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ABSTRACT The ability to predict the radioactive soil radon gas concentration is important for human
beings because it serves as a precursor to earthquakes. Several studies have been conducted across the globe
to confirm the correlation of radon emission dynamics and earthquakes, and concluded that the soil radon
gas is the witness of anomalous behaviour before the occurrences of several earthquakes. This anomalous
behavior can help to construct a better prediction model for earthquake forecasting. This paper aims at
employing different ensemble and individual machine learning methods on real time radon time series
data with different scenarios to predict anomalies in data caused by the seismic activities.The ensemble
methods include boosted tree, bagged cart and boosted linear model while standalone machine learning
methods include support vector machine with linear and radial kernels and k-nearest neighbors (K-NN).
We tested the methods on a dataset recorded on the fault line located in Muzaffarabad. Time series data
was collected over a period ranging from March 1, 2017 to May 11, 2018 including nine(09) earthquakes.
The methods are tested in four different settings with 10 times 10 folds cross validation procedure over
the time window of 1 to 4. The repeated 10 fold cross validation is performed to reduce the noise in the
model performance estimation by replicating the 10 fold cross validation procedure 10 times. Statistical
performance evaluation measures viz. root mean square error (RMSE), root mean squared log error
(RMSLE), mean absolute percentage error (MAPE), percentage bias (PB), and mean squared error (MSE)
have been calculated for the assessment of performance. In setting 1, the support vector machine with radial
kernel performs better with the minimum RMSE score of 1381.023 when compared to other prediction
models. In setting 3, it can be observed through different performance metrics such as RMSE, the value
in the range [1262.864, 1409.616] which is minimum when other prediction models for predicting soil
radon gas concentration dataset. For setting 4, the boosted tree model yielded the minimum RMSE and
MAPE scores of 1573.174 and 0.056 respectively. Findings of the study shows that boosted tree and support
vector machine with radial kernel proved to be better regression models for the prediction of anomalies in
soil radon gas concentration during seismic activities. An important finding of this study suggests that by
employing boosted tree ensemble method make us able to accurately predict soil radon gas concentration
automatically from environmental parameters.

INDEX TERMS Automated system, earthquakes, ensemble methods, percentage bias, soil radon gas.
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I. INTRODUCTION
The accuracy at which the decision support systems (DSSs)
predict the samples, say for earthquake, medical diagnosis,
etc. is of main concern in several domains especially where
human lives are at stake. Earthquake is considered to be a
major natural disaster and its unpredictability causes loss of
human lives and infrastructure [1]. When talking about the
earthquake prediction, there exist two different schools of
thought. The first considers it to be a phenomenon which is
impossible to predict in advance while others have spent a lot
of resources and efforts tomake it predictable. Various studies
have been carried out in the past to tackle this challenging
task through different angles [2]–[9]. The factor which makes
it more challenging is the lack of technology to monitor
the stress, pressure, changes occurring deep beneath the
earth’s crust using scientific instruments with more accuracy
which may result in exploiting and extracting comprehensive
seismic features for the purpose of analysis. During the
earthquake preparation process beneath the surface, different
geophysical and seismological processes occur’s. Radon and
one of its radioactive isotope thoron produced from uranium
and thorium sources deep down the earth may potentially
serve for the prediction of impending earthquakes. Radon
has three naturally occurring isotopes viz. 222Rn (usually
called radon, stems its origin from radioactive 238U series),
220Rn (called as thoron, stems its origin into 232Th radioactive
series) and 219Rn (called as action, stems its origin into 235U
radioactive series). Crustal abundance of 238U (Uranium),
232Th (Thorium) and 235U (Actinum) isotopes are 2.7,
8.5 and 0.02 µg kg−1 respectively. Though concentration
of 232Th is somewhat higher than 238U in the earth crust
but rate of production of 222Rn and 220Rn is about the
same due to longer half life of 232Th (14.1 × 109 years)
as compared with 238U (4.5 × 109 years). Out of three
naturally occurring isotopes 222Rn is more important due
to its longer half life (3.825 days) as compared to 220Rn
(55.6 s) and 219Rn (Actinon) [10]. Half-lives of later two
isotopes restrict transport of these isotopes by diffusion
method to short distances only. However thoron manages
to reach earth surface but in lesser quantity than radon.
In this article we shall focus on radon rather than other
isotopes.

Several studies have been carried out across the globe
focusing on earthquake prediction based upon anomalous
behavior of radon gas in the atmosphere, soil, and water [3],
[11]–[14]. The uneven behaviour of the radon in soil
and water was correlated with the earthquake, first time,
dated back in 1967 [15] and another study in 1976 also
reported spikes in radon concentration before the occurrence
of the earthquake [16]. Moreover, in 1978, another study
reported unusual behaviour of radon concentration prior to
earthquake [17], and resulted in extensive research activity
to further explore the correlation between earthquakes and
radon emission dynamics [18]–[25]. Moreover, the nature of
carrier gases and other meteorological parameters definitely
influence the radon emission underlying forces [25]–[28].

