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ABSTRACT Bag-of-Deep-Visual-Words (BoDVW) model has shown its advantage over Convolutional
Neural Network (CNN) model in image classification tasks with a small number of training samples.
An essential step in BoDVW model is to extract deep features by using an off-the-shelf CNN model as
a feature extractor. Two deep feature extraction methods have been raised in recent years. The first method
densely samples multi-scale image patches and then converts them into deep features via a deep-level fully-
connected layer. The second method uses the output of a deep-level convolutional layer or pooling layer as
the source of deep features. By contrast, the second method is much more efficient. However, it performs
worse than the first method in classification accuracy. The reason is that deep features extracted by the second
method are yielded in receptive fields of a single size. To make BoDVWmodel have high feature extraction
efficiency and high classification accuracy, we propose enhancing deep features extracted by the second
method at low added computation costs by supplementing the information obtained from receptive fields of
different sizes. Concretely, we raise a novel feature named ‘‘feature difference (FD) vector’’ in this article.
It can roughly preserve the information of multiple deep features extracted by the convolutional layers of
different receptive field sizes. Each deep feature is enhanced by combining an FD vector to form a combined
feature. The image representation vector of an image is generated using the combined features extracted from
it. Our experimental results on three public datasets (15-Scenes, TF-Flowers, and NWPU-RESISC45) show
that our method can avoid the high computation costs of the first method and achieve comparable results to
the first method, which exhibits the effectiveness of our method.

INDEX TERMS Image classification, bag-of-deep-visual-words, feature extraction, deep feature, feature
difference.

I. INTRODUCTION
Image classification, as a key problem in computer vision,
has attracted much attention for a long time. In a decade,
with the necessary support of a large number of training
samples and rich computing resources, Convolutional Neural
Network (CNN) model has exhibited its significant per-
formance in many challenging classification tasks, such as
the large-scale competition of ImageNet classification in
2012 (ILSVRC-12) [1]. Besides CNNmodel, Bag-of-Visual-
Words (BoVW) model [2], and Bag-of-Deep-Visual-Words
(BoDVW) model [3], [4] also play their roles in some tasks
with a small number of training samples.

The associate editor coordinating the review of this manuscript and
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BoDVWmodel is a combination product of BoVWmodel
and CNN model. It has almost the same workflow as BoVW
model, including feature extraction, dictionary learning, fea-
ture coding, feature pooling, and classifying [5]. The only
difference is the way of feature extraction. BoVW model
calculates handcrafted features (e.g., Scale-Invariant Feature
Transform (SIFT) and Histogram of Gradient (HoG)) over
small image patches (e.g., 16× 16 pixels) [5]. In contrast,
BoDVW model extracts features via an off-the-shelf CNN
model pre-trained on a large-scale dataset [3], [4]. Since
features extracted by BoDVWmodel possess richer semantic
information and larger receptive fields than that of BoVW
model, they are named ‘‘deep features’’ in the literature.
Owing to deep features, BoDVWmodel has shown its advan-
tage over CNNmodel on some small datasets such as NWPU-
RESISC45 [6], TF-Flowers [7], COVID-19 [8] and so on.
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FIGURE 1. Two deep feature extraction methods. (a) Ext-by-FC: extracting deep features via a deep-level fully-connection layer; (b) Ext-by-Conv:
extracting deep features via a deep-level convolutional layer or pooling layer.

There are two methods for extracting deep features in the
literature, as shown in Figure 1. The first one (denoted as
Ext-by-FC) densely samples multi-scale image patches (e.g.,
128× 128 pixels, 160× 160 pixels, 192× 192 pixels) from
an image [3], [4], [9], [10]. Each patch is resized to fit the
input size (e.g., 224 × 224 pixels for ResNet-50) of an off-
the-shelf CNN model, then the output of a deep-level fully-
connected layer for each resized patch is regarded as a deep
feature. The second one (denoted as Ext-by-Conv) directly
takes the output of a deep-level convolutional layer or pooling
layer as the source of deep features [11]–[13]. Providing that
the output size of a convolutional layer isW ×H ×D where
D is the number of feature maps, thenW ×H D-dimensional
deep features will be generated for each image.

