
Received March 12, 2022, accepted March 26, 2022, date of publication March 30, 2022, date of current version April 11, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3163433

A Dynamic Repository Approach for Small File
Management With Fast Access Time on Hadoop
Cluster: Hash Based Extended Hadoop Archive
VIJAY SHANKAR SHARMA 1, ASYRAF AFTHANORHAN 2, NEMI CHAND BARWAR3,
SATYENDRA SINGH 4,5, (Member, IEEE), AND HASMAT MALIK 5,6, (Senior Member, IEEE)
1Department of Computer and Communication Engineering, Manipal University Jaipur, Jaipur 303007, India
2Faculty of Business and Management, Universiti Sultan Zainal Abidin, Gong Badak, Kuala Terengganu, Terengganu 21300, Malaysia
3Department of Computer Science and Engineering, MBM University, Jodhpur 342011, India
4School of Electrical Skills, Bhartiya Skill Development University Jaipur, Jaipur 302037, India
5Intelligent Prognostic Private Ltd., Delhi 110078, India
6BEARS, University Town, NUS Campus, Singapore 138602

Corresponding author: Hasmat Malik (hasmat.malik@gmail.com)

This work was supported by Intelligent Prognostic Private Ltd., India.

ABSTRACT Small file processing in Hadoop is one of the challenging task. The performance of the
Hadoop is quite good when dealing with large files because they require lesser metadata and consume
less memory. But while dealing with enormous amount of small files, metadata grows linearly and Name
Node memory gets overloaded hence overall performance of the Hadoop degrades. This paper presents a
dual merge technique HB-EHA (Hash Based-Extended Hadoop Archive), that will resolve the small file
issue of Hadoop and provide an excellent solution for massive small files that are generated in the health
care management applications. The proposed technique merges the small files using two-level compaction,
therefore, the size of metadata at the name node gets reduced and less memory will be used. The indexing
will be carried out over the archives and files can be accessed after merging in real-time. Index files in
the proposed approach can read partially that improves the name node memory usage and also offers the
file appending capability in the existing archive. The proposed technique first creates Hadoop archive from
the small files and then uses two special hash functions i.e. SSHF (Scalable-Splittable Hash Function) and
HT-MMPHF (Hollow Trie Monotone Minimal Perfect Hash Function), SSHF is used to dynamically
distribute the archives meta-data to the associated slave index files, and these slave index files will be
further written to the final index files, the order of the meta-data in final index file will be preserved by the
HT-MMPHF. The evaluation outcome exhibit that the proposed technique is 13% & 17% faster than HDFS
with caching enabled and disabled respectively, and 38% & 47% faster than the HAR with caching and
without caching, respectively. While comparing with the map file, the proposed technique is 28 & 35 times
faster with caching and without caching, respectively. HB-EHA is a maximum of 40% & 28% faster than
the HBAF with and without caching, respectively.

INDEX TERMS Extended Hadoop archive, HAR archive, healthcare small files, HB-EHA, HDFS, HT-
MMPHF, map file archive, sequential file, SSHF.

I. INTRODUCTION
Hadoop is a free platform for processing enormous volumes
of unstructured and big data. It has a wide range of
features when compared to relational databases. Using a
master-slave architecture, Hadoop’s file system is termed

The associate editor coordinating the review of this manuscript and

approving it for publication was Vlad Diaconita .

Hadoop Distributed File System (HDFS) [1]. Name node is
responsible for managing the metadata of the files and have
processing capabilities, it acts as a master and coordinates
with slave nodes in the HDFS architecture. No processing
is done on any of the data nodes that act as slaves, which
means that they are just used to store data. In HDFS, files are
stored in 128MB size blocks. HDFS blocks may be whatever
size the user desires; by default, it is 128 MB in size, but this

36856
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-3493-6574
https://orcid.org/0000-0002-8817-9062
https://orcid.org/0000-0002-3860-2627
https://orcid.org/0000-0002-0085-9734
https://orcid.org/0000-0002-5169-9232


V. S. Sharma et al.: Dynamic Repository Approach for Small File Management With Fast Access Time

can be changed by the user. To make data availability all the
time, HDFS replicates data blocks across several data nodes.
To ensure the data availability data blocks are replicated on
several data nodes, the value of the replication factor indicate
that a single data block is written to many data nodes in the
cluster and by default, the value of the replication factor is
three. HDFS is well-suited to handle large files since it was
designed with this in mind. Small files are generated from
various application domains i.e. social media, e-commerce,
online business, research and analysis, climate forecasting
and educational sites, log records, health care devices and
applications, etc. a file is call a small file in HDFS if it’s size
is less than the default block size of the HDFS. The scope of
small files in technology and analytics is important and vast.
Due to the excessive metadata at the name node, the overall
performance of the HDFS degrades.

There are not only the processing issues with small files
in HDFS but also some other issues that will significantly
affect the overall performance of HDFS i.e. in case of the
several file access request on the NameNodewill increase the
memory overheads and in case of a massive number of small
files, Map Reduce Algorithm [2] requires excessive read and
write operation that will take more time to process the small
files in comparison with the large files. One more problem
with small files is their upload time to the HDFS, the upload
time of the small files is comparatively more significant
than the large files. There are several feasible alternatives
that Hadoop provides to solve the small file problem and its
associated disadvantages i.e., HAR Archive [3], Sequential
File Format [4], Combine File Input Format [5], andMap File
Archive [6]. These solutions will merge the small files and
merged files will be saved to the HDFS. By merging these
small files, the memory overhead of the Name Node can be
minimized but the access performance of the small files will
degrade as the side effect of the merging. The meta-data of
the small files are stored in the index files and these index
files are also stored with the merged file in the HDFS. There
are two major categories of the solution provided by the
HDFS to solve the small file issue of Hadoop, one is the
index-based archive i.e. HAR, Map File etc, and another is
without indexing or based on the sequential search approach
i.e. Sequential File. To access the content of a small file from
the merged file, without considering the caching effect, the
entire index file is imported to the memory and then the
content of the small file will be recovered from the merged
file with the help of meta-data written in the index file. Here
meta-data will provide all the information about the small file
i.e. the location of the small file in the merged file, length
and size of the file, etc. Reading the entire index file in the
memory will lead to excess input/output operations that result
in increased access time for the small files. In case of the
massive number of small files the size of the index file will
be large and each time when a small file is accessed, the
entire large index file will be loaded into the memory. This
process will become very expensive and degrades the overall
performance of the HDFS. While considering the caching

effect once the index file is imported in the memory its copy
will be kept in the client’s memory that will improve the
access performance of the archives, but the dependency of
the access performance on the memory of the client is not
a good practice, because client’s memory is limited and not
sufficient in the case of the vast number of small files.