Consequently, with the recent advancements in computer
science, different computational intelligence techniques have
been successfully introduced to predict radon concentration
from meteorological parameters [3]. Regression trees have
been used to predict the radon soil gas concentration through
environmental data such as pressure, rainfall, air temperature
and soil temperature, and concluded that the prediction error
increases a week before the earthquakes having magnitudes
ranging from 0.8 to 3.3 [29], [30].A neural network system
using radial basis function (RBF) has been tested that can
be used as an alternative to traditional regression methods to
isolate radon emission anomalies [31]. The proposed model
was further tested and evaluated on future data set and
the prediction accuracy 87.8% was acheived. Tareen et al.
employed three different computational intelligence models
to automatically detect anomalous behaviour in soil radon gas
time series data by modelling the radon concentration with
different statistical and meteorological parameters [11]. The
findings of the study reveal that the irregular behaviour of
radon concentration is caused by seismic activities. A study
was conducted to optimize the machine learning model
namely artificial neural network (ANN) for the accurate
prediction of radon dispersion in Vietnam and concluded
that ANN performed very well in order to predict radon
dispersion with the lower values of performance metrics [32].
The soil radon gas concentration was estimated by employing
a Deep Neural Network (DNN) using different environmental
parameters and mapped the functional relationship between
radon concentration and environmental parameters [33].
A new method was proposed which is based upon Adaptive
Linear Neuron (Adaline) and estimated the soil radon gas
concentrationwith associated environmental parameters [34].
The proposed methodology can efficiently differentiate the
temporal variation of radon concentration related to environ-
mental parameters. Sikder et al. employed the decision tree
algorithm for the characterization of premonitory factors of
low seismic activity that outperformed other regression-based
techniques [35].

Machine learning explores the problem structure and
construction of algorithms that can learn from and make
predictions on data. It is a branch of artificial intelligence
that deals with the development and study of algorithms
that are capable of making models for predictions or
decisions [36]. With the advent of technology, machine
learning methods have shown significant results in various
fields of studies such as medical diagnosis [37]–[42],
banking [43], [44], market basket analysis [45], [46] and
many more. A variety of methods are offered in this context
such as Diagonal Linear Discriminant Analysis (DLDA) [47],
k-Nearest Neighbors (k-NN) [48], Support Vector Machine
(SVM) [49] and Random Forest (RF) [50] for classification
and prediction purposes. Moreover, ensemble methods were
also proposed such as bagging [51], boosting [52], [53] and
stacking [54] where the final prediction is not made by a
single model only but rather by aggregating the outcome
of various weak learned models [55]. Ensemble methods
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show significant improvement in performance than individual
models in classification and prediction problems [56]–[59].
The improvement in the performance by employing ensemble
methods is based upon the premise that prediction made by
the ensemble is more accurate than relying on the individual
classifier that constituted the ensemble [55].

The core idea of this research work is to investigate the
ensemble methods and individual learning models for the
accurate prediction of soil radon gas concentration time
series data. Ensemble methods used in this paper are boosted
tree, bagged cart and boosted linear model, and in the
individual learning models’ category, support vector machine
with linear and radial kernels, and K-Nearest Neighbors
(K-NN) are used. The testing of ensemble and individual
learning methods are performed in different settings ranging
from 1 to 4. Moreover, each setting consists of several
windows from W1 to W4. The prediction of the soil radon
gas concentration during the seismic activity or anomaly that
captures the variations of the original concentration is of
main interest in this study. The prediction model can better
predict the soil radon concentration accurately that leads to
the identification of anomalies in the time series. Instead of
relying upon a single dataset for testing purposes, the testing
phase is decomposed into different types of settings which
are the incorporation of different seismic activities. Each
of the settings leads to a different composition of training
and testing sets. The time window scheme is employed to
predict the radon concentration in different periods of time.
The window comprises of the days before and after the
occurrence of seismic events: a window size of 1 means
1 day before and after the seismic event. Likewise, window
size of 3 and 4 means the samples which belong to 3 and
4 days before and after the occurrence of seismic activity. The
impact of a seismic event ranged from its preparation phase
(before the occurrence of a seismic event) to aftershocks.
For experimentation, the dataset is recorded on the fault line
present in Muzaffarabad; a city in Kashmir, administered by
Pakistan over a period from 1st of March 2017 to 11th of May
2018 included 9 seismic events or earthquakes. The detailed
description of seismic events along with their magnitude is
presented below in Table 1. The cross validation procedure
is applied which is 10 times 10 fold cross validation for
training the models and tested using a test set provided
by each setting.The original sample is randomly divided
into 10 equal size subsamples in 10-fold cross-validation.
One of the 10 subsamples is kept as validation data for
testing the model, while the remaining 9 subsamples are
used for training purposes. The cross-validation procedure
is then repeated 10 times, with each of the 10 subsamples
serving as validation data exactly once. To generate a single
estimate, the 10 fold results are averaged. Further, this
procedure is repeated 10 times and the model performance
is estimated by averaging the performance across all folds
and repeats. The basic idea behind the use of repeated
cross validation is to incorporate all the samples in model
training and validation as well as reduce the noise in the

estimation of model performance. The experimentation is
performed in the R language environment using the package
CARET (Classification and Regression Training) [60].For
performance evaluation, frequently used statistical metrics
are computed such as RMSE, RMSLE, MAPE, PB andMSE.
The ensemble and individual models are purely assessed
upon the performance of the methods to efficiently capture
temporal variations and functional relationships between
radon concentration and environmental parameters.