By contrast, as shown in Section V(D), Ext-by-Conv per-
forms worse than Ext-by-FC in classification accuracy. The
reason is that deep features extracted by a convolutional
layer or pooling layer are generated in receptive fields of
a single size. In contrast, deep features converted from
multi-scale image patches can be viewed as being generated
in receptive fields of different sizes. However, Ext-by-FC is a
time-consuming extraction method since the inference of the
used CNNmodel is performed one time for each image patch.
In comparison, Ext-by-Conv is much more efficient because
it only needs to perform the inference one time to obtain all
deep features.

To make BoDVW model have high feature extraction
efficiency and high classification accuracy, we propose
enhancing deep features extracted by Ext-by-Conv at a low
added computation costs by supplementing the information
obtained from receptive fields of different sizes. Concretely,
considering that different convolutional layers have different
receptive field sizes, a novel feature named ‘‘feature differ-
ence (FD) vector’’ is proposed to preserve the information
of multiple deep features extracted by different convolutional
layers. An FD vector records the differences among multi-
ple deep features at a location. Each of the deep features
extracted at the deepest-level convolution layer is enhanced
by combining an FD vector to form a combined feature. The
image representation vector of an image is generated using
the combined features extracted from it.

In our experiments, two popular off-the-shelf CNN mod-
els, VGGNet-16 [1] and ResNet-50 [14] (implemented by
PyTorch), are used as feature extractors. A representative
coding method is chosen for encoding combined features,
i.e., locality-constrained linear coding (LLC)) [16]. Our
method is evaluated on three public image datasets, including
15-Scenes [15], TF-Flowers [16], andNWPU-RESISC45 [9].
Experimental results show that our method can achieve com-
parable results to Ext-by-FC, and the computation costs spent
on feature extraction are much lower than that of Ext-by-FC.
These results exhibit the effectiveness of our method.
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The contribution of our work is that we propose a feature
enhancement method to make BoDVWmodel have both high
feature extraction efficiency and high classification accu-
racy. Our method can avoid the high computation costs of
Ext-by-FC and achieve comparable results to Ext-by-FC.
In addition, a novel feature named ‘‘FD vector’’ is raised
in this article. It can be considered to combine with other
features such as handcrafted features to solve other computer
vision problems.

The remainder of this article is organized as follows: the
proceeding section is about the related works. Section III
illustrates the workflow of our method. Section IV explains
our method in detail. Experimental evaluation and analysis
are reported in Section V. The discussion is presented in
Section VI, and the conclusion is drawn in Section VII.

II. RELATED WORKS
The related works to our work can be summarized from three
aspects, including workflow, feature extraction, and feature
fusion.

From the aspect of workflow, our method shares almost
the same workflow as BoVW model. Huang et al. [5] had
concluded the general workflow of BoVW model in 2014.
It can be divided into five stages, i.e., feature extraction,
feature coding, dictionary learning, feature pooling, and clas-
sifying. A large number of works have been devoted to
improving the classification performance of BoVW model
from one or two of the five aspects before 2015 [17]–[20].
Especially, there are many coding methods proposed in the
era of BoVW model [5], e.g., hard voting, soft voting, sparse
coding, LLC, local coordinate coding, super vector coding,
fisher coding, grouping saliency coding, etc. Given the high
similarity between BoVW model and BoDVW model in
terms of workflow, some of them have been applied in the
existing BoDVW methods such as hard voting [12], [13],
sparse coding [4], and LLC [10].

From the aspect of feature extraction, FD vectors are gen-
erated based on deep features. Two deep feature extraction
methods have been proposed in the literature. The first one
(Ext-by-FC) takes the outputs of a deep-level fully-connected
layer for multi-scale image patches as deep features. In [10],
image patches of 128× 128 pixels, 92× 92 pixels, and 64×
64 pixels are densely sampled from each image and then
transformed into deep features via the last fully-connected
layer of AlexNet. In [3], image patches of 256× 256 pixels,
224 × 224 pixels, 192 × 192 pixels, 160 × 160 pixels, and
128 × 128 pixels are converted into deep features via the
last fully-connected layer of DeCAF6. Other similar works
include [4] and [9]. The second one (Ext-by-Conv) takes the
output of a deep-level convolutional layer or pooling layer
as the source of deep features. In [11], the author adopted
the layer ‘‘conv5’’ of AlexNet, the layer ‘‘inception 4(e)’’
of GoogleNet, and the layer ‘‘conv5-3’’ of VGGNet-16 to
extract features, leading to 169 256-dimensional features, 196
832-dimensional features, and 196 512-dimensional features
for each image, respectively. In [12], the last convolutional

FIGURE 2. Workflow of the BoDVW model improved by our method.

layer of ResNet-50 is used to generate 49 2048-dimensional
features for each image.

