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ABSTRACT Insects are a class of the arthropod branch and the most crowded animal group in terms of
species and taxonomy. Due to destruction and forest fires, some insect species could go extinct without
being detected. Identifying new insects and having knowledge about insects in terms of biodiversity will
contribute positively to the studies carried out, especially in entomology, agriculture, the pharmaceutical
industry, medicine, robotics, and other branches. In this study, we produced a mobile-based decision support
software with a deep learning model to classify and detect insects at the order level. We also presented the
comparative analysis results of SSD MobileNET, YoloV4, and Faster R-CNN InceptionV3 deep learning
methods and adapting processes for order-level insect classification. Our approach studies the suitability of
existing models towards such an objective, and we conclude that Faster R-CNN InceptionV3 performs the
best at classifying and detecting insects at the order level. In addition, we shared 25820 training and 1500 test
data in the kaggle database in order to contribute studies to be carried out in this area. As a result, we believe

that this research will be beneficial to entomologists, naturalists, and other researchers in related fields.

INDEX TERMS Artificial intelligence, computers and information processing, insect classification.

I. INTRODUCTION

Entomology is a branch of zoology that includes scientific
studies focusing on insect-related issues [1]. Due to the high
insect populations, we found that more extensive research is
needed for the order level of insects. In recent years, the desire
to prevent insects from harming plants, animals, farmland,
and people has been a reason for the increase in entomol-
ogy studies [2], [3]. Also, entomology studies are essential
because they offer new horizons and benefits to fields inspired
by insects and nature, such as chemistry, medicine, pharma-
ceuticals, engineering, etc. [4]. A third of the world’s crop is
plundered and destroyed by insects.

For this reason, commercial losses are experienced due
to the loss of many products [5]. The rapid and accurate
identification of insects is essential whereby the prevention of
economic losses and its contribution to the field of entomol-
ogy [6], [7]. Also, insects inspire scientists in robots, sensors
technologies, mechanical structures, aerodynamics, and intel-
ligent systems [8]. The estimated number of species in insects
is 1.5 million on the earth, but the number of named and
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defined species is around 750 thousand [9]. However, rarely
does a new species continue to be discovered and named
by scientists [10]. Due to the destruction and forest fires,
some insect species are destroyed undetected [11]. For these
reasons, academic studies on insect detection are essential for
showing biodiversity [12]. When classifying insects, one of
the essential criteria is determining the order level to which
they belong. It is not possible to differentiate the type without
determining the order level. As a result of scientific studies,
32 insect orders have been identified in nature. The newest
insect orders were found in 2002. There are approximately
21 different criteria in order to determine, from the number of
wings, body shape, number of feet, head shape [13]. In insect
research using the traditional approaches, excessive time is
needed due to many criteria to avoid some misdiagnoses [14].
When the literature was searched for insect detection at
the order level, no decision support software, database, or
program that can classify at the order level was found.
Furthermore, it has been noted that there is no systematic
deep learning comparison analysis that recognizes and clas-
sifies insect classification at the order level. Studies state
that deep learning models, artificial intelligence, or machine
learning algorithms are needed to classify and identify insects
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accurately and effectively [15], [16]. The major contributions
of this paper can be summarized as follows: 1) A classifica-
tion process covering all insect order levels was performed.
2) Comparative performance analysis of deep learning tech-
niques for insect classification problem was presented.
3) Mobile-based decision support software for insect detec-
tion was presented. 4) An extensive database containing
insect images that future studies can use was shared.

Il. RELATED WORKS

Deep learning methods are used for education, e-commerce,
industrial application, images, and processes in many areas
where various datasets need to be analyzed [17]. When
studies on object recognition with deep learning methods
through images are examined, Krizhevsky et al.’s AlexNet
study stand out. AlexNet won the ILSVRC, an Image clas-
sification competition, in 2012 [18]. Park et al. developed
an insect classification application using the Squeeze-and-
Excitation Networks module. In the application called
SERAN, 34525 images for 123 classrooms were used in
training. The developed algorithm is more successful than
similar classification algorithms [19]. Deep Learning studies
on object recognition gained speed with AlexNet. Previously,
object recognition studies used classical image processing
libraries [20]. There are studies in the literature stating that
deep learning methods can be more efficient in insect classi-
fication and detection and that there is a need for studies using
these methods [15], [21], [22].

