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ABSTRACT In recent years, Cloud computing has been developed and become the foundation of a wide
range of applications. It allows users to access a catalog of standardized services and respond to their business
needs flexibly and adaptively, in the event of unforeseen demands, paying solely for the consumption they
have made. Task scheduling problem is considered one of the most critical cloud computing challenges.
The problem refers to how to reasonably order and allocate the applications tasks provided by the users
to be executed on virtual machines. Furthermore, the quality of scheduling performance has a direct
effect on customer satisfaction. The task scheduling problem in cloud computing must be more accurately
described in order to improve scheduling performance. In this paper, a multi-objective task scheduling
algorithm is proposed based on the decision tree in a heterogenous environment. We introduce a new Task
Scheduling-Decision Tree (TS-DT) algorithm for allocating and executing an application’s task. To evaluate
the performance of the proposed TS-DT algorithm, a comparative study was conducted among the existing
algorithms; Heterogeneous Earliest Finish Time (HEFT), Technique for Order of Preference by Similarity to
Ideal Solution that incorporates the Entropy Weight Method (TOPSIS-EWM), and combining Q-Learning
with the Heterogeneous Earliest Finish Time (QL-HEFT). Our results show that the proposed TS-DT
algorithm outperforms the existing HEFT, TOPSIS-EWM, and QL-HEFT algorithms by reducing makespan
by 5.21%, 2.54%, and 3.32%, respectively, improving resource utilization by 4.69%, 6.81%, and 8.27%,
respectively, and improving load balancing by 33.36%, 19.69%, and 59.06%, respectively in average.

INDEX TERMS Cloud computing, task scheduling, data dependency, decision tree, makespan, resource
utilization, load balancing, energy consumption.

I. INTRODUCTION
Cloud computing is a modern computer technology that
employs virtualized infrastructure to provide secure and reli-
able services to end-users in a complicated environment.
Because it provides essential information technology (IT)
services such as computing resources in the form of virtual
machines (VMs), cloud computing has gotten a lot of atten-
tion as a computing model [1], [2].

Unfortunately, Cloud computing has some challenges such
as performance, resource management, cost, etc. [3]. On the
other hand, task scheduling on cloud computing is the allo-
cation of users’ tasks on the available resources to optimize
the execution time, enhance load balancing, and increase
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resource efficiency. Task scheduling depends on the existence
of dependencies among the tasks. The problem of scheduling
dependent tasks in a heterogeneous environment has drawn
many attention of researchers in this area. Among the most
studied area is the Directed Acyclic Graph (DAG), which is
the most common graph that shows the dependability of the
application’s tasks. This dependent task scheduling is also
called DAG scheduling.

Some of the DAG types are Montage, the Srna Identifi-
cation Protocol using High-throughput Technology (SIPHT),
Cyber-Shake, Epigenomics, and the Laser Interferometer
Gravitational Wave Observatory (LIGO) workflow applica-
tions [4]–[6]. (See Figure 1).

In DAG scheduling, the workflow is presented by
G = (T), where T = {t1, t2 . . . ,} is the set of tasks and
E = {e1, e2 . . . ,} is the set of edges. Each task ti ∈ T denotes
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FIGURE 1. Structure of DAG workflow [7].

an application task, and each E (i, j) ∈ E represents the
communication cost between the independent tasks, where
task ti is should be executed before task tj. A structure of the
DAG of some workflow types is shown in Figure 1.

Scheduling and allocation of the applications’ tasks are
considered Non-deterministic Polynomial (NP)-Complete
problems [8]. Therefore, optimization approaches are used to
solve these problems by considering performance parameters
such as makespan, load balance, resource usage, cost, power
consumption, etc., to solve these problems [9].

Machine learning is currently being used in various fields
such as speech recognition, data classification, and face
recognition [10]. It has played a significant role in task
scheduling and several other areas in computer science tech-
nology. Among the popularmachine learning techniques used
for developing and visualizing predictive models and algo-
rithms is the decision tree.