From the aspect of feature fusion, each deep feature is
combined with an FD vector to form a combined feature.
This practice is a typical way of feature fusion. Deep feature
fusion is also a flourishing research area. The recent works in
this area can be grouped into three groups. The first group
combines deep features with handcrafted features to solve
task-specific classification problems as done in [21], [22].
The second group [23]–[25] adds new branches to multi-
ple intermediate layers of an off-the-shelf model to aggre-
gate the outputs of these layers by fine-tuning the modified
model. The third group incorporates the outputs of different
CNN models or the outputs of different layers of a CNN
model by a certain algorithm, such as metric learning [26],
sparse representation learning [27], discriminant correlation
analysis [28], etc.

III. WORKFLOW
Theworkflow of the BoDVWmodel improved by ourmethod
is shown in Figure 2. It includes the training stage and the
testing stage.

The first step at the training stage utilizes an off-the-shelf
CNN model as a feature extractor to extract deep features.
The outputs of multiple convolutional layers are used as the
source of deep features. Then, FD vectors are yielded based
on extracted deep features. Next, each of the deep features
obtained at the deepest-level convolutional layer is combined
with an FD vector to generate a combined feature. Afterward,
combined features obtained from training samples are used
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TABLE 1. Abbreviations used in this article and their meanings.

to learn a visual dictionary. In the next step, each combined
feature is encoded as a coding vector with the learned dic-
tionary. After attaining the coding vectors of an image, the
image representation vector is yielded by pooling together all
the coding vectors. At last, the image representation vectors
of all training samples are used to train classifiers.

The workflow of the testing stage is similar to that of the
training stage. The differences are that for each testing image,
the combined features extracted from it are encoded with the
dictionary learned at the training stage, and its representation
vector is fed into the classifiers trained at the training stage to
obtain its predicted category.

IV. OUR METHOD
An essential step in BoDVWmodel is to extract deep features
via an off-the-shelf CNN model as a feature extractor. There
have been two deep feature extraction methods Ext-by-FC
and Ext-by-Conv. As stated in Section I, deep features
extracted by Ext-by-Conv are yielded in receptive fields of
a single size, while deep features obtained by Ext-by-FC can
be viewed as being generated in receptive fields of different
sizes. Hence, Ext-by-Conv performsworse than Ext-by-FC in
classification accuracy, as shown in Section V(D). However,
Ext-by-FC is a time-consuming method since the inference
of the used CNN model is performed one time for each
image patch. By contrast, Ext-by-Conv ismuchmore efficient
because the inference only needs to be executed one time to
obtain all deep features.

To make BoDVW model have high feature extraction
efficiency and high classification accuracy, we enhance deep
features extracted by Ext-by-Conv at low added computation
costs by supplementing the information obtained from recep-
tive fields of different sizes. Considering that different convo-
lutional layers have different receptive field sizes, we present
a novel feature named ‘‘FD vector’’ that can roughly preserve
the information of multiple deep features extracted by differ-
ent convolutional layers. Each deep feature is enhanced by
combining an FD vector to obtain a combined feature. The
image representation vector of an image is generated using
the combined features extracted from it.

In the following, we first illustrate how to generate FD
vectors and how to combine deep features with FD vectors.
Afterward, the reason why an FD vector can roughly preserve
the information of multiple deep features is given. For clarity,
Table 1 lists the main abbreviations used in this article and
their meanings.

A. SOLUTION
1) FEATURE DIFFERENCE VECTOR
An FD vector records the differences among multiple deep
features at a location. As shown in Figure 3, given a set
{f 1, . . . , f L} where f l, l = 1, . . . ,L denotes the deep feature
at the location (i, j) on the output of the l-th used convolutional
layer, then the FD vector d i,j is calculated as follows:

d ij =
[
dT1,2, . . . , d

T
k,l, . . . , d

T
L−1,L

]T
k<l,k=1,...,L,l=1,...,L

∈ R[GL(L−1)/2]×1 (1)

where,

dk,l =
[∥∥∥f k1 − f l1∥∥∥2 , . . . , ∥∥∥f kG − f lG∥∥∥2]T

f k =
[(
f k1
)T
, . . . ,

(
f kG
)T]T

, f l=
[(
f l1
)T
, . . . ,

(
f lG
)T]T

(2)

To attain more difference information, each D-dimensional
feature vector is partition into G groups. Each group is a
sub-vector with the same dimension D/G. The difference
between two features f k , f l is described by a vector where
the g-th element is the Euclidean distance between f kg and f

l
g.