The algorithm, called AdaBoost, carried out the classifica-
tion of insects stored in granaries using Artificial Neural Net-
work methods. The developed algorithm was compared with
standard neural network methods. According to the experi-
mental results, a significant improvement was obtained in the
efficiency and classification accuracy of the new method [23].
In addition, a study called Automated Bee Identification Sys-
tem (ABIS), based on another convolutional neural network,
observed mobile field investigations, including species iden-
tification of live bees in the field [24]. Lim et al. developed an
algorithm that classifies butterflies and ladybugs. They used
image processing techniques and classified according to the
color, size, and position parameters [25]. They used OpenCV
(a Computer Vision library) to develop the algorithm and
introduced the 14 features of some insects to training with
machine learning algorithms, and realized the identification
of these insects. Lim et al. developed an application using
CNN architecture to classify seven forest insects. In their
application, firstly, the forest beetle is classified in the clas-
sifier on the web-based server then the result is sent to the
application after. They study with common insect species,
and also some of them are in the same insect order, and
22877 in total for training, 3861 for approval, and 2984 for
the test were used [26]. For this reason, it is different from
our study. In our study, insects are classified at the order level,
and classification is made on rare insect orders [22].

Silva et al. used Euclidean distance and Dynamic Time
Warping (DTW) classification methods for agricultural pests.
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They collected insect flight information and classified the
insects by their genus with a laser light sensor. Moreover,
owing to the audio recognition methods effectively collected
features containing sufficient information for species identi-
fication provided real-time estimates [27].

Batista et al. and Chen et al. implemented their studies
using sensors to detect insects. They used optical sensors
to record the “sound” of insect flight from meters away,
with total invariance to wind noise and ambient sounds.
They stated that recent advances in sensor technology are
beginning to come forward in the new field of Computational
Entomology will emerge. Also stated that they train their
models efficiently using a Bayesian classification approach
[28], [29]. Lim et al. performed impact analysis for
insect classification using CNN. In the developed algo-
rithm, 27 classes and 1300 images were cropped to
256 x 256 dimensions for training and filtered. The images
were prepared for training with CNN architecture. Later, the
insect classification was made with the trained model, and
its performance was measured [30]. Huynh ef al. proposed
a CDNN model for insect classification based on Neural
Network and Deep Learning approaches. First, insect images
were collected based on the intense scale unchanged property
transformation. The properties pouch was used for image
display as feature vectors. Finally, these feature vectors are
trained and classified using the CDNN model based on
the Deep Neural Network. This approach was developed
to detect brown leaf flea and ladybug that damage rice in
Mekong Delta, where rice is produced [31]. Xia et al. carried
out insect classification research using VGG19 classification
architecture developed from CNN. The study used 540 pho-
tographs obtained over the internet for 24 different species
in deep learning. In the data increase phase, this number was
increased to 4800. When the selected species are examined,
it is seen that there are insects with the same order [32].
Buschbacher ef al. proposed an Automated Bee Identifica-
tion System (DeepABIS) that allows mobile field operations
to be carried out on site, including the detection of live
bee species. Using mobile smartphones and a cloud-based
information gathering and communication network, Deep-
ABIS provides participant detection scenarios. DeepABIS is
flexible and transferable to other taxa, i.e., butterflies, flies,
etc. [24]. Valan et al. carried out an SVM for the identification
of insects. Two challenging tasks were tested in the study.
Firstly, 884 face images from 11 families of the Diptera insect
orders were found 96 percent accurate, and 2936 images from
14 families of the Coleoptera insect orders were 90 percent
accurate. In the second task, a decision support system was
created, which provided 96 percent accuracy in 339 images of
three species of Colxytera genus Oxythyrea and 98.6 percent
accuracy in Plecoptera larvae species in another dataset [33].

Khalifa et al. used an insect pest dataset containing 102
sub-classes. The chosen deep transfer learning models were
AlexNet, GoogleNet, and Squeez-Net. These models were
chosen based on their limited number of layers based on their
architectures, reflecting the models’ complexity, memory,
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and time. In order to make the models more robust and resolve
the overfitting problem, data augmentation techniques were
used by increasing the images of the dataset up to 4 times
more than the original images. To prove the effectiveness of
the selected models, the testing accuracy and performance
metrics, such as the precision, recall, and F1 score, were
measured [34].

When we examined the studies in the literature, we saw
that the studies were generally carried out on insect species
that are easy to distinguish and only for classification at
the team level [35]. For this reason, the analyzes made in
our study were evaluated on a comprehensive data set for
32 different order levels and all insect species. In addition, the
application was carried out by comparing the performances
of three different deep learning methods. Insect pests are one
of the main factors affecting agricultural product production.
With the development of computer algorithms and artificial
intelligence, accurate and rapid identification of insect pests
early can help prevent economic losses in the short and
long term.