In this paper, a Task Scheduling-Decision Tree (TS-DT)
algorithm, which is a task scheduling algorithm based on the
decision tree is introduced. The performance of the proposed
task scheduling is evaluated using load balance parameters
such as makespan, resource utilization, and power consump-
tion in a heterogeneous environment. By the work in this
paper, the following significant contributions are satisfied:

• A new task scheduling algorithm based on the decision
tree method for scientific workflows is proposed.

• Extensive simulation tests on various performance met-
rics are used to evaluate the proposed algorithm.

The rest of this paper is organized as follows; Section 2 dis-
cusses the related works. In Section 3, the principles of
the proposed algorithm are described. Section 4 illustrates
the proposed algorithm in detail. The CloudSim simulator’s
configuration and the proposed Decision Tree Algorithm are
discussed in Section 5. The comparative study among the
proposed algorithm and other existing algorithms like HEFT,
TOPSIS-EWM, and QL-HEFT are discussed in Section 6.
Finally, the conclusion and future work are given
in Section 7.

II. RELATED WORK
Task scheduling in distributed, parallel, and cloud comput-
ing environments have become an important research topic.
Its purpose is to ensure an effective distribution of com-
puting resources to provide high performance. In traditional

distributed and parallel computing environments, a set of
scheduling strategies has been proposed bymany researchers.

K. Naik et al. [11] have described a new hybrid multi-
objective heuristic method that combines Non-dominated
Sorting Genetic Algorithm-II (NSGA-II) and Gravitational
Search Algorithm (GSA) called as NSGA-II & GSA to assist
with VM selection for application scheduling. NSGA-II has
the ability to expand the search space through exploration,
while GSA has the ability to exploit the good solution to
discover the best solution and so avoid the algorithm getting
trapped in local optima. This hybrid algorithm is designed
to achieve the fastest response time and lowest cost for
scheduling a larger number of tasks with the minimum total
energy consumption. Unfortunately, there is no load balanc-
ing between VMs.

S.Pang and colleagues [12] have developed a hybrid
scheduling algorithm based on the Estimation of Distribu-
tion Algorithm (EDA) and Genetic Algorithm (GA). The
algorithm initially generates some feasible solutions using
EDA operations, then utilizes GA operations to generate new
solutions based on the great solutions selected in the previous
phase to expand the search range of solutions, and finally
selects the best solution. The purpose of this technique is to
reduce the task completion time and enhance load balancing.
However, this paper does not consider the dynamics and
uncertainties of the cloud computing environment.

S.H.H. Madni et al. [13] have presented a novel Multi-
objective Cuckoo Search Optimization (MOCSO) technique
for dealing with the cloud computing resource scheduling
problem. The goal of this technique is to explore the multi-
objective resource scheduling problem in an Infrastructure as
a service (IaaS) cloud computing environment bymaximizing
resource consumption. The load balancing across VMs is
considered a big flaw in this technique.

Y.Q. Han and Q. Li. Jun [14] have solved the flexible task
scheduling problem in a cloud system by proposing a hybrid
discrete Artificial Bee Colony (ABC) algorithm. The sug-
gested algorithm includes three categories of artificial bees;
employed, onlooker, and scout bees, as in the classical ABC
algorithm. The proposed ABC algorithm reduces completion
time and improves balancing machine loads. One of this
algorithm’s major flaws is resource utilization.

Avinash Kaur et al. [15] have proposed a new workflow
scheduling scheme by integrating the Deep Q-learning mech-
anism and the HEFT algorithm is called DQ-HEFT. The
scheme is considered the most common heuristic scheduling
in literature. The algorithm consists of two phases: gaining
the task’s execution order at each stage and allocating the task
to the processor with a significantly higher volume of data.
It is worthy to note that the DQ-HEFT algorithm can achieve
better makespan and speed. However, the main drawback of
the DQ-HEFT algorithm is that excessive value updates of
the Q-table are performed in large-scale task optimization
problems, which slow down the scheduling process.

A. Al-maamari and F. Omara [16] have proposed a task
scheduling algorithm for the cloud computing environment.
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The algorithm is considered a fusion of the Cuckoo
Search (CS) algorithm and the Dynamic PSO (DAPSO)
algorithm, which has been modified to increase the popu-
lation. According to this algorithm, tasks are assigned to
virtual machines (VMs) to minimize makespan and maxi-
mize resource uses. However, there is no load unbalancing
between VMs.