It is worth noting that the outputs of the convolutional layers
used for obtaining FD vectors must have the same size.

The dimension of FD vectors is decided by G and L. Our
experimental results show that when L = 3 and G = 128,
the generated FD vectors are good enough to achieve high
classification accuracy (shown in Section V(D)). In this case,
the dimension of an FD vector is only 384. It is much lower
than the sum of the dimensions of three deep features used
to yield an FD vector, e.g., 2048 × 3 = 6144 when using
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FIGURE 3. Toy example of generating a feature difference vector (L = 3, G = 3). FM: feature map.

FIGURE 4. Illustration on the ability of FD vectors to roughly preserve the
information of multiple deep features.

ResNet-50 as a feature extractor to extract 2048-dimensional
deep features.

2) COMBINED FEATURE
Each of the deep features extracted at the used deepest-level
convolutional layer is enhanced by combining an FD vector to
obtain a combined feature. Specifically, given an FD vector
d i,j ∈ RGL(L−1)/2×1 and the deep features [f li,j, . . . , f

L
i,j] ∈

RD×L used to generate it, then the combined feature ui,j
is formed by ui,j = [(f Li,j)

T , (λd i,j)T ]T ∈ R(GL(L−1)/2+D)×1.

λ is a hyperparameter to balance d i,j and f Li,j, which can
be decided by cross validation. The combined feature ui,j
records not only the accurate information of f Li,j but also the
coarse information of f 1i,j, . . . , f

L−1
i,j .

B. EXPLANATION
An FD vector can roughly preserve the information of mul-
tiple deep features used to generate it. The reason can be
illustrated as follows.

Existing works have pointed out that high-dimensional
features are approximately located on an irregular manifold.
As shown in Figure 4, the features denoted by the blue circles
are located on the manifold indicated by the black curve,
and the length of a blue line denotes the Euclidean distance
between two features. It is easily found that as the number
N of blue circles increases, the potential locations that can
yield the same distances as the ones among the blue circles
become more and more scarce. The number P of the potential
locations is infinite when N = 2, whereas P drops obviously
when N > 2. Therefore, the Euclidean distances among mul-
tiple features (N > 2) possess the ability to preserve their
information to some extent.With the increase ofN , the ability
to preserve their information will be improved. It is worth
noting that if the features are too close, the improvement of
the ability is limited.

Because the outputs of the convolutional layers used for
generating FD vectors have the same size, all extracted deep
features are in the same feature space. In other words, they
can be seen as being located on the samemanifold. Hence, for
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FIGURE 5. Example images of 15-Scenes, TF-Flowers, and
NWPU-RESISC45.

L deep features at a location, the distances among them can
preserve their information to some extent. These distances
can be recorded by an FD vector (G = 1), thus the FD vector
naturally possesses the ability to preserve their information.
Tomore finely describe the distance between two features, the
distance vector calculated using their sub-vectors is recorded
instead of a distance scalar. In fact, this practice can also be
explained as calculating a special FD vector using L×G sub-
vectors with the dimension D/G, which roughly preserves
the information of these sub-vectors. The specialty is that for
each sub-vector, only the distances from it to L − 1 different
sub-vectors instead of all other sub-vectors are calculated.
Furthermore, since the L deep features are yielded by dif-
ferent convolutional layers, they are not close in the feature
space.

V. EXPERIMENTS
A. DATASETS
Our experiments are conducted on three datasets, i.e.,
15-Scenes, TF-Flowers, and NWPU-RESISC45. As shown
in Figure 5, they are taken from three scenarios, including
scene classification, object recognition, and remote sensing
image classification. The details on these datasets are listed
below:

15-Scenes is a scene recognition dataset with 200 to
400 images per category. It consists of 4485 images spread
over 15 categories such as bedroom, industrial, kitchen, living

room, and so on. 100 images are randomly taken from each
category for training and the remaining ones for testing.