Most of the healthcare applications/devices generate text
or picture files; in our research work, we focused on text files
only. Because the size of these text files is smaller than the
HDFS block size, they are referred to as ‘‘small files.’’ The
proposed technique can be interfaced with the various health
care devices that are generating the text files. Merging of
small files is carried out to utilize theHDFS block completely.
These merged small text files can be stored at the Hadoop
cluster and can be accessed in real time by using the proposed
approach. In this paper, a novel technique, ‘‘Hash Based-
Extended Hadoop Archive (HB-EHA)’’ is being proposed
to manage thousands of small files that are generated in the
health care sector. The proposed technique’s most significant
feature is that it can take Hadoop archives as input and treat
them as input files. The proposed technique may also retrieve
the archive’s meta-data directly without the usage of any
caching mechanisms. HT-MMPHF (Hollow Trie Monotone
Minimal Perfect Hash Function) [7]–[9] is a recommended
method for locating meta-data about a file in an index file
and figuring out the index file’s size and location in memory.
The Scalable-Splittable Hash Function (SSHF) [10]–[12]
will dynamically disseminate the meta-data of small files to
several index files.

II. RELATED WORK
Jude Tchaye-Kondi et al. [13] advocated using hash functions
to create a perfect file. To obtain the metadata of a specific
file, this approach eliminates the requirement to parse the
whole index file. Hadoop’s dynamic hashing and order-
preserving operations can efficiently handle thousands of
small files. Weipeng Jing et al. [14] suggested a dynamic
queue method (DQSF) based on the analytical hierarchical
process, in which small files are classified and processed
according to their size. Jian-Feng Peng et al. [15] tackle the
HDFS small file issue by merging related small files and
caching frequently accessed data to reduce small file access
time. By giving the notion of distribution and correlation
when merging the files, Xun Cai et al. [16] increased
the access and storage efficiency of small files. Yanfeng
Lyu et al. [18] describe an efficient merging approach that
considerably reduces the access time for small files by using
the concepts of caching and prefetching. X. Fu et al. [19]
suggested a block replica placement technique for effectively
processing small files, in which files are merged according
to pre-determined parameters. Qi Mu et al. [20] suggested an
approach for dealing with small files that is both efficient and
effective. The introduction of secondary indexes will increase
storage efficiency and minimize Name-Node memory uti-
lization in this system. Tao Wang et al. [21] suggested a
method based on the behavior of small files access. To build

VOLUME 10, 2022 36857



V. S. Sharma et al.: Dynamic Repository Approach for Small File Management With Fast Access Time

the association between numerous small files, the probability
model is employed. Hui He et al. [22] provided a fantastic
technique for dealing with the small file issue of the HDFS.
Small files are combined in a homogenous manner by
balancing the data blocks. This method improves the speed
of small files in general. Songling Fu et al. [23] presented a
novel storage system that makes use of the metadata of small
files to effectivelymanage small files. In compared to existing
competing algorithms, the experimental findings suggest that
the proposed method would increase the performance of
small files by a significant margin. Sharma V.S. et al. [24]
presented a survey paper on the small file problem of the
HDFS. This paper provides quick insight into the possible
solution to the small file problem. Sharma V.S. et al. [25]
evaluated various existing techniques in Hadoop that will
provide the solution to the small file problem of the HDFS.
N. Alange et al. [26] compared various existing techniques
for small file problem based on the performance throughput.
The CSFC technique, developed by R. Rathidevi et al. [27],
involves grouping together small files that are connected
in some way. HDFS is used for additional processing of
the merged small files after clustering. Using the name
node, one may store information about all of the bundled
files. An innovative strategy for archiving small files was
suggested by Y. Chen et al. [28], the logical file naming
notion is used to identify the files created by the pairing at
the name node. W. Wu et al. [29] presented a pile structure
for sequential file storing that is more efficient. To combine
the small files, the worst-fit approach is applied. To retrieve
the merged small files from the pile structure, a global index
approach is employed. R. Aggarwal et al. [30] explored the
Hadoop small file issue in-depth and provided systematic
literature as well as a Hadoop ecosystem classification.
To tackle small file issue, Y. Zhai et al. [31] suggested a
new archive file. The suggested method retrieves the meta
data directly from the index file, reducing access overhead.
P. Sobia et al. [32] undertook a thorough evaluation of the
literature on particle swarm optimization (PSO) techniques
for medical illness diagnosis. PSO techniques may also
be utilized with a Hadoop cluster to improve response
times. Bangyal W.H. et al. [33]–[35] suggested three unique
pseudorandom initialization techniques, as well as the bat
algorithm for population initialization in the PSO algorithm.
The concept of pseudorandom initialization can be used to
build large index files. Sharma V.S. et al. [36] proposed
a HBAF technique that solves the small file problem by
provding faster access time for small files and reducing
the name node memory usage at name node, the technique
proposed in this paper is the extension of the HBAF in
which Hadoop archives are processed along with dual merge
technique.

Table 1 summarize various existing solutions for small
file problem of Hadoop. In this table, important research
papers from the literature are identified and analyzed. Table 1
address the following issues: what approach is employed,
what is the uniqueness of the study that is being done,

and what parameters are being assessed. Table 2 shows a
comparison of existing small file approaches based on a
number of key parameters, including the proposed approach
category, name node memory usage, whether the proposed
approach can append new files or not, whether the proposed
approach modifies the HDFS or not, whether an extra
system is required or not, what is the amount of overheads,
and what is the file access complexity of the proposed
approach.