Arabi Keshk et al. [17] have introduced Modified Ant
Colony Optimization for Load Balancing (MACOLB) algo-
rithm to allocate the incoming jobs to the virtual machines
(VMs). The tasks are allocated to the VMs based on the
processing powers (i.e., tasks are allocated in descending
order, starting from the most powerful VM, and so on) by
considering balancing VMs’ loads. The MACOLB is used to
find the proper resource allocation for batch tasks in the cloud
system, minimize the makespan, and achieve better system
load balance. However, the resource utilization between VMs
is considered a crucial flaw of this algorithm.

Jae-Min Yu1 and colleagues [18] have proposed a decision
tree-based method for scheduling flexible workshops with
multiple process plans. For static and dynamic flexible job
shops, two decision tree-based scheduling mechanisms were
created. All jobs were provided in advance in the static case,
and the decision tree is used to select a priority dispatching
rule to process all of them. In the dynamic scenario, jobs
arrive over time. The decision tree is used to select a priority
rule in real-time according to a rescheduling strategy using
a decision tree that is modified regularly. The objectives
considered in this method are makespan, total flow time, and
total delay, but the load balancing between VMs was not
considered.

Liu Yuan, Dong Yinggang, etc. [19] have proposed a
static HEFT task scheduling algorithm, called ST-HEFT. The
algorithm consists of two key steps; task sorting and task
mapping. According to the sorting step, tasks are sorted based
on the maximum communication cost between them and their
direct VMs. The task mapping step is assigned to the VM that
provides the earliest execution time. The proposed algorithm
has achieved better performance by reducing the development
threshold for parallel computing programs and increasing the
utilization of various computing devices’ capabilities in the
heterogeneous computing environment. On the other hand,
load balancing and sleek time are the critical weaknesses of
this algorithm.

Sambit Kumar Mishra et al. [20] have suggested an
Adaptive Task Allocation (ATAA) algorithm in the cloud
environment. This algorithm uses the Expected Time to Com-
pletion (ETC) matrix to solve the heterogeneous environment
problem, including completing all tasks on VMs. The author
uses a technique that reduces energy consumption and mini-
mizing themakespan of the system. Also, themajor weakness
of this algorithm is the load balancing between VMs.

Atyaf Dhari et al. [21] have proposed a cloud comput-
ing environment load balancing decision algorithm, called
(LBDA), to enhance load balancing among virtual machines
and reduce makespan. The algorithm consists of three steps.

The first step is used to calculate the VM’s capacity and load
(under-full VM, balanced VM, high-balance VM, and over-
loaded VM). In the second step, for each VM, the required
time is determined to execute the task. In the third step, based
on theVM state and the task time, a decision ismade to spread
tasks. Unfortunately, resource utilization between VMs is
considered a critical weakness of this algorithm.

Zeshan Iqbal et al. [22] have proposed an algorithm called
Parental Prioritization Earliest Finish Time (PPEFT) for a
heterogeneous distributed environment. The algorithm con-
sists of two phases; the prioritization of the tasks and the
processor’s assignation. First, the tasks are scheduled in
the Parental Priority Queue (PPQ) based on the descending
Rank and parental priority in the task prioritization phase.
Then, the Processor Assigning Phase assigns each task in the
PPQ queue to a processor that guarantees fast execution
(i.e., minimum computation cost). Experimentally, the
PPEFT scheduling algorithm performs substantially better
concerning cost and schedule makespan than other algo-
rithms. Unfortunately, load balancing between VMs is a crit-
ical weakness of this algorithm.

S.C. Sharma et al. [23] have modified the HEFT algo-
rithm to effectively distribute the workload between proces-
sors and effectively reduce completion time. This algorithm
analyzes various algorithms for the task scheduling, param-
eters, tools, improvement, and algorithm limitations. This
algorithm reduces makespan and improves load balancing by
comparing it to the existing HEFT and the Critical Path on
a Processor Algorithm (CPOP) [24] algorithms. The critical
weakness of this algorithm is the sleek time.