II. MATERIAL AND METHODS
In this section, the statistical details of the soil radon gas time
series dataset have been presented along with earthquake or
seismic activities information. Moreover, a basic understand-
ing of the ensemble and individual machine learning methods
is also provided. The detailed information of the proposed
simulation plan for prediction of soil radon gas concentration
is also pictorially presented and discussed in details. Finally,
the mathematical formulation of the performance metrics
used for performance estimation of ensemble and individual
machine learning methods for predicting soil radon gas
concentration is also provided.

A. AREA OF STUDY
The Muzaffarabad city is the capital of state of azad
Jammu and Kashmir, Pakistani administrated part of Jammu
and Kashmir. It shares border with Pakistani provinces
Khyber Pakhtunkhawa and Punjab towards west and south
respectively. Eastern border is connected with the Indian
administrated part of Kashmir. According to 2017 census,
total population of city of Muzaffarabad was 149913.
Muzaffarabad suffered from 2005 devastating earthquake
with a magnitude 7.6Mw causing more than 80000 causalities
in and around superbs of city. Muzaffarabad is a cup
shaped valley. Air quality index (AQI) of Muzaffarabad is
unhealthy for sentitive group of peoples. Particulate matter
concentration (PM2.5) in Muzaffarabad air is 6.6 times above
the WHO air quality standards [61]. Since Muzaffarabad is
seismically active area and has history of occurance of regular
devastating earthquakes, so forecasting possible earthquake
in future is a attractive field of study. We have installed
RADON measuring station over a fault line passing beneath
the Muzaffarabad.

B. DATA ACQUISITION
RTM-1688-2 SARAD nuclear Instrument was installed,
for the continuous radiometric measurement of radon and
meterological parameters, at Chehla location with latitude
34.39621 N and longitude 73.47347 E. Radioactive radon
decays into its short living daughter products which are used
to find radon concentration within the radon measurement
chamber. Radon-222 decays into the Polonium-218 with
the emission of alpha particle. Momentarily Polonium-218
becomes positively charged due to orbital electron scattering
from emitted alpha particles. Positive ions of Polonium-
218 is collected by working radon chamber and number of
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TABLE 1. Earthquake details with date, magnitude and epicentre depth during the study period.

polonium-218 ions collected in chambers are proportional
to the radon concentration. RTM 1688-2 works in slow
and fast modes and stores the data on non-volatile memory
using a circular architecture. The data acquired from the
measurements is downloaded to a personal laptop using the
seriel interface [62].

C. DATA DESCRIPTION
The dataset used for this work is ‘‘soil radon gas time series
data’’, recorded on the fault line located at the Muzaffarabad
city of Pakistan administered part of Kashmir as shown
in Figure 1.The single reading was recorded after every
40 minutes, ensuing in 36 readings for the complete day.
The concrete details of the radon measurement station and
its instrumentation are reported elsewhere [3], [7], [11].
The dataset contains 15692 valid observations of radon
concentration along with its environmental parameters such
as thoron (Bq/m3), temperature (0C), relative humidity and
pressure (mbar). During the data collection period, nine
seismic activities were observed whose details with their
magnitude are presented in Table 1. When considering
the attribute of interest i.e. radon concentration (RN), the
minimum and maximum observed radon concentration were
13743 Bq/m3 and 28085 Bq/m3 respectively. Moreover, the
mean and median of the whole radon time series was found to
be 21364 Bq/m3 and 21569 Bq/m3. During the seismic activ-
ity period, the minimum of radon concentration (RN) was
observed with the concentration value of 16132 Bq/m3 while
the maximum was 26650 Bq/m3. For thoron time series, the
concentration of thoron,during seismic activities, varied from
2146 Bq/m3 to 3734 Bq/m3 respectively.