III. PROPOSED ARCHITECTURE
A. OVERVIEW OF FAST ACCESS REPOSITORY
In the present scenario, small files have applications in several
domains, the application of the small files can be seen almost
in every field. There are a number of applications in health
caremanagement that will generatemassive small files. There
is crucial requirement to store and process these small files
efficiently [47], [48]. One should be able to store the small
files in such a database that will provide reliable storage and
faster access to the stored small files. Hadoop is the latest
database technology that will provide the distributed reliable
storage for the large files. Hadoop is based on themaster slave
technology; there is one name node and number of data nodes.
Data nodes are responsible to store the data in the distributed
fashion and name nodes store the metadata information of the
data that is stored on the data nodes. In case of the health care
management applications, there is a requirement of frequent
access to the small files, if Hadoop is chosen as the database
technology for health care applications, then the performance
of the Hadoop degrades because there is frequent access to
small files therefore name node memory usage is higher that
will slow down the overall performance of the Hadoop [49].
There is a requirement of a fast access repository for Hadoop
that can handle the frequent operations of the small files in
health care applications. HB-EHA is a technique that will
handle the frequent operations of the small files in health care
management applications by merging the small files and then
these merged small files are stored in the Hadoop. Hadoop
treat these merged files as the larger files and processing
of these merged files can be done efficiently in Hadoop.
To access the small files from the merged files, HB-EHA uses
two special hash functions that will locate the particular small
file in the merged file and also maintain the order of the small
file while appending more files to the existing archive. The
whole process is depicted in figure 1.

B. PROPOSED HB-EHA APPROACH
The proposed solution HB-EHA will increase performance
by providing an entry-level archive capability for small
files; all small files will be archived, resulting in better
memory usage and overall name node performance. Fig-
ure 2 shows how the proposed approach builds index files
for small files archive’s meta-data using two-level hash
functions and allowing us for quick access of small files.
Parallel numerous archives are formed when combining the
small files. In the beginning, a temporary_master_index_file

36858 VOLUME 10, 2022



V. S. Sharma et al.: Dynamic Repository Approach for Small File Management With Fast Access Time

TABLE 1. A quick review to the existing approaches for handling massive small files [24].

VOLUME 10, 2022 36859



V. S. Sharma et al.: Dynamic Repository Approach for Small File Management With Fast Access Time

TABLE 1. (Continued.) A quick review to the existing approaches for handling massive small files [24].

and a master_name_file are created as a backup. After
the slave_index_files have been constructed, this tempo-
rary_master_index_file will be deleted. The names of all
the small files to be processed are retained in the HB-EHA
archive in a permanent file called the master name file.
Prior to being appended to a part file, small files may
be compressed on the client-side, allowing for quicker
processing on the client-side than on the HDFS. During the
process of adding files to the part file, a capacity threshold on
the size of the part file is defined and regularly checked. Once
the threshold limit is reached, a new part file will be created
and all other small files will be merged into that new part
file. There is need to create new part files when the threshold
limit gets over and the remaining small files are merged in the
newly created part file. A limit on the index file’s size is also

required because in case of a random seek operation, a new
connection is established each time to access a file from the
various data nodes. A fundamental issue in our strategy is the
dynamic distribution of data across many slave_index_files.
This dynamic dissemination may be achieved using SSHF,
and theses slave_index_files will be turned into final index
files afterward. A small file is appended to a part file and
its metadata and name are added to the temporary master
index and master name files at the same time. The process
of building final index files is accomplished in two phases,
the first phase starts with the merging of small files. SSHF
will be used to add the data to the corresponding slave
index file. This whole process is executed on the client side.
In the second stage, the slave index file is sorted. Sorting is
maintained using another hash function named HT-MMPHF.

36860 VOLUME 10, 2022



V. S. Sharma et al.: Dynamic Repository Approach for Small File Management With Fast Access Time

TABLE 2. Comparative study of the small file handling approaches [41].

HT-MMPHF is an order-preserving hash function that will be
responsible for sorting metadata at slave_index_files. Finally,
slave_index_files are written to the final_index_file.

SSHF is a hash function that belongs to the extendible
hashing class [12] that allocates meta-data from small files
to slave index files using a dynamic hashing approach.
This arrangement involves a hash as the piece string and
an arranged tree information structure for the query [50].
There are many slave_index_files that may be used for
storing metadata about a given file. The last two bits of
a file name hash value’s bit string define the hash. All
items with the identical pattern in the last bits will be
included in the slave index file. Dynamic additions and
deletions on slave index files are made possible by Scalable-
Splittable Hashing. It is necessary to partition and generate
new slave index files when an existing one has reached its
limit. Because of the splitted hash procedure, it is possible
to create new slave indexes dynamically. Slave_index_files
might be gotten to straightforwardly during the query activity.
During the production of slave_index_files and their related
final_index_files, the two files are made at the same time.
To ensure that the newly generated slave_index_file is
in sync with the old and newly splitted slave_index_files
during the split hash method, the meta data components
are reorganized. It is unimaginable for an assortment of
static sort ‘p’ keys to crash into a number kind ‘q’ number

utilizing the HT-MMPHF hash function. q ought to be more
prominent all the time than or equivalent to P, the worth
of the static key. Whenever the upsides of ‘q’ and ‘p’ are
equivalent, the hash function satisfies the ‘minimal’ condition
and is alluded known as the minimal_perfect_hash_function.
A minimal_ perfect_hash_function ought to be utilized to
protect the request for keys; this function returns whole num-
ber qualities in the request for the static key. This approach
guarantees that the lexicographic request of metadata parts
in conclusive file documents is safeguarded. Metadata in
slave index files is coordinated lexicographically utilizing
record name hash esteems. In the final index file, the minimal
_perfect_hash_function is developed and put toward the start
of the hash esteems. All slave index files will be kept in
touch with their final index files before the temporary master
index file is erased. In comparison to other hash algorithms
of similar complexity, this one’s primary advantage is that it
has a much lower time and space complexity (logarithmic).
The time it takes to access to a given file from the final
index files is very less since the meta-data elements are
sorted and may be accessed instantly with (Big Oh (1))
complexity [9].

C. ACCESS TIME FOR PROPOSED HB-EHA
The access time for a particular file is the sum of time for
accessing metadata and the corresponding content of the file.

VOLUME 10, 2022 36861



V. S. Sharma et al.: Dynamic Repository Approach for Small File Management With Fast Access Time

FIGURE 1. Overview of the fast access repository for health care applications.

FIGURE 2. Proposed hash based extended hadoop archive (HB-EHA).

First, a client sends the file access request to the Name Node,
Name Node finds out the metadata of the requested file and
sends results to the client. Based on the information received
by the Name Node, the client sends the request to the Data

Nodes for content access.