TF-Flowers is a challenging dataset including images
from five different categories of flowers. These categories
are Daisy, Dandelion, Tulips, Roses, and Sunflowers. Each
category has about 600 to 900 images with different sizes and
aspect ratios. For each category, 450 images and 150 images
are randomly chosen for training and testing, respectively.

NWPU-RESISC45 is a remote sensing image classifica-
tion dataset consisting of 31500 images divided into 45 scene
categories. Each category has 700 images with the size of
256× 256 pixels. The spatial resolution changes from about
30m to 0.2m per pixel. 140 images per category are used for
training and 60 images per category for testing.

B. IMPLEMENTATION DETAILS
The implementation details of our method are as follows:
Feature Extraction: Two off-the-shelf CNN models,

VGGNet-16 and ResNet-50 (implemented by PyTorch), are
used in our experiments. Before extracting deep features,
the two models are fine-tuned using all training samples (no
data augmentation) for higher classification accuracy. In the
fine-tuning process, the stochastic gradient descent algorithm
(learning rate = 0.001, momentum = 0.9) is applied. The
period of learning rate decay and the multiplicative factor
are set to 8 and 0.1, respectively. For clarity, the suffix
‘‘(no-refined)’’ denotes the fine-tuned model of which only
the fully-connected part is modified and re-trained. The suffix
‘‘(refined)’’ indicates the CNN model of which all layers
are fine-tuned. The fully-connected part of ResNet-50 is
the last fully-connected layer, and the fully-connected part
of VGGNet-16 is the last three fully-connected layers. For
VGGNet-16, the outputs of the last three convolutional layers
(named ‘‘features.36’’, ‘‘features.39’’ and ‘‘features.42’ by
Pytorch) are taken as the source of deep features, resulting in
3 × 14 × 14 512-dimensional deep features for each image.
For ResNet-50, the outputs of the last three residual blocks
(named ‘‘layer4.0.relu’’, ‘‘layer4.1.relu’’ and ‘‘layer4.2.relu’’
by Pytorch) are taken as the source of deep features, leading
to 3× 7× 7 2048-dimensional deep features for each image.
FD vectors are generated by Formula (1) using extracted deep
features, and combined features are yielded according to the
method stated in Section IV(A). The hyperparameter λ is
decided by cross-validation.
Dictionary Learning: The traditional clustering algorithm

K -means is used to learn a visual dictionary based on com-
bined features.
Feature Coding: As done in [3], LLC is adopted to encode

combined features as coding vectors. The number of visual
words for encoding each combined feature is set to 5.
Feature Pooling: The spatial pyramid [15] with the levels

of 1 × 1, 2 × 2, and 4 × 4 is used to divide each image
into 21 blocks. The coding vectors in each block are pooled
together by maximum pooling. All pooling vectors are con-
catenated to form the image representation vector, followed
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FIGURE 6. Comparison of Different Combinations on 15-Scenes and NWPU-RESISC45.

by l1.5-normalization (l2-normalizing the square roots of ele-
ment values).
Classifier Training: A linear SVM is trained for each cat-

egory in a one-versus-rest manner. The hyperparameter C is
set to 2.

All experiments are performed 10 times to acquire reliable
experimental results, and the average classification accuracy
of 10 experiments is reported in this article. The accuracies
obtained by Ext-by-FC are also reported for comparison. For
Ext-by-FC, image patches of 96 × 96 pixels, 128 × 128
pixels, 160 × 160 pixels, 192 × 192 pixels with the step of
32 pixels are densely sampled from each image resized to
the minimum side length of 224 pixels. The average pooling
layer in ResNet-50 and the last fully-connected layer named
‘‘classifier.5’’ in VGGNet-16 are utilized to convert image
patches to deep features. The settings on dictionary learning,
feature coding, feature pooling, and classifier training are the
same as stated above. All experiments are conducted on a
computer with an Intel Core i9-10900 at 2.8GHz× 10 on
64GBRAM. The extraction of deep features and the fine-tune
of CNN models are done with an NVIDIA GTX 2060(super)
GPU for acceleration.

C. EVALUATION ON FEATURE DIFFERENCE VECTORS
In this subsection, we evaluate the classification performance
of FD vectors under different parameter setups. The main
parameters are the number L of convolutional layers used
for generating FD vectors and the number G of groups (sub-
vectors).