D. PROPOSED SIMULATION AND ANALYSIS PLAN
Figure 2 presents the complete experimental framework for
this work. The simulation is executed for two different
groups of machine learning methods presented as Group
1 and Group 2. Group 1 consists of ensemble methods for
learning while Group 2 contains individual learning methods.
The ensemble methods used in group 1 are boosted tree
model, bagged cart model and boosted linear model while
individual learning models are K-NN, SVMs with linear
and radial kernels as presented in Group 2. The simulation

is executed in 4 different settings ranging from setting
1 to 4 The basic purpose to introduce these settings is to
investigate the prediction capability of the learned models
on different test sets which included almost every seismic
activity. Apart from the different distributions of training
and testing data, the time window is also incorporated. The
time window enables us to obtain data related to seismic
activity along with all the samples of the days before and
after the seismic activity as specified. Several investigations
from the globe have confirmed the unusual behavior of soil
radon gas concentrations prior to the occurrence of several
earthquakes. This unusual behavior in soil radon before
an earthquake could lead to the development of a better
forecasting model that can lead to the prediction of soil
radon gas concentration. The forecasting model can capture
the temporal fluctuations in the soil radon time series by
training and testing on multiple time windows. After every
40 minutes, a single reading is taken, totaling 36 readings for
the complete day. The idea of the window is to extract the
seismic activity alongwith the relevant timewindow (window
of 1 means 36 readings before and after the seismic activity)
which incorporates the non-seismic sample to seismic time
series for better analyzing the variations.. The novelty of
this work is to introduce settings that incorporate seismic
activities in both training and testing sets to better analyze the
forecasting models. The previously reported studies simply
divide the dataset into seismic and non-seismic. The model
was trained using non-seismic activity dataset. Further, the
trained model is used to predict soil radon gas concentration
in seismic activity dataset. For this work, the time window
from 1 to 4 is used to extract the testing test. Each of the
settings leads to a different distribution of training and testing
data. Consider setting 1 presented in Figure 2, the training
data consists of all non-seismic activity (NSA) samples
along with the seismic activity (SA) data of 1,2,5,6,7,8,9
while testing set composed of samples belonging to seismic
activity (SA) 3 and 4 with respect to time window ranged
from 1 to 4. Thus, each setting along with a time window
enables one to assess the performance of the models from
group 1 and group 2 in a more efficient manner. The training
set, splitted by each setting, is trained by ensemble methods
as well as individual learning methods and results in their
respective trained machine learning models. These ensemble
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FIGURE 1. Soil radon gas concentration measuring station located at Muzaffarabad, Pakistan for data collection.

FIGURE 2. Proposed framework of this work.

and individual models are further tested by predicting the
test set. The models are trained through a cross validation
procedure which is 10 times 10 fold cross validation for this
study. The predictionsmade by eachmodel from groups 1 and
2 are assessed by calculating different statistical performance
evaluation metrics. The performance metrics include RMSE,
RMSLE, MAPE, PB and MSE.

E. ENSEMBLE METHODS
In machine learning and statistics, the ensemble is the
collection of multiple models and is one of the self-efficient
methods as compared to other basic models [55]. Supervised
learning algorithms are extremely useful in searching through
different solution spaces to predict suitable hypothesis space

for certain problems.The ensemble technique combines
different hypotheses to provide the best hypothesis. Basically,
ensemble technique is used for obtaining a strong learner with
the help of a combination of weak learners.While performing
classification using ensemble methods, more computations
are performed as compared to making predictions with
a particular model so multiple models can be a way to
help poor algorithms for performing well after doing extra
computations. The ensemble method is also an example
of supervised learning as firstly it is trained and then it
makes predictions and represents a single hypothesis space.
Experimentally, ensemble methods provide more accurate
results provided that there is considerable diversity between
the models.

1) BOOSTING AND BAGGING
In order to generate the different base learners in ensemble
methods, sequential and parallel ensemble methods are used,
such as boosting and bagging [63]. Sequential ensemble
methods, such as boosting, are employed to exploit the
dependence between the different base learners generated
whereas in parallel ensemble method, bagging as a rep-
resentative, is to exploit the independence between the
base learners generated. Boosting ensemble method boosts
the overall performance of a base learning algorithm in
a residual-decreasing way [63]. On the other hand, the
bagging ensemble method combines the independent base
learner to reduce the error. The word bagging is the
abbreviation of Bootstrap AGGregatING [51]. Bagging is
designed to improve the accuracy of predictions in decision
support systems by model averaging that helps to reduce the
variance and minimizes the overfitting problem. In order to
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perform bagging, m different bootstraps are created from the
original training data. The base learning algorithm either for
classification or regression is trained upon each bootstrap and
this result in m individual base learners. In the areas where
classification is of main concern, the final classifications
are made by combining the base learners’ classifications
by plurality voting or averaging the probabilities of the
estimated class.For regression problems, the new predictions
are made by averaging the predictions of the individual
models generated using different bootstraps. Consider X
is a sample for which the prediction needs to be made,
BL1(x),BL2(X ), . . . . . . ,BLm(X ) are the predictions gener-
ated from individual base learners. The bagged prediction
Pbag is the aggregation of the predictions from individual
base learners formulated as:

Pbag = BL1 (x) ,BL2 (X) , . . . . . . ,BLm (X) . (1)

This aggregation results in the reduction of the variance
of an individual base learner and minimizes the overfitting
problem as discussed above. For the base learning algorithms
having larger variance (decision trees) than others, bagging
works very well and improves its performance whereas the
algorithm having higher bias (linear regression), the bagging
results in less improvement of performance in classification
and regression problems [55], [64]. The higher variance
base learners are those learners for which a small change
in the training data can make a major change in response
values.

