at 400× magnification.
However, in general, our approach achieved the best overall
accuracy compared with the other approaches.

The image level classification performance using the
BACH 2018 dataset is presented in Table 9. Compared with
other similar studies [22]–[24], [42], our approach achieved
the highest accuracy of 97.75%, precision of 97.93%, and
specificity of 98.21%.

VI. CONCLUSION
In this study, we propose a breast cancer classification
approach based on the RANet model and the ADSVM
method. The ADSVM method screens mislabeled patches
from malignant images to improve classification accuracy.
In addition, the RANet model utilizes resolution adaptive
subnetworks with variable depths for different images. This
approach reduces the computational resources and the time

based on the premise of the classification accuracy. Our
approach was evaluated using the BreaKHis and BACH
2018 datasets. For the BreaKHis dataset, the best accura-
cies of 98.83% and 99.14% were achieved for binary clas-
sification at 200× magnification at the patient and image
levels, respectively. Meanwhile, the approach achieved the
best accuracies of 97.75% and 99.25% for multiclass and
binary image-level classification of the BACH 2018 dataset,
respectively. In addition, the computational efficiency was
evaluated for the two datasets. Experimental results show
that the proposed approach reduced the computational cost
by approximately half compared with the ResNet101 and
DenseNet121 models. Compared with similar studies of
breast cancer image classification, our approach achieved the
best performance in classifying images from the BreaKHis
dataset at 100× and 200× magnification. The performance
for the BACH 2018 dataset was also better than that
described in other studies. In general, the RANet+ADSVM
approach shows a significant improvement in performance in
terms of classification accuracy and computational efficiency,
which may help pathologists produce rapid and accurate
diagnoses.
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Although the proposed approach achieved outperformance
at magnification factors of 100× and 200×, the classifica-
tion performance required improvement at 400× magnifica-
tion. Future studies will evaluate the effect of the patch size
on high-resolution image classification. Moreover, different-
resolution feature maps were used separately in our approach.
In future studies, we will develop a new CNNmodel combin-
ing different resolution feature maps extracted from images
captured at different magnifications from one patient to gen-
erate prediction results. This analysis will allow us to directly
conduct the classification approach at the patient level and
may increase the performance of patient-level classification.
Additionally, new feature extraction method which can repli-
cate the features as derived from the RANet model will be
studied to future improve the classification performance and
computational efficiency.
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