TAccess-HDFS = TAccess-Meta + TAccess-Content (1)

TAccess-Meta = TReq-Meta-NN + TNN-Response (2)

36862 VOLUME 10, 2022



V. S. Sharma et al.: Dynamic Repository Approach for Small File Management With Fast Access Time

TAccess-Content = TReq-Read-DN + TDN-Response (3)

Where:

TReq-Meta-NN = Time to access a file and locate its meta-
data at Name Node

TNN-Response = Name Node response time to the client
file access request

TReq-Read-DN = Time to read the desired file from the
data node

TDN-Response = Data Node response time to the client
file access request

Since HDFS provides the normal access to the files stored
and does not maintain special index files for the lookup
of the metadata, whereas HAR and map file maintain the
special index files for the lookup of the metadata of the files
and require reading and processing whole index file in the
memory.

TAccess-HDFS < TAccess-HAR |Map-File (4)

HAR provides two levels of indexing that maintain the
metadata of the files, which results in high TAccess−Meta in
comparison to the map file.

TAccess-Meta (Map-File) < TAccess-Meta (HAR) (5)

Eq. 4 states that the access time of native HDFS is lesser
than the HAR and map file because these approaches process
entire index files while accessing a particular small file.
Eq. 5 state that the metadata access time of the map file is
lesser than the HAR, because in HAR, multilevel indexing
is done therefore the size of index files is more than the
map file hence HAR access time is more than the map
file. The content in the map file is stored sequentially
therefore, to access a random file in the map file requires
a very high access time in comparison to the HDFS and
HAR.

TAccess-Content (Map-File) > TAccess-Content (HAR)

> TAccess-Content (HDFS) (6)

TAccess (Map-File) > TAccess (HAR) > TAccess (HDFS) (7)

Eq. 6 states that a map file requires the highest time to access
the content of a small file in comparison to the HAR and
HDFS, the reason for this is the sequential access nature
of the map file approach. Based on Eq. 4, 5 and 6, Eq. 7
concludes that the map file evolves the highest access time
in comparison to the HAR and HDFS. The calculation of
the access time of the proposed HB-EHA can be done as
follows: In the proposed approach, small files are processed
at two levels first, several small files are converted in the
archive, and then these archives are processed using the
SSHF, this two-level compaction and partial access of the
index files from the archives will improve the access time of
the proposedHB-EHA at a great extent. SupposeN small files
are archived and stored using the Hashing based technique,
then the access time for these files can be expressed as

FIGURE 3. Accessing 10 files with cache enabled.

follows:

TAccess (HB-EHA) = N∗(TReq-Read-DN + TDN-Response)

+

∑
(TReq-Meta-NN + TNN-Response

+TDisk + TNetwork) (8)

The proposed HB-EHA reduces the access time in the
following aspects: As the small files are merged, archived,
and can be dynamically (partially) accessed, it will lead to
reduce the communication time between the Name Node and
client, ensure fast metadata lookup and decrease the disk
overall I/O time & network latency time.

IV. EXPERIMENTAL SETUP AND RESULT ANALYSIS
A cluster of five nodes is being built up to test the proposed
HB-EHA technique and other competing archives. The Name
Node and Data Node have identical configurations, includ-
ing an Intel R©coreTM i5-7500 CPU running at 3.40GHz,
a 64-bit operating system, and 4 GB of RAM. The operating
system in the cluster is Ubuntu 18.04.1 LTS, with open
JDK-11.0.4 installed. The most recent version of Hadoop
(3.1.3) is installed on all PCs connected to the Hundred
MBPS (Backbone) network. The HDFS block size and RF
(Replication Factor) are both set to its default values, that
is 128 MB and 3, respectively. Five data sets with a variable
number of text files were utilized in the testing i.e., 20000,
30000, 60000, 120000. A large number of small text files
were selected for processing because, when compared to
other file formats, text files provide the best results and take
the least amount of time to merge and access. These file
ranges between 1 KB to 1 MB in size. ten, fifty, and hundred
files are randomly accessed from various archives with and
without caching to assess the performance of the different
archives. Without caching the performance of the Hadoop
archive evolves linear and performs worst in several cases.
As shown in the figures, the proposed HB-EHA performs
faster than the competitive approaches. With caching, Map
File performs the worst, the reason for this is the larger
number of the small files and all metadata is loaded in
the memory of the client. The reason for the excellent
performance of the proposed HB-EHA is as follows:

VOLUME 10, 2022 36863



V. S. Sharma et al.: Dynamic Repository Approach for Small File Management With Fast Access Time

FIGURE 4. Accessing 50 files with cache enabled.

1) To access a particular file from map file and HAR,
whole index file is processed therefore, more time is
required to access the file, while in the case of the
proposed technique, partial index files are processed.

2) In map files, small files are de-compressed at two
levels, whereas in the case of the proposed technique,
only one level of decompression is required.

3) For metadata storage, the proposed technique utilizes
the data node’s memory and relax the Hadoop main
memory to facilitate the faster access of the small files.

4) In the proposed technique, files are read and written
using socket communicationmeans a client can directly
interact with the data node’s.

A. EVALUATION OF ACCESS TIME FOR RANDOMLY
READING 10 FILES FROM VARIOUS ARCHIVES WITH
CACHE ENABLED
The proposed HB-EHA is 15 percent to 23 percent (results
according to different data sets) quicker in comparison to
the original HDFS and 48 percent to 71 percent quicker
than the HAR_Archive. As shown in Figure 3 The map file
archive will have the highest access time. The access time
for HB-EHA is linear as the number of files in the health
care data set grows, and it is 17 to 29 times quicker than the
map_file_archive. When compared to the HBAF, HB-EHA
is 23 percent to 40 percent faster with exceptional case for
120000 files. Due to the dual merge process, the performance
of the HB-EHA degrades as the number of files increases in
the data set.

B. EVALUATION OF ACCESS TIME FOR RANDOMLY
READING 50 FILES FROM VARIOUS ARCHIVES WITH
CACHE ENABLED
The proposed HB-EHA is 1 percent to 28 percent quicker
than the native HDFS and 32 percent to 46 percent quicker
than the HAR_Archive. As shown in Figure 4, again map file
archive will have the highest access time. HB-EHA is 24 to
31 times quicker than the map_file_archive, and access time
is linear with respect to the number of files in the archive. HB-
EHA is 18 percent to 35 percent faster than HBAF. HB-EHA

FIGURE 5. Accessing 100 files with cache enabled.

performs relatively poor for the larger datasets in comparison
to the HBAF.