Boosting works by finding many rules of thumb using
a subset of the training examples simply by sampling
repeatedly from the distribution [65]. In subsequent iterations
a new rule is generated using the subset of training examples.
To make the boosting approach workable one of the methods
is to focus on the difficult to predict/classify examples and to
increase the weights of the examples that are misclassified.
Therefore, the hardest examples would be included in the
next iteration during sampling, enabling it to be predictable
in the next rule of thumb. The accuracy of each weak rule is
measured by how much it accurately classifies the examples.
Finally, the predictions about unseen samples are made by
aggregating the predictions of all the weak rules to make
a single prediction rule with the hope that the aggregate is
better than using a single prediction rule. A general boosting
procedure is given below in Figure 3.

F. K-NEAREST NEIGHBOR
K-NN technique is a non-parametric method first developed
in 1951 [66] and further expanded by ThomasCover [48]. The
algorithms work by finding the feature similarity to predict
the values for test samples. The feature similarity is calculated
in such a way that the distance is computed for new data
samples from all the training sets. For distance calculation,
there exists a variety of methods such as Euclidian and
Manhattan distances. The Euclidean distance is computed by
the sum of the squared difference between the existing (y) and

FIGURE 3. A general boosting framework to boost the performance of the
base learner.

new point (x).

Euclidean distance =

√√√√ N∑
n=1

(xn − yn)2 (2)

Moreover, the Manhattan distance is the sum of the absolute
difference between existing and a new point formulated as:

Manhattan distance =
N∑
n=1

|xn − yn| (3)

After calculating the distance of a new sample from each
sample in the training set, the K number of neighbors needs to
be selected to find the classification or prediction for the new
sample. The step-by-step working of the K-NN algorithm is
given below.

1) Read the training and test dataset.
2) Initialize the value of K to the optimum number of

neighbors
3) For every sample in test data.

a) Compute the distance between the test sample and
the training set.

b) Distance and index of the sample is added to the
ordered collection.

c) The ordered collection is sorted in ascending
order by their distances computed in step 3a.

d) Choose the first K entries from the sorted
collection.

Return the mean of the K response values to serve as the
predicted value for the current testing sample.

G. SUPPORT VECTOR MACHINE
The support vector machine (SVM) [67] is a deterministic
technique and considered to be the most useful machine
learning tool where classification and regression tasks
are of concern. It was originally designed for a binary
classification task that separates the samples of different
classes with hyperplanes having maximum margin [68].
However, the minimum distance of instances of different
classes from the classification hyperplane is called the
margin. The SVM with some modifications can be used
for regression tasks where the output is a real value known
as support vector regression (SVR). For regression, the
epsilon-insensitive regression (ε − SVM ), the data for
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training the algorithm consists of predictor variables and
associated observed response values. Here, the goal is to
find a function g(x) that does not deviate more than epsilon
(ε) for each training point x. In the case of linear SVM
regression, let us consider a training data where xn a
multivariate set ofM samples with associated response values
yn. In order to find the linear function g(x) that is as flat as
possible, the task is to find the function g(x) with norm having
minimum value (ββ ′) [69].

g(x) = x ′β + a (4)

To do so, the formulation results as a convex optimization
problem to minimize the function put through all residuals
with the value less than epsilon (ε) as given by:

J (β) =
1
2
β ′β,∀n : |yn − (x ′nβ + a) ≤ ε| (5)

For the points when there is no such function g(x) to
satisfy all the constraints above, the slack variables are
introduced for each point to deal with this situation as given
by:

J (β) =
1
2
β ′β + C

M∑
n=1

(ξn + ξ∗n ) (6)

The C is known as a box constant that helps to get rid
of overfitting. It is a positive numeric value that controls
the penalty imposed on samples lying outside the epsilon
margin epsilon margin (ε) and tolerates the trade-off between
the flatness of g(x) and the extent to which the deviations
are larger than ε. Moreover, the loss is measured from the
distance between the epsilon boundary and observed value y
as given by:

Lε =

{
0, if |y− g(x)| ≤ ε
|y− g(x)| − ε, otherwise

(7)

For linear SVM regression, the Lagrange dual (LD) can be
obtained by introducing different non-negative multipliers αn
and α∗n for each of the instances xn. The LD for the Lagrange
primal function Lp is given below where we minimize the
function as given by:

L(α) =
1
2

M∑
i=1

M∑
j=1

(
αi − α

∗
i
) (
αj − α

∗
j

)
x ′ixj + ε

M∑
i=1

(αi

+α∗i
)
+

M∑
i=1

yi
(
α∗i − αi

)
(8)

Finally, the function that is used to predict the test set or new
values are given by:

g(x) =
M∑
n=1

(
αn + α

∗
n
) (
x ′nx
)
+ a (9)