This study presents a comparative analysis of deep learning
models for identifying and classifying insects at the order
level. Our research, presented the adaptation processes, fine-
tuning stages, and analysis results of the SSD MobileNET,
YoloV4, and Faster R-CNN InceptionV3 deep learning meth-
ods for order-level insect classification. According to devel-
oped software, insect classification can be made easier and
faster. The developed software is expected to be actively
used in academic studies in Entomology. In addition, peo-
ple interested in insects but do not have enough knowledge
about entomology will be able to learn on their own which
insect belongs to which order level by using the software
we recommend. In the literature review and also preliminary
interviews with researchers working on Entomology, it was
seen that there was no comprehensive software study that
detects and classifies at the order level in insect classification.
Entomology researchers and students working in this field
can be used the mobile decision support system we prepared
in our study to classify insects in nature. In addition, the
developed software will ensure the identification of pests and
beneficial insects if actively used in agriculture. This will
make agriculture more productive, thus contributing to the
country’s economy.

lIl. MATERIALS AND METHODS

A. DATA PREPROCESSING AND AUGMENTATION

Insects are a class of the arthropods branch and are the most
populated animal group in terms of species. Thirty-two insect
orders depend on the insect class. The datasets used in this
study are insect images at the order level. When classifying
insects, one of the essential criteria is determining the order
to which they belong. It is not possible to determine the type
without determining the order level. As a result of scientific
studies, 32 insect orders were determined in nature. There are
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TABLE 1. Criterias for insect order determination.

Properties
Number of Wings Hind legs Tentacles
Wing Shape Tarsomere Body areas
number
Wing Pattern Pretarsus Body Shape
Wing evolution Head Shape Pronotum shape
Wing Vein Antennas Abdominal apex
Wing Base Compound Abdominal base
eyes
Fore Legs Mouthparts Cerci

approximately 21 base criteria in insect order determination,
from the number of wings to the body shape, from the number
of feet to the head shape. Through these criteria, which are
referred to as keys, entomologists can classify. These criteria
are given in Table-1 below [36].

According to the values of these criteria, the order to which
the insect belongs can be determined. Each criterion has
many values; insect scientists evaluate their decisions based
on these criteria and determine that the insect belongs to one
of the 32 insect orders [13]. If these evaluated criteria do
not meet the previous criteria and include different evaluation
criteria, this may mean that a new order of insects has been
discovered. For instance, the last discovered Mantophasmo-
todea insect order was found in this way in 2002. Doubtless,
this is a scarce situation [37]. With the software developed
in our study, the classification process for all types of insect
orders was made. Sample images of insect orders used for
classification are shown in Figure 1.

Insect orders such as Coleoptera and Hymenoptera have a
broad subclass compared to other Insect orders. The images
of these insect orders are shown by selecting only one of
the lower insect classes [1]. However, all these subclasses
were used in the training and testing phases. In the soft-
ware developed in this study, these learning criteria are pro-
vided with deep learning methods such as Faster R-CNN
InceptionV3, SSD MobileNET, and YoloV4 methods. The
Insect dataset of 25820 training images and 1500 test images
are shared in the Kaggle database (https://www.kaggle.
com/selmankundurac/insect-order-dataset) for aimed to con-
tribute to the literature.

B. DEEP LEARNING FRAMEWORK: TENSORFLOW
Tensorflow is a free and open-source software library devel-
oped by Google Brain Team that can be used in artificial
neural networks, deep learning, and genetic algorithms. It is
used for both research and production at Google. Devel-
oped basically with the Python programming language, this
library supports programming languages such as C ++-, Java,
Javascript, and R. It can be integrated into two ways, CPU
and GPU. The CPU model uses the processor to process data,
while the GPU model uses a graphics card processor [38].
Tensorflow is used for the Deep Learning process using an
object detection library in this study.
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Plecoptera(24)

Strepsiptera(28)

Siphonaptera(27)

Trichoptera(31) Zoraptera(32)

FIGURE 1. The insect orders used for classification.

C. OPENCV LIBRARY AND DEEP LEARNING

WITH PYTHON

OpenCV library contains more than 2500 algorithms such
as classical image processing, computer vision, and machine
learning. Many operations could be done with these methods,
such as face recognition, object recognition, classification,
tracking of objects, and extracting 3-dimensional models of
objects in real-time or through offline systems. OpenCV has
more than 47 thousand communities and more than 18 million
downloads. The library is used by companies, public institu-
tions, and research groups [39].