C. EVALUATION OF ACCESS TIME FOR RANDOMLY
READING 100 FILES FROM VARIOUS ARCHIVES WITH
CACHE ENABLED
As Figure 5 depicts, that proposed HB-EHA is 2 to 13 percent
faster than native HDFS and 22 to 38 percent quicker than the
HAR_Archive. HB-EHA is 24 to 28 times quicker than the
map_file_archive. The access time for the health care data
is linear in fashion up to some extent but when the number
of files is more than lac then the slight degradation in the
performance can be seen, this degradation is due to the high
number of read/write operations. HB-EHA is 22 percent to
24 percent faster thanHBAF, when accessingmore number of
files HB-EHFmoves towards the stable results in comparison
to the HBAF.

D. EVALUATION OF ACCESS TIME FOR RANDOMLY
READING 10 FILES FROM VARIOUS ARCHIVES WITH
CACHE DISABLED
The proposed HB-EHA is 3 percent to 12 percent quicker
than the native HDFS and 22 percent to 38 percent quicker
than the HAR_Archive. There is an exceptional case when the
number of files is 60,000, in this case, native HDFS performs
6% better than the proposed technique, and the reason for
this is the real-time delay in archiving files from the health
care data set. The experimental results demonstrate that map
file archives take the highest time to access (except in the
rare instance of HAR), whereas HB-EHA is 14 to 37 times
quicker than map file. As seen in Figure 6, HAR performs
the poorest with 1,20,000 small files. This unique behavior
is due to HAR’s multilayer indexing. While the number of
files in the health care data set is in the millions, the notion of
multilayer indexing will cause needless delays. HB-EHA is
10 percent to 28 percent faster than the HBAF. In case of the
20,000 dataset the performance of the HBAF and HB-EHA
is almost equal and in case of the 1,20,000 data set HB-EHA
is 17 percent slower than the HBAF, these are the side effects
of the dual merge.

36864 VOLUME 10, 2022



V. S. Sharma et al.: Dynamic Repository Approach for Small File Management With Fast Access Time

FIGURE 6. Accessing 10 files with cache disabled.

FIGURE 7. Accessing 50 files with cache disabled.

E. EVALUATION OF ACCESS TIME FOR RANDOMLY
READING 50 FILES FROM VARIOUS ARCHIVES WITH
CACHE DISABLED
The proposed HB-EHA is 3 percent to 22 percent quicker
than the native HDFS and 7 percent to 48 percent quicker than
the HAR_Archive. The experimental results demonstrate that
map_file_archive takes the highest time to access (unless in
the rare instance of HAR), whereas HB-EHA is 30 to 36 times
quicker than map file. Figure 7 shows that HAR performs the
poorest when dealing with 120,000 small files. This unique
behavior of HAR is due to a multiple indexing strategies
that cause needless delays when dealing with a large number
of files in a health care data set. HB-EHA is 5 percent to
24 percent faster than HBAF, HB-EHA performs well in the
case of the smaller data sets.

F. EVALUATION OF ACCESS TIME FOR RANDOMLY
READING 100 FILES FROM VARIOUS ARCHIVES WITH
CACHE DISABLED
The proposedHB-EHA is 5 percent to 17 percent quicker than
the native HDFS and 82 percent to 98 percent faster than the
HAR archive. The experimental results demonstrate that the
map_file_archive has the slowest access time, with HB-EHA
being 31 to 35 times quicker. Figure 8 shows that the HAR
has a similar uncommon situation owing to the multi-level
indexing of the archive’s small files. The suggested technique

FIGURE 8. Accessing 100 files with cache disabled.

outperforms the native HDFS by a good margin. HB-EHA is
10 percent to 19 percent quicker than the HBAF.

V. CONCLUSION AND FUTURE WORK
The main motive of HDFS is to govern the ever-increasing
volume of big data and ensure that the data is available
and accessible at the same time. The HDFS architecture
is incompatible with the small files produced by numerous
application domains, such as health care, IoT devices, and
sensors. In terms of retrieving small files and managing
their meta-data, the HDFS is complicated. Managing small
files efficiently while simultaneously lowering access time
and memory usage at the name node is a pressing issue.
Several scholars have researched in this topic and provided
several ways for handling small files effectively. Most of the
methods presented minimize name node meta-data use by
transferring the indexing process to the client-side, although
these techniques lag when assessed in terms of access time.
There is a need for a technique that can receive small file
archives as input, process them as files, and manage the
index files in such a manner that the name node memory
use is reduced while the small files are accessed quickly. The
proposed HB-EHA works better than the HAR, Map File and
HBAF. When caching is removed, the HAR’s access time
increases dramatically due to its multi-level indexing, but the
proposed solution is unaffected by whether or not caching
is enabled or disabled. The proposed solution would allow
relatively quick meta-data access for small files, as well as
the ability to append files after the archive has been created.
For the goal of caching, data nodes are employed; this notion
reduces memory load on the client-side, resulting in faster
access times for small files. It will be feasible to get to
the substance of small files all the more rapidly on account
of the utilization of SSHF for meta-data inclusion and an
order-preserving hash function (HT-MMPHF) for keeping
everything under the control of meta-data inside final index
files. It was demonstrated that the proposed approach is
lot quicker than the HAR and map file. While caching is
enabled, HB-EHA is 38 and 28 time quicker than HAR and
map files, respectively. While caching is disabled, HB-EHA
is 47 and 35 times quicker than the HAR and map files,
respectively. When compared to the HBAF, HB-EHA is a

VOLUME 10, 2022 36865



V. S. Sharma et al.: Dynamic Repository Approach for Small File Management With Fast Access Time

maximum of 40% to 28% faster, but HB-EHA show the good
performance for the smaller data sets. Due to the dual merge
of the HB-EHA, the process of indexing becomes complex
andHB-EHAperforms poorly. The proposed approach can be
more effective if a few additional features are added as future
work i.e. other hash function combinations might be utilized
to improve the proposed approach, client-side memory use
might be diminished and it is also important to recognize the
numerous parts of our approach that are yet utilizing client
memory. Deletion of small files and accessing small files by
the file magnitude is still a future work in our approach.

ACKNOWLEDGMENT
The authors would like to thank the Faculty of Business
andManagement, Universiti Sultan Zainal Abidin (UniSZA),
Malaysia, for providing necessary facilities and support
to this research work. They would also like to thank the
Intelligent Prognostic Private Ltd., India, for providing
necessary facilities and support to this research work.