In this paper, the decision tree has been used to optimize
the multi-objective task scheduling problem by minimizing
makespan, satisfying load balancing among virtual machines,
and maximizing resource utilization.

III. OVERVIEW
In this paper, we proposed a task scheduling algorithm based
on the decision tree for a heterogeneous cloud environment
has been proposed. Also, we evaluated the performance of the
proposed algorithm through a comparative study among the
HEFT, TOPSIS-EWM, and QL-HEFT algorithms, which are
widely used algorithms for task scheduling in the cloud com-
puting environment. Based on the above-mentioned goals,
we now discuss the principles of the existing algorithms in
the following sections.

A. THE HETEROGENEOUS EARLIEST FINISH TIME
ALGORITHM
In the HEFT algorithm [25], the tasks presented in the
DAG are scheduled to a series of heterogeneous machines.
This algorithm consists of two phases; ranking and proces-
sor selection phases. The goal of the ranking phase is to
provide a priority for each task. The Processor Selection
phase concerns about allocating each task to a suitable pro-
cessor. This phase will be repeated until all tasks will be
scheduled for the available processors [26]. In the ranking
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phase, the upward (ranking) function is used to define the
priority of each task which is defined recursively by using
Equation (1) [27]:

Rank (t i) = wl +maxtj∈succ(ti)
(
cl,J + Rank

(
t j
))

(1)

where Wi is the average of the computation cost of the task
ti, ci,j is the average of the communication cost between the
edges from ei to ej, and succ ( ti) is the set of successors of the
task ti. It’s important to remember that Rank (ti) is determined
by the computation of all its children’s Rank (tj).
In the ‘‘processor selection’’ phase, tasks are sorted in

descending order according to their rank values. Then, the
processors assign tasks by selecting the processor with the
shortest finish time for each task. However, the HEFT algo-
rithm always considers the processor with the earliest finish
time to allocate tasks, but it does not consider load balancing
among the processors [28].

B. A MULTI-CRITERIA DECISION-MAKING APPROACH
A Technique for Order of Preference by Similarity
to Ideal Solution (TOPSIS) workflow scheduling algo-
rithm in a cloud environment has been introduced that
incorporates the Entropy Weight Method (EWM) called
(TOPSIS-EWM) [13]. The proposed algorithm aims to
reduce makespan, cost, and energy consumption while
increasing reliability. According to the ROPSIS-EWM algo-
rithm, EWM is used to determine the input weight of the
attributes schedule length (EFT), cost, reliability, and energy
consumption. The TOPSIS approach is then used to choose
the optimal virtual machine for each task. The research takes
into consideration a cloud environment with dynamic voltage
scaling (DVS) and pay-per-use heterogeneous VM instances.
The MIPS of the VM instances is used in the simulations
directly proportional to VM pricing. The (TOPSIS-EWM)
algorithm does not consider any user preferences, such as
deadlines, load balance, and resource utilization.

C. QL-HEFT ALGORITHM
Authors in [29], proposed a novel task scheduling algorithm
that reduces the makespan by combining Q-Learning with the
HEFT algorithm is called (QL-HEFT). The algorithm uses
the upward rank value of HEFT as the immediate reward.
In the Q-learning framework, the agent can obtain better
learning results through the self-learning process to update
the Q-table. The QL-HEFT algorithm is divided into two
phases: the task sorting phase and the processor allocation
phase. The task sorting phase uses Q-learning to find the
best order of the tasks, while the processor allocation phase
uses the earliest finish time strategy. However, the authors
discovered that using the QL-HEFT algorithm to solve large-
scale task optimization problems has some drawbacks, such
as an excessively large Q-table that causes long update times.

D. A DECISION TREE DEFINITION
A decision tree is a hierarchical data structure that uses a
divide-and-conquer technique to represent data [30]. On the

other hand, the decision tree is a rooted tree having leaf
and non-leaf nodes. The decision criteria for classification
and regression trees distinctly depend on the decision tree.
Meanwhile, a decision tree is a rooted tree with leaf and
non-leaf nodes. The leaf nodes represent the classification or
decision-making, whereas the non-leaf nodes represent the
selection options by dividing the instance space into two or
more subspecies based on a discrete function of input attribute
values (See Figure 2) [31].