In this study, the OpenCV library was integrated with
Tensorflow and used in image processing with Python
programming language commands. Python is an object-
oriented, interpreted, high-level programming language with
its dynamic schema and modular structure that supports
all kinds of data entry and class structures. Because it is
platform-independent, it can be used in Unix, Linux, Mac,
Windows, Amiga, Symbian operating systems. Also, the most
crucial advantage that distinguishes Phyton from other pro-
gramming languages is that it supports web applications,
user interface applications, mobile applications, system appli-
cations, and databases. Python programming language was
used in this study because the artificial intelligence and deep
learning libraries are vibrant and easily adaptable.
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D. FASTER R-CNN INCEPTIONV3, SSD AND

YOLOV4 MODELS

Faster R-CNN is an artificial neural network algorithm cre-
ated by combining RPN (Zone Proposal Algorithm) mod-
els [40]. This algorithm passes the entrance image through
the conventional neural networks, and the feature map is
drawn [21]. In this study, we used the InceptionV3 model
from Faster R-CNN architecture. In Figure-2 general archi-
tecture and process of Faster R-CNN is presented [41]. In this
stage, RPN is created, and region recommendations are made
over this network. After the determined Network regions
are reshaped, they are passed through their fully connected
layers, and the classification process is performed. In this
way, a faster estimation time is obtained.

PROPOSALS

CLASSIFIER

COMV LAYERS

ROI
POOLING

FEATURE MAPS

FIGURE 2. The architecture of the Faster R-CNN model.

SSD is a single-shot detector and can be used in real-
time for object detection. It has no delegated region proposal
network and predicts the boundary boxes and the classes
directly from feature maps in one single pass. SSD intro-
duces a few enhancements, including multi-scale function-
ality and default boxes, to retrieve the decrease in precision.
To improve the SSD’s performance, we added small convolu-
tional filters, separate filters are used to handle the difference
in aspect ratio in images, and multi-scale feature maps are
used for object recognition [42]. In Figure-3 architecture of
SSD is presented.

!
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&

SSD Layers

FIGURE 3. The architecture of the SSD model.

Another model we used for comparison in our study is
the YOLOv4. YOLO (You Only Look Once) is an object
detection algorithm using convolutional neural networks.
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YOLO got this name because it can detect objects very
quickly [43]. The YOLO model surrounds the objects it
detects with a bounding box on the images. YOLO divides the
input image into NxN grids. Each grid determines whether
or not an object is in it, as well as the location of its center
point within its area. Deciding that the object has a center
point, the grid determines the object by finding the class,
height, and width of that object and drawing a bounding
box around that object. In the model created for this study,
Yolov4 was used, and the training process was carried out
with the TensorFlow library. The model file obtained after the
training was converted into a tflite file and adapted to work
in the mobile application. In Figure-4 architecture of YOLO
is presented [44].

= "
o N
Nl =lgigs

FIGURE 4. The architecture of YOLO model.

We selected the YOLOv4 model due to its good detection
speed and accuracy in real-time applications and compared
their accuracy and speed to investigate which algorithm per-
forms best for insect detection in order level.

IV. PROPOSED APPROACH AND IMPLEMENTATION

In order to group insects at the order level with deep learning,
the distinguishing features in the literature were determined,
and the insect images in the training dataset were labeled.
The images collected from search engines and databases such
as ImageNet were subjected to image pre-processing such as
light balance and image size adjustment. After the suitable
images for training were tagged with labeling software, the
methods created the datasets. The insect images put into train-
ing must reflect the distinctive features as clearly as possible
for the classification system to work efficiently. Otherwise,
the training process will be repeated many times since each
image used in training will cause erroneous results.

Tuning Process
YOLO V4

SSD MobileNET

Faster R-CNN Inception

Deep Learning Models

o
Classification

FIGURE 5. The implementation process.

In this study, the faster R-CNN-based InceptionV3,
Yolo V4, and SSD MobilNet were compared and analyzed
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with deep learning and object classification methods. The
Faster R-CNN-based Inception V3 approach is suitable for
classification after about 120000 epochs, SSD MobileNET
about 100000 epochs, and 100 epochs for YoloV4. In our
study, out of 32 insect orders enrolled in training for clas-
sification, the errors in the datasets of insect orders with
a low classification rate were corrected, reconstructed, and
retrained. An improperly trained order will cause errors both
in the classification of that insect order and other insect
orders. For this reason, it is of great importance that the
images collected for the insect orders belong to that insect
order, that the image reflects the characteristic feature of the
insect order, and that it is images from as many angles as
possible.