1) IMPACT OF THE COMBINATIONS OF DIFFERENT
CONVOLUTIONAL LAYERS
The impact of the combinations of different convolutional
layers on classification accuracy is investigated. The com-
binations of two or three layers are evaluated on 15-Scenes
and NWPU-RESISC45 when VGGNet-16(refined) and
ResNet-50(refined) are used as two feature extractors. Here,

the number G of the groups (sub-vectors) is set to 256 for
ResNet-50 and 128 for VGGNet-16.

As shown in Figure 6, with the increase of the dictio-
nary size, the classification accuracies of all combinations
are improved. The combinations of three layers always
achieve the highest classification accuracy under differ-
ent dictionary sizes. This phenomenon implies that FD
vectors generated using three layers are more discrimina-
tive than those obtained using two layers. Furthermore,
the combinations of the lower two layers, i.e., the combi-
nation ‘‘layer4.0.relu+ layer4.1.relu’’ and the combination
‘‘features.36+ features.39’’, perform worse than other
combinations in which the deepest convolutional layer
(‘‘layer4.2.relu’’, ‘‘features.42’’) is included. These results
support the existing finding that a deeper layer can generate
features with higher discriminability. In the following experi-
ments, we use the combination of three layers to generate FD
vectors.

2) IMPACT OF THE NUMBERS OF GROUPS
In this subsection, we elaborately evaluate the impact
of the number G of groups (sub-vectors) on the clas-
sification accuracy. Here, the combination of three
convolutional layers is applied to generate FD vectors, i.e.,
‘‘features.36+ features.39+ features.42’’ of VGGNet-16 and
‘‘layer4.0.relu+ layer4.1.relu+ layer4.2.relu’’ of ResNet-50.
The accuracies achieved with the dictionaries of different
sizes (32, 64, 128, 256, 1024) are reported in Figure 7.
For comparison, the accuracies of VGGNet-16(no-refined),
VGGNet-16(refined), ResNet-50(no-refined), andResNet-50
(refined) are also reported.

As shown, as G increases, the classification accuracies
obtained with the dictionaries of different sizes all improve
significantly. This phenomenon implies that computing a dis-
tance vector between two deep features instead of a distance
scalar is very useful. The largerGwill lead to FD vectors with
a higher dimension. For example, according to Formula (1),
the dimension of FD vectors is only (4×3×2)/2 = 12 when
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FIGURE 7. Classification accuracies of FD vectors generated under different parameter setups.

G = 4, while the dimension is increased to (128 × 3 ×
2)/2 = 384 when G = 128. Furthermore, the practice
of increasing G and the dictionary size can achieve higher
accuracy. However, the accuracy gain brought by this practice
is not obvious when G exceeds 64 or 128 and the dictionary
size is 1024. For example, when the dictionary size is 1024,
the accuracy gains obtained by increasing G from 128 to
256 on the three datasets are quite small. It is easily found
from each sub-figure that the highest accuracy obtained using
FD vectors yielded via the refined CNN model is superior to

the one obtained by the no-refined CNNmodel and very close
to the one achieved by the refined CNN model.

D. EVALUATION ON COMBINED FEATURES
This subsection evaluates the effectiveness of using
combined features to classify images. Here, if using
VGGNet-16(refined) as a feature extractor, FD vectors
yielded when G= 128 are combined with deep features,
and if using ResNet-50(refined) as a feature extractor,
FD vectors yielded when G = 256 are combined with
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TABLE 2. Classification accuracies of different methods on 15-Scenes, TF-Flowers, and NWPU-RESISC45. The suffix ‘‘(Ext-by-FC)’’ denotes that deep
features are generated by Ext-by-FC, and the suffix ‘‘(Ext-by-Conv)’’ indicates that deep features are generated by Ext-by-Conv.

TABLE 3. Average computation time spent on extracting features from an image.

deep features. For comparison, the results obtained using
only deep features to classify images are also listed. The
dictionary size is chosen from 512, 1024, 2048, 4096 by
cross-validation. For combined features, the hyperparameter
λ is picked out from 0.001, 0.01, 0.1, 0.5, 1, 5, 10 by
cross-validation.