FIGURE 2. Decision tree structure [32].

The decision tree is a popular method for creating and
visualizing predictive models and algorithms [23], [33].
As explained earlier, the static approach uses the decision
tree to select a priority rule combination to process the set
of given tasks, i.e., no rule changes over the scheduling
horizon. Hence, it can be used for planning purposes. The
static decision tree-based mechanism suggested in this study
is shown in the next section.

IV. PROBLEM STATEMENT
Multi-objective optimization has a significant impact on
scheduling issues in the cloud computing environment.
We covered three relatively approaches for resolving task
scheduling performance, each has its own set of restrictions:
• When allocating tasks, the HEFT method always con-
siders the processor with the earliest finish time, but it
ignores load balancing among the processors.

• The (TOPSIS-EWM) algorithm considers the input
weight of the attributes schedule length like (EFT), cost,
reliability, and energy consumption. Then, the TOPSIS
technique is used to select the best virtual machine for
each task without considering any user preferences like
deadlines, load balance, and resource utilization.

• The QL-HEFT approach for solving large-scale task
optimization issues has some limitations, such as a big
Q-table that causes long update times that effect on the
Makespan in the task schedule.

V. THE PROPOSED TASK SCHEDULING DECISION TREE
(TS-DT) ALGORITHM
In this section, we introduce the TS-DT algorithm to reduce
the makespan, enhance load balance, and maximize utiliza-
tion of the resource. The algorithm consists of three phases:
the priority task, the resource matrix, and the resource allo-
cation phase. First, the task priority phase is used to assign
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a rank for each task. The resource matrix phase is used in
collecting the tasks’ features in the form of a matrix, while
the resource allocation phase is where tasks are scheduled on
the proper VMs using the decision tree. The principles of each
phase will be explained in the following sections.

A. TASK PRIORITY PHASE
According to the task priority phase, a rank is assigned for
each task in the given workflow (i.e., DAG). By considering
tasks set T = {T1, T2, . . . , Tn}. If Ti < Tn, then Ti is the
parent of Tn. Equation (1) has been changed by adding task
length (TL), which indicates the length of the instruction of
a cloudlet (i.e., task) to be processed in the virtual machine
(VM), and the number of child’s (Nc) (See Equation (2)).
Therefore, the Rank of each task in the given workflow is
defined using Equation (2).

Rank (ti) = wl +maxtj∈succ(ti)
(
cl,j + Rank

(
tj
))
+ Tl + Nc

(2)

After assigning priority to each task, the taskswill be sorted
in descending order according to their Rank value and stored
in the Rank [T] list. As a result, the most important task will
be executed first. The pseudo-code of the Task Priority phase
is as follows:

TABLE 1. Shows the pseudo-code of the tasks priority phase.

B. RESOURCE MATRIX PHASE
This phase is used to collect the features of the selected
task from the Rank [T] list and store them in the task’s
matrix (T). In the T matrix, columns represent the number
of needed resources, while rows represent four features for
each task as follows:

Feature 1: Computation cost (CP) of each task on eachVM.
Feature 2: Assigning the task to VM by selecting VM with

Earliest Finish Time (EFT).

Feature 3: Total length of tasks (TTL) assigned to each
VM. This refers to the length of the instructions
of tasks on VM.

Feature 4: Showing the VM-based task parent (TP) (i.e.,
Parent location (0/1)), where one is typed if there
is a parent for the task; otherwise, zero is typed.
This feature considers the communication cost
between tasks.

For example, a structure of a task structure with its features
is summarized in a matrix (T) by considering five VMs with
four features, as shown in Figure 3.

FIGURE 3. A Structure of a tasks’ matrix.

C. RESOURCE ALLOCATION PHASE
In this phase, the proper VMs are selected to execute tasks
in the Rank [T] list, which contains the tasks which order in
descending order according to their priorities.

For the task that plays a role in the Rank [T] list (i.e., the
task with high priority), the decision tree is constructed to
represent its features from its task matrix. In the case of leaf
nodes, a test is done to check if the task’s parent is on the same
VM or not according to Feature 4. If the answer is ‘‘yes’’, the
communication cost remains zero. In the case of ‘‘no’’, the
communication cost is considered between the parent and
the successor.