A. EXPERIMENTAL SETTINGS

In object detection and classification, the size and characteris-
tics of objects are significant for the correct result. In insects,
features such as legs, antennae, wing structure, and number
are used to distinguish the insect. Therefore, Anchor Boxes’
width and height settings were changed in the training con-
figuration. The size of the images should not be too low
resolution or too high resolution because Distinctive features
of the insect are lost in very low-resolution images. When the
resolution is low, the error rate can be high. If the images are
in too high resolution, the training time is prolonged, and it
causes performance loss. Generally, the images are arranged
between 720 x 720 pixels and 250 x 250 pixels using addi-
tional software. Trained Image Count (TIC) values belong
to insect orders presented in Table-2. This table shows the
number of TIC of tagged images used in training to classify
each Insect order. Initially, a total of 3304 insect images were
collected Image Count (IC), with a certain number of each
class. Later, these images were extracted to 25820 images
using Data Augmentation methods. The number of images
after Data Augmentation is shown in the last column of
the table (Augmented Image Count = AIC). As shown in
Table 2, the number of images is low because the images
of insect orders such as Zoraptera and Phthiraptera are low.
Insect orders such as Hymenoptera, Lepidoptera, on the other
hand, have more images since they are the more common
insect orders. In order to reduce this imbalance and increase
the success rate of classes with low image numbers, data
augmentation processes were carried out at different rates.
This method increases the success of classification, especially
for rare insect species. For example, since Zoraptera is a rare
insect order, approximately 25 photographs were obtained in
the first stage. Subsequently, this number was increased to
900 with Data Augmentation. These images were shared in
the kaggle database.

The study has been preferred for the Windows 10 oper-
ating system, the python programming language, Android
10 version for mobile application, and the anaconda plat-
form for the deep learning environment. With the Tensorflow
GPU version, additional libraries such as OpenCYV, pillow,
matplotlib have been installed in the working environment
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TABLE 2. TIC values of insect order.

No Insect Order IC AIC No  Insect Order (@ AIC
1 Archaeognatha 72 592 17 Mecoptera 102 816
2 Blattodea 99 896 18 Megaloptera 99 792
3 Coleoptera 124 992 19 Neuroptera 101 808
4 Collembola 96 768 20 Odonata 105 840
5 Dermaptera 100 800 21 orthoptera 104 832
6 Diplura 100 800 22 Phasmatodea 95 760
7 Diptera 100 800 23 Phthiraptera 21 720
8 Embioptera 60 480 24 Plecoptera 95 760
9 Ephemeroptera 100 800 25 Protura 101 808
10 Grylloblatodea 96 768 26 Psocoptera 95 760
11 Hemiptera 100 800 27 Siphonaptera 68 544
12 Hymenoptera 319 1752 28 Strepsiptera 97 776
13 Isoptera 125 1000 29 Thysanoptera 85 680
14 Lepidoptera 137 1096 30 Thysanura 81 648
15 Mantodea 102 816 31 Trichoptera 92 736
16 Mantophasmatodea 60 480 32 Zoraptera 21 900

of this platform. After the installation phase, the necessary
coding and adjustments were made, and the training started.

B. LOSS FUNCTION

A loss value occurs after each epoch in training. This loss
value calculates how far the predicted value is from the actual
value, and while it is initially high, it decreases over time.
If this loss value does not decrease or increases gradually,
the training is terminated. This is the optimum value in the
training epoch. The loss function value decreased further as
the number of epochs increased.

1 1

L=— Lcis(piv PT) + A Zp?Lreg(tis t,*) (1)
Neis P Nreg

1

where L, L¢js and Ly are the joint loss, classification loss,
and regression loss of the border; N and Ny, are the
numbers of categories and boxes; A and i represent the weight
coefficient and the selected anchor box index; p; and p;*
represent the probability that candidate box i is the object,
the value of the label (if the candidate box is a positive label,
pi* = 1, otherwise p;* = 0); t;* is the predicted offset of the
anchor box, and t;* is the offset between the anchor box and
the actual object box. Also, in Figure-6, the graphic showing
the relationship between the number of epochs and the loss
value of the training is shown below. As seen in the graphic,
the loss values, which were high at the beginning, dropped
below 0.5 when the number of epochs reached 60000, and
the training was terminated because it did not decrease more
than 120000 epochs.