Table 2 reports the classification accuracies of different
methods. As shown in the 1st to the 8th rows, the practice
of using combined features to classify images can result
in higher accuracy than using only FD vectors and using
only deep features extracted by Ext-by-Conv. Besides, this
practice obtains comparable results to that of leveraging
deep features extracted by Ext-by-FC to classify images.
Especially when using VGGNet-16(refined) as a feature
extractor, a higher accuracy of 93.2% is achieved using
combined features. Table 3 lists the average computation
time spent on extracting features from an image. As shown
in the 1st, 3rd, 4th, 6th rows, Ext-by-FC takes more time

than Ext-by-Conv. When using VGGNet-16(refined) as a
feature extractor, Ext-by-Conv is about 11.6 times faster
than Ext-by-FC. Furthermore, as shown in the 1st, 2nd, 4th,
5th rows, generating combined features takes slightly more
time than extracting deep features by Ext-by-Conv. How-
ever, the time spent on generating combined features is still
much less than on extracting deep features by Ext-by-FC.
In addition, since the structure of ResNet-50 is more complex
than that of VGGNet-16, the computation time spent on
feature extraction when using ResNet-50(refined) as a feature
extractor is more than when using VGGNet-50(refined) as
a feature extractor. Overall, it can be concluded that deep
features extracted by Ext-by-Conv are enhanced at low added
computation costs by combining FD vectors, resulting in
comparable results to that of using deep features generated
by Ext-by-FC to classify images. This conclusion indicates
that the target of our work is achieved, i.e., enhancing deep
features extracted by Ext-by-Conv to make BoDVW model
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have high feature extraction efficiency and high classification
accuracy.

Compared with directly applying fine-tuned CNN models
to classify images (the 9th to the 12th rows), the BoDVW
methods listed in the 1st to 8th rows perform better in clas-
sification accuracy. However, there is an exception that the
accuracy of 90.98% obtained by using combined features on
NWPU-RESISC45 is lower than 91.03% achieved by directly
applying ResNet-50(refined). Furthermore, the classification
performance of a BoDVW method strongly relies on the
performance of the CNN model used as a feature extractor
in the BoDVW method. As shown, since ResNet-50(refined)
achieves higher accuracy than VGGNet-16(refined), the
results (the 1st to the 4th rows) yielded using ResNet-50
(refined) as a feature extractor are better than that (the 5th
to the 8th rows) of using VGGNet-16(refined) as a feature
extractor. These results imply that higher accuracy can be
achieved when using a more advanced CNN model to extract
features.

Compared with other methods listed in the 13th to the
30th rows, using combined features achieves the state-of-
the-arts on TF-Flowers, but does not exceed SDO + fc fea-
tures [34], DFF-ADML [26], and EAM [38] on 15-Scenes
and NWPU-RESISC45. Since our method is just one for
improving the BoDVWmodel, higher classification accuracy
can be achieved using our method and other methods together
(illustrated in Section VI).

VI. DISCUSSION
We propose a simple method for improving BoDVW model
in this article. Our method can avoid the high computa-
tions costs of Ext-by-FC and achieve comparable results to
Ext-by-FC. It can be extended from the following aspects.

1) The novel feature named ‘‘FD vector’’ can be combined
with other features such as handcrafted features to solve other
task-specific problems, such as medical image classification,
remote sensing image classification, and so on.

2) Our method is just one for improving BoDVW model.
It can be combined with other methods to achieve higher clas-
sification accuracy. For example, an advanced data augmenta-
tion scheme (e.g., [33]) is applied to enlarge training samples,
and then an advanced CNN model (e.g., ResNeXt-50 [39])
is fine-tuned using enlarged training samples to extract deep
features.

3) The idea to roughly preserve the information of multiple
deep features in a low dimensional vector by computing
the differences among them can be applied in the design of
CNN architecture. For example, the attention module can be
built based on the differences among the outputs of multiple
convolutional layers.

VII. CONCLUSION
This article raises a simple method to make BoDVW model
have high feature extraction efficiency and high classifica-
tion accuracy. Our method enhances deep features extracted
by Ext-by-Conv by supplementing the information obtained

from receptive fields of different sizes. Concretely, each deep
feature is enhanced by combining an FD vector that can
roughly preserve the information of multiple deep features
extracted by different convolutional layers. Our experimental
results on three public datasets show that our method can
avoid the high computation costs of Ext-by-FC and achieve
comparable results to Ext-by-FC. The future work we are
pursuing is to solve task-specific classification problems by
combining the novel feature ‘‘FD vector’’ with other features
such as handcrafted features.
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