The output in the leaf nodes is the summation of the task’s
features in the task’s matrix, which is defined using Feature 1
to Feature 3 (i.e., CP, EFT, and TTL) with considered the
summation of the communication cost from the DAG work-
flow if the task’s parent is not on the same VM. If the parent
task in the same VM, it is compute using Equation (3). When
the parent is not in the same VM, it is calculated using
Equation (4).

VM = CPi + EFT+ TTL (3)

VM = CC(i,j) + CPi + EFT+ TTL (4)

where CC(i,j) is the communication cost between ti that
presented in Rank [T] list with tjis the last task in VM. (CPi)
is the computation cost for the task ti among all the VMs.
(EFT) is the earliest finish time of all tasks in VM. (TTL) is
the total length of tasks assigned to each VM.

Finally, the task is assigned to the VM, which has the
lowest value that will come out of the tree’s leaf nodes
(See Figure 4). The pseudo-code for the Resource Allocation
phase is shown in Table 2.
Example: To explain how the proposed TS-DT algorithm

works, a sample of the task graph and the computational
task costs on each VM with considering 3 VMs are depicted
in Figure (5a, b).
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FIGURE 4. The proposed TS-DT algorithm using decision tree.

TABLE 2. Shows the pseudo-code of the resource allocation phase.

FIGURE 5. A task graph and computational cost example.

1) PHASE 1: TASK PRIORITY PHASE
By applying this phase, a rank is assigned to each task using
Equation (2), and the tasks are sorted in descending order in
Rank [T] (See Table 3).

2) PHASE 2: RESOURCE MATRIX PHASE
In this phase, the features of the selected task from the
Rank [T] list will be collected and stored in the task’s matrix
by considering T1 in Figure 5, Feature2 (i.e., EFT), Feature3
(i.e., TTL), and Feature4 (i.e., TP) are considered zero on
all VMs because it is the entry task. Therefore, the features
of (T1) in its matrix are presented in Figure 6.

TABLE 3. Calculation Rank [T] for Figure 5.

FIGURE 6. The resource features of task T1.

3) PHASE 3: RESOURCE ALLOCATION PHASE
In this phase, each task is assigned to a suitable VM based on
its decision tree. The cost of communication value between
tasks and their parent and successor will be assessed based
on the matrix that constructs in Phase 2. According to the
decision tree of task (T1), the summation value of VM3 is
considered the lowest value (i.e., 0+10=10) (See Figure 7).
So, VM 3 is assigned to execute the task (T1).

FIGURE 7. The decision tree of task T1.

Phases two and three (i.e., Resource Matrix Phase and
Resource Allocation Phase) are repeated for each task in the
Rank[T] list until all tasks are assigned to VMs.

As a result, the entire workflow makespan is
413 milliseconds in both the task priority and resource alloca-
tion phases. The deviation of the load balance is zero because
the term of the Resource Matrix phase considers the number
of tasks on each VM. The resource utilization rate is 94.67 %,
and it appears that the Resource Matrix phase works better.
(See Figure 8).

VI. THE PERFORMANCE EVALUATION
In this section, we discuss the performance matrices, exper-
imental environment, and the benchmark used in evaluating
the performance of the proposed TS-TD algorithm.

VOLUME 10, 2022 36145



H. Mahmoud et al.: Multiobjective Task Scheduling in Cloud Environment Using Decision Tree Algorithm

FIGURE 8. Using TS-DT algorithm, the makespan is 413 msec.

A. PERFORMANCE METRICS
The performance matrices which are used to measure the
efficiency of the task scheduling algorithms on the cloud
computing environment includes the following:

1) MAKESPAN
It displays the maximum completion time of the schedule.
This parameter is defined by Equation (5) [34].

Makespan = max (Cti)tiεT (5)

where Cti is the execution time of the longest task ti, and T
is the number of the tasks on the workflow of an application.

2) RESOURCE UTILIZATION RATE (RU)
We define RU as the ratio of the total consumed time by VMs
to the makespan of the parallel application. It is calculated as
a percentage using Equation (6) [35].