C. THE DESIGNED ANDROID APPLICATION

The mobile application-based decision support system pre-
sented in this study has been developed on the android studio
platform, with Java and Kotlin languages, for android users.
The mobile application has been developed by targeting the
Android 10 version, and in order for it to work, the device
must have a minimum Android 7.1 version. The interface of
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FIGURE 6. The number of epochs and loss value.

cod 401210

Insect Order Detection

Archaeognatha

FIGURE 7. The deep learning-based mobile software interface.

the mobile application is shown in Figure 6. By pressing the
button on the interface image, the user can select the insect
image by taking a photo from the device’s image gallery
or the camera. Then, the comparison is made with the deep
learning file embedded in the program, and the classification
process is performed. After the classification, insect team
name and prediction percentage are shown to the user, and
the after the user is directed to the information page about
the relevant insect. The user is given information about the
insect team on the information page. SQLite, a local database,
was used to store insect information. A tflite file was created
for the training result of each model in this study. These files
are integrated into the mobile application, and the required
classifier class is written with the kotlin programming lan-
guage. Because both the local database is used and the model
tflite files are included in the program, users can classify and
get information about the bug without needing an internet
connection.

V. EXPERIMENTAL RESULTS

In order to measure the classification success of the pro-
posed approach in different methods, test images were cre-
ated with a certain number of images from each class.
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TABLE 3. Precision, recall (or correct rate) and F1 score values.

Total
Number
Faster R-CNN SSD Model YOLOvV4 Model of

Tests
Insect Order P R F1 P R F1 P R F1
Archaeognatha 0,90 0,71 0,80 0,86 0,46 0,60 0,81 0,74 0,77 52
Blattodea 0,89 0,83 0,86 0,87 0,68 0,76 0,88 0,80 0,84 40
Coleoptera 0,84 0,94 0,89 0,66 0,76 0,70 0,80 0,90 0,85 33
Collembola 0,71 0,96 0,81 0,53 0,68 0,60 0,70 0,92 0,79 25
Dermaptera 0,93 0,61 0,74 0,90 0,42 0,57 0,90 0,60 0,72 62
Diplura 0,63 0,92 0,75 0,53 0,82 0,64 0,62 0,90 0,73 39
Diptera 0,77 0,83 0,80 0,51 0,71 0,60 0,72 0,80 0,76 52
Embioptera 0,74 0,74 0,74 0,50 0,49 0,49 0,71 0,72 0,71 35
Ephemeroptera 0,87 0,68 0,76 0,82 0,55 0,66 0,85 0,69 0,76 107
Grylloblatodea 0,73 0,86 0,79 0,59 0,77 0,67 0,71 0,80 0,75 22
Hemiptera 0,85 0,92 0,89 0,73 0,75 0,74 0,81 0,88 0,84 76
Hymenoptera 0,68 0,87 0,76 0,40 0,78 0,53 0,63 0,82 0,71 37
Isoptera 0,95 0,78 0,86 0,91 0,69 0,78 0,80 0,79 0,79 73
Lepidoptera 0,93 0,88 0,90 0,82 0,72 0,77 0,82 0,81 0,81 64
Mantodea 0,83 0,92 0,87 0,75 0,88 0,81 0,81 0,89 0,85 85
Mantophasmotodea 0,75 0,65 0,70 0,56 0,39 0,46 0,72 0,73 0,72 23
Mecoptera 0,78 0,83 0,80 0,77 0,77 0,77 0,74 0,80 0,77 47
Megaloptera 0,77 0,80 0,79 0,54 0,67 0,60 0,77 0,79 0,78 30
Neuroptera 0,79 0,82 0,81 0,59 0,61 0,60 0,78 0,80 0,79 33
Odonata 0,79 0,76 0,78 0,66 0,66 0,66 0,79 0,75 0,77 55
Orthgptrea 0,93 0,73 0,82 0,60 0,67 0,63 0,93 0,70 0,80 63
Phasmatodea 0,69 0,73 0,71 0,58 0,75 0,65 0,66 0,71 0,68 20
Phthiraptera 0,67 0,90 0,77 0,57 0,69 0,62 0,62 0,89 0,73 71
Plecoptera 0,71 0,83 0,77 0,78 0,97 0,87 0,69 0,82 0,75 30
Protura 0,85 0,97 0,91 0,58 0,73 0,65 0,81 0,89 0,85 41
Psocoptera 0,74 0,88 0,80 0,77 0,39 0,51 0,71 0,92 0,80 26
Siphonaptera 0,91 0,73 0,81 0,75 0,94 0,83 0,90 0,71 0,79 32
Strepsiptera 0,81 0,94 0,87 0,68 0,51 0,58 0,80 0,90 0,85 55
Thysanoptera 0,88 0,78 0,83 0,48 0,74 0,58 0,85 0,76 0,80 31
Thysanura 0,68 0,81 0,74 0,73 0,75 0,74 0,67 0,80 0,72 44
Trichoptera 0,90 0,80 0,84 0,83 0,60 0,69 0,87 0,79 0,83 42
Zoreptera 0,91 0,76 0,83 0,89 0,56 0,69 0,91 0,75 0,82 55
Accuracy 0,808 0,669 0,778 1500
Macro AVG 0,806 0,817 0,805 0,679 0,673 0,658 0,774 0,799 0,786 1500
Weighted AVG 0,821 0,808 0,308 0,705 0,669 0,669 0,787 0,795 0,791 1500