III. PERFORMANCE MEASURE
In order to assess the accuracy of the predictions of
radon concentration (RN) from other attributes such as
thoron, temperature, relative humidity and pressure, different
frequently used performance metrics are computed. RMSE is
considered to be a frequently used performance evaluation
measure that has been applied to various fields of studies
where prediction models are of concern. It is more sensitive
to outliers because a large difference between actual and
predicted values results in a markedly larger effect on its
value. RMSE can be computed from:

RMSE =

√√√√ 1
V

V∑
n=1

(Actualn − Predictedn)2

where V represents total number of samples (10)

The presence of outliers when calculating RMSE can explode
the error term but RMSLE can scale down the outliers and
result in nullification of their effect. The RMSLE can be
calculated from the equation given below:

RMSLE

=

√√√√ 1
V

V∑
n=1

(log(Actualn + 1)− log(Predictedn + 1))2

where V represents total number of samples (11)

It is used mostly to avoid the excessive effect of huge
differences in the predicted and actual values in the case when
these values are higher in number. Moreover, the MAPE is
also frequently used performance metric which is used to
assess the accurateness of prediction model, computed from:

MAPE =
1
V

V∑
n=1

∣∣∣∣Actualn − PredictednActualn

∣∣∣∣ (12)

MAPE is the average of absolute percentage error. The
features that make MAPE popular and useful are its scale
independency and easy interpretation [70]. Apart from its
advantages, it has certain disadvantages such as resultant
undefined or infinite values when the actual values are zero
or close to zero. The actual values with a magnitude less than
1 yielded the MAPE to a higher percentage value whilst the
actual zero values resulted in infinite MAPE values [71].

Moreover, Mean Squared Error (MSE) is a performance
metric that estimates how much the actual and predicted
values are closer to each other, computed with V number of
samples from the equation given below:

MSE =
1
V

V∑
n=1

(Predictedn − Actualn)2 (13)

More simply put, it is the average square difference between
the actual and predicted value. The lower the value of MSE
indicates the better fit of the prediction model. The tendency
of predicted value to be smaller or larger in average to its
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TABLE 2. RMSE and MAPE statistics of ensemble and individual leaning methods for predicting radon concentration from other environmental attributes
keeping setting 1and window from 1 to 4.

real or actual value can be described by percentage bias (PB),
formulated with V number of samples as:

PB = 100×

∑V
n=1 (Predictedn − Actualn)∑V

n=1 Actualn
(14)

The larger positive values of PB indicate overestimation bias
whilst larger negative values indicate model underestimation
bias. On the other hand, PB of value 0 is considered to be an
optimal value representing accurate model simulation.

IV. RESULT AND DISCUSSION
The RMSE and MAPE statistics for ensemble and individual
learning methods are presented in Table 2. The ensemble
methods include boosted tree method, bagged cart and
boosted linear model and individual learning models are
K-NN, support vector machine (SVM) with the linear and
radial kernel. The statistics presented in Table 2 are calculated
by employing all the methods from groups 1 and 2 on
the soil radon gas concentration dataset in setting 1. The
setting 1, as shown in Figure 2, is the distribution of training
and testing samples in such a way that training data is
composed of the non-seismic activity data (NSA) and seismic
activities (E1, E2, E5, E6, E7, E8 and E9) while testing data
is constituted by E3 and E4 with respect to time window
from 1 to 4. The statistics calculated in Table 2 reveal
that when predicting radon concentration as a function of
environmental parameters, the minimum RMSE is achieved
by a support vector machine with a radial kernel across all
the time windows. For time window 1, the minimum RMSE
is 1381.023 yielded by a support vector machine with a
radial kernel. A similar trend can be observed across all
the windows achieving a minimum of RMSE by a support
vector machine (SVM) with a radial kernel when predicting
radon gas concentration. Considering MAPE, like RMSE,
the minimum value of MAPE is observed for SVM with
radial kernel across all the time windows ranging from 1 to 4.
The minimum MAPE value of SVM with radial kernel is
0.045 for time window 1 when compared to the maximum
value of the ensemble method of 0.082 by the boosted
linear model. The statistics presented above in Table 2 reveal
that the individual learning model, SVM with radial kernel,
performs better than all the other methods especially from
ensemble methods in terms of RMSE and MAPE. Although,
the RMSE and MAPE statistics for SVM with radial kernel
is smaller than all the other methods but boosted tree method