REFERENCES
[1] HDFS. Accessed: Oct. 2, 2021. [Online]. Available: https://hadoop.apache.

org/docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsUserGuide.html
[2] Map Reduce Algorithm. Accessed: Oct. 2, 2021. [Online]. Available:

https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html
[3] HAR Archive. Accessed: Oct. 2, 2021. [Online]. Available: https://

hadoop.apache.org/docs/r1.2.1/Hadoop_archive
[4] Sequence File. Accessed: Oct. 2, 2021. [Online]. Available: https://

examples.javacodegeeks.com/enterprisejava/apachehadoop/hadoop-
sequence-file-example

[5] CombineFileInputFormat. Accessed: Oct. 2, 2021. [Online]. Available:
https://hadoop.apache.org/docs/r2.4.1/api/org/apache/hadoop/mapreduce/
lib/input/CombineFileInputFormat.html

[6] MapFile. Accessed: Oct. 2, 2021. [Online]. Available: http://hadoop.
apache.org/docs/r2.7.1/api/org/apache/hadoop/io/MapFile.html

[7] S. Sheoran, D. Sethia, and H. Saran, ‘‘Optimized MapFile based storage of
small files in Hadoop,’’ in Proc. 17th IEEE/ACMCCGRID, Madrid, Spain,
May 2017, pp. 906–912.

[8] D. Belazzougui, P. Boldi, R. Pagh, and S. Vigna, ‘‘Theory and practice of
monotone minimal perfect hashing,’’ ACM J. Exp. Algorithmics, vol. 16,
p. 26, May 2011.

[9] D. Belazzougui, P. Boldi, R. Pagh, and S. Vigna, ‘‘Monotone minimal
perfect hashing: Searching a sorted table with O(1) accesses,’’ in Proc.
SODA, Jan. 2009, pp. 785–794.

[10] G. Mendelson, S. Vargaftik, K. Barabash, D. H. Lorenz, I. Keslassy, and
A. Orda, ‘‘AnchorHash: A scalable consistent hash,’’ IEEE/ACM Trans.
Netw., vol. 29, no. 2, pp. 517–528, Apr. 2021.

[11] K. Claessen and M. H. Pałka, ‘‘Splittable pseudorandom number
generators using cryptographic hashing,’’ in Proc. Haskell, New York, NY,
USA, 2013, pp. 47–58.

[12] D. Zhang, Y. Manolopoulo, Y. Theodoridis, and V. J. Tsotras,
‘‘Extendible hashing,’’ in Encyclopedia of Database Systems, L. Liu
and M. T. Özsu, Eds. New York, NY, USA: Springer, 2018.

[13] J. Tchaye-Kondi, Y. Zhai, K.-J. Lin,W. Tao, and K. Yang, ‘‘Hadoop perfect
file: A fast access container for small files with direct in disc metadata
access,’’ 2019, arXiv:1903.05838.

[14] W. Jing, D. Tong, G. Chen, C. Zhao, and L. Zhu, ‘‘An optimized method
of HDFS for massive small files storage,’’ Comput. Sci. Inf. Syst., vol. 15,
no. 3, pp. 533–548, 2018.

[15] J.-F. Peng, W.-G. Wei, H.-M. Zhao, Q.-Y. Dai, G.-Y. Xie, J. Cai, and
K.-J. He, ‘‘Hadoop massive small file merging technology based on
visiting hot-spot and associated file optimization,’’ in Proc. 9th Int. Conf.
BICS, Xi’an, China, 2018, pp. 517–524.

[16] X. Cai, C. Chen, and Y. Liang, ‘‘An optimization strategy of massive small
files storage based on HDFS,’’ in Proc. JIAET, 2018, pp. 225–230.

[17] H. Kim and H. Yeom, ‘‘Improving small file I/O performance for
massive digital archives,’’ in Proc. IEEE 13th Int. Conf. e-Sci. (e-Science),
Oct. 2017, pp. 256–265.

[18] Y. Lyu, X. Fan, and K. Liu, ‘‘An optimized strategy for small files storing
and accessing in HDFS,’’ in Proc. IEEE Int. Conf. CSE, IEEE Int. Conf.
EUC, Jul. 2017, pp. 611–614.

[19] X. Fu,W. Liu, Y. Cang, X. Gong, and S. Deng, ‘‘Optimized data replication
for small files in cloud storage systems,’’Math. Problems Eng., vol. 2016,
pp. 1–8, Dec. 2016.

[20] Q.Mu,Y. Jia, andB. Luo, ‘‘The optimization scheme research of small files
storage based on HDFS,’’ in Proc. 8th Int. Symp. Comput. Intell. Design,
Dec. 2015, pp. 431–434.

[21] T. Wang, S. Yao, Z. Xu, L. Xiong, X. Gu, and X. Yang, ‘‘An effective
strategy for improving small file problem in distributed file system,’’ in
Proc. 2nd Int. Conf. Inf. Sci. Control Eng., Apr. 2015, pp. 122–126.

[22] H. He, Z. Du, W. Zhang, and A. Chen, ‘‘Optimization strategy of Hadoop
small file storage for big data in healthcare,’’ J. Supercomput., vol. 72,
no. 10, pp. 3696–3707, Aug. 2016.

[23] S. Fu, L. He, C. Huang, X. Liao, and K. Li, ‘‘Performance optimization for
managingmassive numbers of small files in distributed file systems,’’ IEEE
Trans. Parallel Distrib. Syst., vol. 26, no. 12, pp. 3433–3448, Dec. 2015.

[24] V. S. Sharma and N. C. Barwar, ‘‘Data management techniques in Hadoop
framework for handling small files: A survey,’’ in Information Man-
agement and Machine Intelligence (Algorithms for Intelligent Systems).
Singapore: Springer, 2019, pp. 425–438.

[25] V. S. Sharma and N. C. Barwar, ‘‘Performance evaluation of merging
techniques for handling small size files in HDFS,’’ in Data Analytics and
Management (Lecture Notes on Data Engineering and Communications
Technologies), vol. 54. Singapore: Springer, 2021, pp. 137–150.

[26] N. Alange and A. Mathur, ‘‘Small sized file storage problems in Hadoop
distributed file system,’’ in Proc. Int. Conf. Smart Syst. Inventive Technol.,
Nov. 2019, pp. 1202–1206.

[27] R. Rathidevi and R. Parameswari, ‘‘Performance analysis of small files in
HDFS using clustering small files based on centroid algorithm,’’ in Proc.
4th Int. Conf. I-SMAC, Oct. 2020, pp. 640–643.