Almost 1500 insect images in total have been tested in three
different classification methods. The classification value for
each mage was first transferred to text files, and then the
results of all classes were transferred to the confusion matrix
numerically. The highest values with IoU (Intersection over
Union) value IoU >= 0.50 and above were accepted as suc-
cessful classification values in the tests. The most common
performance measurements in the field of Deep Learning are
used and presented respectively; the Test Accuracy Eq.(1),
Precision Eq.(2), Recall Eq.(3), and F1 Score Eq.(4) [45].
The confusion matrix should be created to obtain TP, TN,
FP, and FN values. The TP value indicates the number of
correct predictions, the FN value indicates the number of
false predictions, FP indicates the number of classes in other
classes, and the TN value represents the total number that
class is not related to. After these values are obtained, Test
Accuracy, Precision, Recall, and F1 scores are calculated for
each insect order. The formulas used for the calculation are
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given below. The F1 Score (4) obtained at the end of the
measures the study’s success. A comparison of the Inception
V3, SSD, and YOLOv4 models is given in Table 3. The
number of insect images tested in the ‘“‘total number of tests”
column in Table-3 and the classification success for each class
in the other columns are presented by obtaining Sensitivity,
Recall, and F1 Scores.

. TN 4 TP
Testing Accuracy = 2)
(IN +TP+ FN + FP)
L TP
Precision = ——— 3)
(TP + FP)
TP
Recall = ——— 4)
(TP + FN)
Precision x Recall
F1 Score = 2 x ®)]

Precision + Recall

Besides, each model’s accuracy, macro average, and
weighted average results were calculated. In Table-3, the
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highest F1 scores of the three models were shown in bold. The
F1 score of the Inception V3 model was higher than the other
models in almost all classes. The Inception V3 model was the
most successful classification with the highest F1 score was
in the “Protura” class with 0.91. The lowest F1 score in the
Inception V3 model was in the Mantophasmotodea class with
0.70. Since Mantophasmotodea was a rare insect order, the F1
score may have been low.

Precision is the rate at which a class appears in the results
of other classes as a result of classification. If it is close to 1,
that class can be said to be less in the results of other classes,
and if it is closer to 0, it can be more. According to this
definition, the Faster R-CNN-based Inception V3 model’s
Precision value is 0.67 in the most common insect group,
called Phthiraptera order. The lowest Precision value was
Hymenoptera with 0.40 in the SSD Model and Phthiraptera
and Diplura with 0.62 in the YOLO V4 Model. The Recall
value is obtained by correct classification results divided by
the number of results that should have been returned. The
recall value results of the Inception V3 model were Collem-
bola, which had the highest score of 0,96, and Dermaptera as
the lowest score of 0,61. In the SSD Model, the highest Recall
value belongs to the Plecoptera class with 0.97, while the
lowest Recall value belongs to the Mantophasmotodea and
Psocoptera classes with 0.39. In the YOLO Model, the high-
est Recall value belongs to the Collembola and Psocoptera
classes with 0,92, and the lowest Recall value belongs to the
Dermaptera class with 0,60.

TABLE 4. Comparision of methods.

Classification Classification

Training Time

Models Accuracy . Time Time
(Windows 10)  \indows 10) _ (Android 10)