performs as a next rival to SVM with radial and achieves
an approximately similar type of results when compared
to SVM with radial kernel. The minimum difference of
RMSE can be observed in time window 2 with the value of
9.345 when compared to SVM with radial kernel. Likewise,
only a difference of 0.001 for the value of MAPE is observed
when comparing SVM with the radial and boosted tree
model. The similar type of results discussed above can be
seen for SVM with radial kernel and boosted tree model
when compared to other ensemble and individual learning
methods in Figure 4-7 (a-f), presenting actual and predicted
soil radon gas concentration when splitting data according
to setting 1 and time window of 1 to 4. The actual radon
concentration is presented by a red curve while the predicted
radon concentration is presented in a black color curve.
It can be seen that boosted tree and SVM with radial kernel
are the two competent models from the rest because both
models perform very close to each other and overlapping
most of the original radon time series. The boosted linear
model performs worst in setting 1 (window from 1 to 4) and
does not capture the temporal variations in the time series.
However, bagged cart and K-NN perform nearly equivalent
to each other and perform better and result in capturing some
temporal variations efficiently when compared to boosted
linear model and SVM with linear kernel. Table 3 presented
the different statistics when comparing actual and predicted
radon concentration by the different ensemble and individual
learning methods keeping setting 2 (see Figure 2) by time
window of 1 to 4. It can be seen from Table 3; although,
the boosted linear model performs better than other machine
learning models specified with the value of RMSE in the
range [1082.2, 1173.95] for windows from 1 to 4 but the
boosted linear model did not capture the temporal variation
as per original radon concentration (see Figure 8 (c)). This
can be easily observed through percentage bias (PB) value
of -0.002, -0.004 and -0.004 for time windows of 2, 3 and
4 respectively, showing negative bias which is the clear
indication of model underestimation bias. A similar type of
patterns can be observed in Figure 8(a-f) presenting actual
and predicted radon concentrations for setting 2 and a time
window of 3 days. Refer to Figure 8 (a-f), the actual and
predicted radon concentration showing in red and black
color, apart from lowest RMSE value of the boosted linear
model, the predicted values did not follow the variations in
the radon time series data. Hence, this results in negative
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FIGURE 4. (a-f) Represents actual and predicted radon concentration for ensemble and individual learning methods keeping setting 1 and time window
of 1.

TABLE 3. RMSE, RMSLE, MAPE, PB and MSE statistics for ensemble and individual leaning methods for predicting radon concentration from other
environmental attributes keeping setting 2 and time window from 1 to 4.

percentage bias. However, support vector machine (SVM)
with a linear kernel is the better option to be considered
because it overlaps the original radon time series by capturing
temporal variations throughout the tested time series. It can
also be seen from Table 3, after a boosted linear model, the
support vector machine (SVM) with a linear kernel has the
lowest RMSE value as well as a percentage bias closer to ‘‘0’’.
These statistics leads to a conclusion that SVM with linear
kernel performs better in setting 2 with the time window of
1 to 4. From Table 4, by experimenting with setting 3 (see
Figure 2), the boosted tree model results in value of RMSE
in the range [1262.864, 1409.616] for windows from 1 to

4 which is minimum when compared to other prediction
methods. The support vector machine with radial kernel
performs closer to boosted tree model having RMSE with
the difference of 93, 99.258, 88.17 and 81.359 for the time
window of 1, 2, 3 and 4 respectively. For other performance
metrics, the average RMSLE value across the entire time
window for the boosted tree model is 0.0595. On the other
hand, the average RMSLE values for bagged cart model,
boosted linear model, K-NN, SVM with linear and radial
kernel are 0.069, 0.089, 0.072, 0.066 and 0.064 respectively.
Similarly, the averageMAPE andMSE values for the boosted
tree model are 0.047 and 1745326 respectively which is
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FIGURE 5. (a-f) Represents actual and predicted radon concentration for ensemble and individual learning methods keeping setting 1 and time window
of 2.

FIGURE 6. (a-f) Represents actual and predicted radon concentration for ensemble and individual learning methods keeping setting 1 and time window
of 3.

relatively promising when compared with the boosted linear
model with highest value and SVM with radial kernel with
closer average MAPE, MSE statistics of 0.067, 3976024 and
0.05, 1992770 respectively. Refer to Figure 9 (a-f), the

actual and predicted radon concentration for the ensemble
and individual learning methods are shown in red and black
curves. It can be seen from Figure 9a; the predicted radon
gas concentration during the seismic activities overlaps the
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FIGURE 7. (a-f) Represents actual and predicted radon concentration for ensemble and individual learning methods keeping setting 1 and time window
of 4.

FIGURE 8. (a-f) Represents actual and predicted radon concentration for ensemble and individual learning methods keeping setting 2 and time window
of 3.

original radon concentration and captures temporal variations
in the time series more effectively than other methods.
Apart from the boosted tree model shown in Figure 8d, the
support vector machine (SVM) with radial kernel performs

closer to the boosted tree model by overlapping original
radon concentration when compared to others. The boosted
linear model (see Figure 8c), the boosted linear model
did not capture variations in the original radon time series
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TABLE 4. RMSE and MAPE statistics for ensemble and individual leaning methods for predicting radon concentration from other environmental attributes
keeping setting 3 and time window from 1 to 4.