[28] Y. Chen, J. Zhang, Z. Wang, G. Liao, S. Liu, H. Tan, G. Yang, Y. Fang,
S. Wang, and Z. Sun, ‘‘A faster read and less storage algorithm for small
files on Hadoop,’’ in Proc. Int. Conf. Comput. Eng. Artif. Intell. (ICCEAI),
Aug. 2021, pp. 206–210.

[29] W. Wu, H. Liu, L. Duan, and S. Xu, ‘‘SequenceFile storage optimization
method based on pile structure,’’ in Proc. IEEE Int. Conf. Artif. Intell.
Comput. Appl. (ICAICA), Jun. 2021, pp. 118–122.

[30] R. Aggarwal, J. Verma, and M. Siwach, ‘‘Small files’ problem in Hadoop:
A systematic literature review,’’ J. King Saud Univ., Comput. Inf. Sci.,
Sep. 2021. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S1319157821002585?via%3Dihub, doi: 10.1016/j.jksuci.2021.
09.007.

[31] Y. Zhai, J. Tchaye-Kondi, K.-J. Lin, L. Zhu,W. Tao, X. Du, andM.Guizani,
‘‘Hadoop perfect file: A fast and memory-efficient metadata access archive
file to face small files problem in HDFS,’’ J. Parallel Distrib. Comput.,
vol. 156, pp. 119–130, Oct. 2021.

[32] S. Pervaiz, Z. Ul-Qayyum, W. H. Bangyal, L. Gao, and J. Ahmad,
‘‘A systematic literature review on particle swarm optimization techniques
for medical diseases detection,’’ Comput. Math. Methods Med., vol. 2021,
pp. 1–10, Sep. 2021.

[33] W. H. Bangyal, K. Nisar, A. A. B. Ag. Ibrahim, M. R. Haque,
J. J. P. C. Rodrigues, and D. B. Rawat, ‘‘Comparative analysis of low
discrepancy sequence-based initialization approaches using population-
based algorithms for solving the global optimization problems,’’ Appl. Sci.,
vol. 11, no. 16, p. 7591, Aug. 2021.

[34] H. T. Rauf, J. Ahmed, and W. H. Bangyal, ‘‘A modified bat algorithm with
torus walk for solving global optimisation problems,’’ Int. J. Bio-Inspired
Comput., vol. 15, no. 1, p. 1, 2020, doi: 10.1504/IJBIC.2020.10027535.

[35] W. H. Bangyal, A. Hameed, J. Ahmad, K. Nisar, M. R. Haque,
A. A. A. Ibrahim, J. J. P. C. Rodrigues, M. A. Khan, D. B. Rawat,
and R. Etengu, ‘‘New modified controlled bat algorithm for numerical
optimization problem,’’ Comput., Mater. Continua, vol. 70, no. 2,
pp. 2241–2259, 2022, doi: 10.32604/cmc.2022.017789.

[36] V. S. Sharma and N. C. Barwar, A Novel Technique for Handling Small
File Problem of HDFS: Hash Based Archive File (HBAF). Amsterdam,
The Netherlands: IOS Press, 2021, doi: 10.3233/APC210205.

[37] W. Tao, Y. Zhai, and J. Tchaye-Kondi, ‘‘LHF: A new archive based
approach to accelerate massive small files access performance in HDFS,’’
in Proc. 5th IEEE Int. Conf. Big Data Service Appl., Apr. 2019, pp. 40–48.

[38] Y. Mao, B. Jia, W. Min, and J. Wang, ‘‘Optimization scheme for small files
storage based on Hadoop distributed file system,’’ Int. J. Database Theory
Appl., vol. 8, no. 5, pp. 241–254, Oct. 2015.

36866 VOLUME 10, 2022

http://dx.doi.org/10.1504/IJBIC.2020.10027535
http://dx.doi.org/10.32604/cmc.2022.017789
http://dx.doi.org/10.3233/APC210205


V. S. Sharma et al.: Dynamic Repository Approach for Small File Management With Fast Access Time

[39] M. S. G. Prasad, H. R. Nagesh, and M. Deepthi, ‘‘Improving the
performance of processing for small files in Hadoop: A case study of
weather data analytics,’’ Int. J. Comput. Sci. Inf. Technol., vol. 5, no. 5,
2014, Art. no. 64366439.

[40] B. Dong, Q. Zheng, F. Tian, K.-M. Cao, R. Ma, and R. Anane,
‘‘An optimized approach for storing and accessing small files on cloud
storage,’’ J. Netw. Comput. Appl., vol. 35, no. 6, pp. 1847–1862, Jun. 2012.

[41] B. Dong, J. Qiu, Q. Zheng, X. Zhong, J. Li, and Y. Li, ‘‘A novel approach to
improving the efficiency of storing and accessing small files on Hadoop: A
case study by powerpoint files,’’ inProc. IEEE Int. Conf. Services Comput.,
Jul. 2010, pp. 65–72.

[42] T. Zheng, G. Fan, and W. Guo, ‘‘A method to improve the performance
for storing massive small files in Hadoop,’’ in Proc. 7th Int. Conf. Comput.
Eng. Netw., Jul. 2017, p. 22.

[43] C. Vorapongkitipun and N. Nupairoj, ‘‘Improving performance of small-
file accessing in Hadoop,’’ inProc. 11th Int. Joint Conf. Comput. Sci. Softw.
Eng. (JCSSE), May 2014, pp. 200–205.

[44] B. Meng, W.-B. Guo, G.-S. Fan, and N.-W. Qian, ‘‘A novel approach
for efficient accessing of small files in HDFS: TLB-MapFile,’’ in Proc.
17th IEEE/ACIS Int. Conf. Softw. Eng., Artif. Intell., Netw. Parallel/Distrib.
Comput. (SNPD), May 2016, pp. 681–686.

[45] Y. Huo, Z. Wang, X. Zeng, Y. Yang, W. Li, and Z. Cheng, ‘‘SFS: Amassive
small file processing middleware in Hadoop,’’ in Proc. 18th Asia–Pacific
Netw. Oper. Manage. Symp. (APNOMS), Oct. 2016, pp. 1–4.

[46] K. Bok, H. Oh, J. Lim, Y. Pae, H. Choi, B. Lee, and J. Yoo, ‘‘An efficient
distributed caching for accessing small files in HDFS,’’ Cluster Comput.,
vol. 20, no. 4, pp. 3579–3592, Dec. 2017.

[47] S. Bahri, N. Zoghlami, M. Abed, and J. M. R. Tavares, ‘‘Big data for
healthcare: A survey,’’ IEEE Access, vol. 7, pp. 7397–7408, 2019.