Faster RCNN  g0g 6,9h 27 ms 85 ms

Inception V3

SSD

MobileNET 0,669 5,1h 34 ms 92 ms

Yolo V4 0,778 9,2h 17 ms 81 ms

Table 4 presents the accuracy values of the three meth-
ods, training cost time, and how long each test image was
classified. The fourth column in Table-4 shows the classifi-
cation times of the three models used in the testing phase of
an image in the Windows 10 operating system. The Faster
R-CNN-based Inception V3 model performed classification
in 27 milliseconds, SSD MobilNET in 34 milliseconds, and
Yolo V4 in 17 milliseconds. Accordingly, the fastest model
in the Windows 10 operating system was Yolo V4. This mea-
surement was made on a computer with an Intel Core 17 8700
3.2 GHz processor, 32 GB RAM, 4 GB, 4 GB Nvidia 1050ti,
and a 1 TB SSD hard disk. The fifth column shows the com-
parison and classification cost times on an Android device.
When the classification times on a smartphone with 512 GB
RAM and Android 10 are examined, it is seen that it is
85 ms in the Faster R-CNN based approach, 82 ms in the
SSD MobileNET, and 81 ms in the Yolo V4 model. When
the models are compared, the fastest method is again the
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YoloV4 model. Classification times may vary depending on
the hardware and software features of the device. According
to accuracy values, the Faster R-CNN-based Inception V3
model 0,808 has achieved a more successful result than other
models. SSD MobileNET has failed compared to other mod-
els. In the images below (Figure 7), the classification results
in the images of the Ephemeroptera and Plecoptera insect
orders can be seen. These results show an Ephemeroptera
insect order, which is correctly detected with 99 percent,
in Figure 7(a). In Figure 7(a), the characteristic features of
the Ephemeroptera insect order are fully reflected. In the
image, however, the insect appears clearly. For this reason,
the correct classification was made with a high rate of 99 per-
cent. Another classification image of the same insect order is
shown in Figure 7(b). Here, the insect is not as clear as in the
other image. The software classifies, albeit at very low per-
centages. Nevertheless, low rates are not shown as a result of
classification. An incorrectly detected Ephemeroptera insect
order in Figure 7(c) is seen. The software has mixed the Ple-
coptera insect order with the Ephemeroptera insect order. The
correct classification result for the mixed species can be seen
in Figure 7(d). In Figure 7(c), the software made the wrong
classification because the characteristics of the insect order
are similar to the Plecoptera insect order. The distinguishing
criteria must be evident in the insect image for a successful
classification when the software results are examined. The
mistakes can be eliminated by increasing the number of
training transactions, but the prominent presence of the insect
in the image is essential for successful classification.

FIGURE 8. Ephemeroptera and plecoptera insect orders.

VI. DISCUSSION AND CONCLUSION

When the test results of the compared deep learning mod-
els were evaluated in general, the insects were successfully
detected and classified in order level. The Faster R-CNN-
based Inception V3 model was most successful in correctly
identifying and classifying insects at the order level. In terms
of test time, the Yolo V4 model has an advantage over other
models because it gave the best results on both Android and
Windows operating systems. Although we concluded in this
study that the Faster R-CNN model is more successful than
the other models we compared, some studies in the literature
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show that the accuracy value is high in various models [46].
We foresee that this is due to differences in dataset structure,
problem type, and fine-tuning training stages.

We recommend the Faster R-CNN-based Inception V3
model because it gives successful results in terms of accu-
racy in tests and is better than other methods even in low-
quality photos with blurry and low brightness. There are also
insect images that all three models used could not detect.
Image-related causes of this situation are insufficient light,
the insect being too small in the image, the insect’s image not
being clear, and a different object in the image that makes
it difficult to detect an object. Another situation is that the
models cannot detect it because the insect photograph cannot
reflect the characteristic features of the insect. Not only for
insect detection but also for all objects to be detected, the
characteristic features of that object should be reflected in
the image. The findings of this study demonstrated the perfor-
mance of deep learning models and how the models produced
results in a real-world problem such as determining the order
level of insects using insect images. It is anticipated that the
research results and the mobile application presented will
contribute to researchers working in the fields of insects.The
insect data set we created from 25820 images has been shared
publicly in the kaggle environment. We aim to contribute
to the literature as a primary resource for related studies in
order-level insect classification and detection processes in
future studies. Researchers can perform different studies by
developing this data set or testing it with different algorithms
and deep learning models.

Researchers who want to do insect detection using Deep
Learning methods can achieve more successful results by
reducing the number of classes to less and using more datasets
in training. More comprehensive results can be obtained for
future studies by expanding the dataset, especially for rare
insects, and by working with entomologists to enrich the
data sets. In addition, due to the easy use of the model and
mobile software proposed in the study, people who are not
directly related to entomology but work in fields such as
agriculture will detect insects that may damage agricultural
products using this software. As a result, the proposed deep
learning-based mobile software will detect harmful insects,
increase agricultural productivity, and indirectly contribute
to the national economy. In addition, the proposed software
is expected to contribute positively to the decision-making
processes of Entomology experts.
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