FIGURE 9. (a-f) Represents actual and predicted radon concentration for ensemble and individual learning methods keeping setting 3 and time window
of 3.

and resulted in larger values of different error metrics
presented in Table 4. Table 5 presents the RMSE and MAPE
statistics for ensemble and individual learning methods
keeping setting 4 and the time window of 1 to 4. The
minimum RMSE and MAPE score of 1573.174 and 0.056 is
achieved by boosted tree model and it can be easily seen
from Figure 10 (a-f) that the predictions made by boosted
tree model overlap with the original radon concentration
presented in red color. Similarly, from Figure 10f, the support
vector machine (SVM) with radial kernel performs similar
to other experimentation results calculated above in different
settings, the performance of SVMwith radial kernel is similar

to boosted tree model by overlapping most of the variations
in original radon concentration time series. The statistics
computed above in different settings from 1 to 4 across all
the time windows, it is concluded that boosted tree based
ensemble method performs better than the individual models
when predicting soil gas radon time series data during the
seismic activities. It is also observed that a support vector
machine with a radial kernel is the second choice after
boosted tree method for this task because of its performance
is slightly better than boosted tree method in setting 1 while
in setting 3 and 4, its performance is closer to boosted tree
method.

VOLUME 10, 2022 37995



A. A. Mir et al.: Anomalies Prediction in Radon Time Series for Earthquake Likelihood

TABLE 5. RMSE and MAPE statistics for ensemble and individual leaning methods for predicting radon concentration from other environmental attributes
keeping setting 4 and time window from 1 to 4.

FIGURE 10. Represents actual and predicted radon concentration for ensemble and individual learning methods keeping setting 4 and time window of 4.

A. COMPARISON WITH EXISTING LITERATURE
In this section, the methodology and experimental results,
obtained by testing soil radon gas concentration data have
been compared with most recent studies. Mir et al. [72]
proposed a methodology that categorizes soil radon gas
concentration data into seismically active and non-active
using stacking and automatic anomaly indication function.
The radon concentration along with the labeled anomaly
data was trained by a meta-learner that classifies it into
seismic and non-semic ones. Further, these classifications
are passed to an automatic anomaly indication function
that labels the time series by calculating the indication
percentage. The points where indication percentage gets
higher or equal to indication factor were considered to be an
anomaly. Tareen et al. [7] proposed an earthquake prediction
model based on boxplot interpretation using soil radon gas
concentration data. The specific patterns were observed in
soil radon gas concentration by analyzing boxplots. This
is due to the different geological and seismic activities

before the occurrence of the earthquake. Tareen et al. [11]
also employed computational intelligence techniques for the
detection of anomalous behavior in soil radon gas before
seismic activities. The authors reported that the seismic
activity or noise could be responsible for the abnormality
in soil radon time-series data. Rafique et al. [3] proposed a
methodology based on delegation for the accurate prediction
of soil radon gas concentration data. The methodology
is tested by splitting the data into seismically active and
non-active time series. The delegated regressor and other
methods were trained using non-seismic time series. The
trained models were used to predict the seismically active
time series data. Further, the root mean squared error for
actual and predicted soil radon concentration was calculated
for each model. The delegated regressor model outperforms
when compared to other machine learning models. This
research study provides more exhaustive experimentation
by introducing settings that lead to different compositions
of training and testing sets. Instead of training by using
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non-seismic data only, as performed in delegated regressor
model, each setting incorporates different seismic activities
for training and testing purposes. These settings along
with time windows lead us to choose a better prediction
model for the prediction of soil radon gas concentration at
radon measuring stations. This is the novel methodology to
gauge the importance of machine learning based ensemble
and individual learning methods to forecast the radon
concentration efficiently.

V. CONCLUSION
In order to predict radon concentration, a precursor for an
earthquake, this study has employed different ensemble and
individual machine learning methods for the prediction of
soil radon gas concentration using different environmental
attributes. The performance of the methods is assessed
more vividly by incorporating different training and test
set distributions through settings from 1 to 4. The training
set is composed of different seismic activities and normal
data while testing data is based upon seismic activities
with its associated time window from 1 to 4. In setting 1,
boosted tree and support vector machine (SVM) with radial
kernel performed alike and captured temporal variations
in the time series more effectively. For setting 2, boosted
linear model has the least RMSE and other performance
metrics did not capture temporal variations in the time series.
Moreover, support vector machine with linear kernel and
boosted tree performed relatively better than other models.
In setting 3 and 4, the boosted tree model outperformed
when compared to other ensemble and individual models by
predicting soil gas radon concentration more accurately. This
study concludes that ensemble methods results in relatively
better regressed models, and support vector machine with
radial kernel performs closer to boosted tree model in setting
3 and 4. This study suggests a boosted tree method to
automatically predict soil radon gas radon concentration from
environmental parameters in the soil radon time series. The
prime focus of this study is to predict the soil radon gas
concentration during the anomalies. However, this study
can be extended to classify the anomalies in predicted
radon concentration. Moreover, the post-processing methods
such as automatic anomaly indication function may also be
applied.
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