[48] S. Nazir, S. Khan, H. U. Khan, S. Ali, I. Garcia-Magarino, R. B.
Atan, and M. Nawaz, ‘‘A comprehensive analysis of healthcare big data
management, analytics and scientific programming,’’ IEEE Access, vol. 8,
pp. 95714–95733, 2020.

[49] P. K. Sahoo, S. K. Mohapatra, and S.-L. Wu, ‘‘Analyzing healthcare big
data with prediction for future health condition,’’ IEEE Access, vol. 4,
pp. 9786–9799, 2016.

[50] R. E. Tarjan and R. F. Werneck, ‘‘Dynamic trees in practice,’’ in
Experimental Algorithms (Lecture Notes in Computer Science), vol. 4525,
C. Demetrescu, Ed. Berlin, Germany: Springer, 2007, pp. 80–93.

VIJAY SHANKAR SHARMA received the B.E., M.E., and Ph.D. degrees
from the MBM Engineering College, Jodhpur, which one of the oldest
engineering college of India. He is currently working as an Assistant
Professor (Senior Scale) with the Department of Computer and Commu-
nication Engineering, Manipal University Jaipur, India. He has teaching
experience of more than ten years. He has been published 11 research papers
in international and national journals/conferences. His research interests
include networking and simulation, big data analytics, Hadoop, and theory
of computation.

ASYRAF AFTHANORHAN received the dual Bachelor of Science degree
in statistics from Universiti Teknologi Mara (UiTM), in 2009 and 2012,
respectively, the Master of Science degree in mathematical science from
Universiti Malaysia Terengganu, in 2013, and the Ph.D. degree in
management statistics from Universiti Sultan Zainal Abidin (UniSZA),
Terengganu, Malaysia, in 2017. Before he pursues his Ph.D. degree, in 2015,
he was a Political Researcher under Malaysia Chinese Association (MCA)
for one year and five months. He is currently a Professor with UniSZA.
He is appointed as the Editor-in-Chief of The Journal of Management Theory
and Practice (UniSZA). He has been working as a Senior Lecturer with
UniSZA, since October 2017. At present, he received numerous awards from
innovation research and publication. He has been a member of International
Association of Engineers (IAENG), Elsevier Advisory Panel, and Publons
Academy Peer Review, since 2020. He is often invited as a Speaker or
a Facilitator for the Scopus publication, structural equation modeling and
statistics workshop. He has published more than 100 of research papers
and two academic books related to tourism, transportation, management,
marketing, hospitality, and statistical modeling. His profile can be referred
from Google Scholar, ORCID ID, Scopus, and Google Knowledge Panel.

NEMI CHAND BARWAR received the B.E. degree in computer technology
from MANIT Bhopal, the M.E. degree in digital communication, and the
Ph.D. degree from the MBM Engineering College, Jodhpur, India. He is
currently a Professor and the Head of the Department of Computer Science
and Engineering, MBM University. He is also working as a Professor
and the Head of the Department of Computer Science and Engineering,
MBM Engineering College, JNV University, Jodhpur. He has experience
of over 27 years in the field of teaching and research. He has published
more than 50 research papers in national and international conferences
and journals. He is supervising the Ph.D. Research Program in computer
science and engineering discipline and into information technology. His
research interests include computer networking, WSN, MANET/VANET,
the IoT, big data analytics, VoD, P2P networks, andmachine learning. He had
organized ten national conferences and short term courses sponsored by
AICTE/UGC/DST. He is a Life Member of ISTE and IEI.

SATYENDRA SINGH (Member, IEEE) received the bachelor’s degree (B.E.)
in electrical engineering from the Government Engineering College Bikaner,
Rajasthan, India, in 2008, the master’s degree in power systems from
the National Institute of Technology (NIT), Hamirpur, Himachal Pradesh,
India, in 2011, and the Ph.D. degree in electrical engineering from the
Malaviya National Institute of Technology (MNIT), Jaipur, India, in 2019.
He is currently working as an Assistant Professor with the School of
Electrical Skills, Bhartiya Skill Development University Jaipur, Rajasthan.
His research interests include power systems, power system economics,
electricity market, renewable energy modeling, FACTs devices, multi-agent
systems, and nature-inspired algorithms.

HASMAT MALIK (SeniorMember, IEEE) received the Diploma in electrical
engineering from Aryabhatt Government Polytechnic Delhi, the B.Tech.
degree in electrical engineering from Guru Gobind Singh Indraprastha
University, Delhi, the M.Tech. degree in electrical engineering from the
National Institute of Technology (NIT)Hamirpur, India, and the Ph.D. degree
in electrical engineering from the Indian Institute of Technology (IIT), Delhi.

He was worked as an Assistant Professor for more than five years with
the Division of Instrumentation and Control Engineering, Netaji Subhas
Institute of Technology (NSIT), Dwarka, Delhi, India. He is currently a
Chartered Engineer (C.Eng.) and a Professional Engineer (P.Eng.). He is
also Postdoctoral Researcher with Berkeley Education Alliance for Research
in Singapore (BEARS) (a Research Center, University of California at
Berkeley, Berkeley, USA), University Town, NUS Singapore, since January,
2019. He has published widely in international journals and conferences his
research findings related to intelligent data analytics, artificial intelligence,
machine learning applications in power system, power apparatus, smart
building and automation, smart grid, forecasting, prediction, and renewable
energy sources. He has authored and coauthored more than 100 research
papers, nine books and 15 chapters, published by IEEE, Springer, and
Elsevier. He has supervised 25 PG students. His research interests include the
application of artificial intelligence, machine learning and big-data analytics
for renewable energy, smart building & automation, condition monitoring,
and online fault detection & diagnosis (FDD).

Dr. Malik is also a fellow of the Institution of Electronics and
Telecommunication Engineering (IETE) and a member of the Institution of
Engineering and Technology (IET), U.K., the Computer Science Teachers
Association (CSTA), the Association for Computing Machinery (ACM)
EIG. He is a Life Member of the Indian Society for Technical Education
(ISTE), the Institution of Engineers (IEI), India, the International Society
for Research and Development (ISRD), London, andMir Laboratories, Asia.
He received the POSOCO Power System Award (PPSA-2017) for his Ph.D.
work for research and innovation in the area of power systems. He also
received the best research papers awards from IEEE INDICON-2015, and
the Full Registration Fee Award from IEEE SSD-2012, Germany.

VOLUME 10, 2022 36867