RU (VMi)% =

∑
VMiBusyTime
Makespan

∗ 100 (6)

3) LOAD BALANCING (LB)
This is the ratio of the total number of tasks to the number of
VMs. We calculate LB using Equation (7) [36].

LB =
Number of Tasks
Number of VMs

(7)

4) BUSY TIME
It represents the task length indicates the instructions length
of a cloudlet to be processed on each VMi. It is defined using
Equation (8) [37].

Tbusy (VMi) =

∑
tlength

V Mi
(8)

where
∑

length is the summation of each task length.

5) IDLE TIME
This is the difference between the total execution time
and the busy time for each VMi. It is determined using
Equation (9) [38].

Tidle (VMi) = Ttotal − Tbusy (9)

6) TOTAL EXECUTION TIME (TET)
It represents the summation between the busy time and idle
time for each VMi. It is defined using Equation (10) [39].

TETvm = Tbusy(VMi)+ Tidle(VMi) (10)

7) POWER CONSUMPTION
The power consumption of VMi consists of two parts; busy
power consumption and idle power consumption. It is calcu-
lated using Equation (11) [40].

PC
(
VMj

)
=

∑n

0

(
Pbusyj∗ Tbusy

)
+
(
Pidlej∗ Tidle

)
(11)

where Pbusyj is the busy power of the machines with 220W,
Pidlej is the idle power of the machines with 95W, Tbusy is
the busy time of the machine, and Tidle is the idle time of the
machine.

8) IMPROVEMENT RATE (IRx)
Makespan, resource utilization, and load balance are factors
(x) that will be considered to determine the performance
improvement of the proposed TS-DT algorithm relative to the
current HEFT, TOPSIS-EWM, and QL-HEFT. We calculate
IRx using Equation (12) [41].

IRx(%)

= −

(
x(existing algorithm)− x(proposed algorithm

x(existing algorithm)

)
∗100 (12)

9) AVERAGE DEVIATION
The ratio between the total summation of IRx for each VMi
over their number to get the average deviation from the ideal
rate in percentage is calculated using Equation (13) [42].

Average(%) =
∑n

i=1

(
IRx (VMi)

n

)
(13)

B. THE EXPERIMENTAL ENVIRONMENT
The CloudSim 3.0.2 toolkit is an open-source simulator
developed by WorkflowSim 1.0 on Windows 7 OS with a
Core i7 2.70 GHz processor [43]. The CloudSim simulator is
used to implement and evaluate the performance of the pro-
posed TS-DT Algorithm. The Eclipse IDE 4.12.0 is used to
run CloudSim 3.0.2. The used benchmarks are Montage_25,
SIPHT_30, Cyber- Shake_30, and Epigenomics_24
workflows [44].

VII. PERFORMANCE ANALYSIS
To evaluate the performance of the proposed TS-DT algo-
rithm, a comparative study was conducted among HEFT,
TOPSIS-EWM, QL-HEFT algorithms, and the proposed
TS-DT algorithm in terms of makespan, load balance,
resource utilization, and power consumption. The tasks are
considered dependent, and each task has different charac-
teristics, such as length, id, start time, and finish time. The
implementation was carried out with the consideration of 5,
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10, 20, and 40 VMs using Montage_25, SIPHT_30, Cyber-
Shake_30, and Epigenomics_24 workflows. We focus on the
hypervolume indicator to measure the quality of a set of
trade-off solutions [45].

A. MAKESPAN EVALUATION
The implementation results of the proposed TS-DT, HEFT,
TOPSIS-EWM, and QL-HEFT algorithms with respect to
makespan using Montage_25, SIPHT_30, Cyber-Shake_30,
and Epigenomics_24 workflows by 5, 10, 20, and 40 VMs
using Equation (5), as shown in Figure 9 from (a) to (d).

According to the implementation results in Figure 9, it is
found that the proposed TS-DT algorithm outperforms the
HEFT, TOPSIS-EWM, and QL-HEFT algorithms. This is
because of the following reasons:
• During the Task Priority phase, the proposed TS-DT
algorithm determines the proper task to be executed by
increasing its priority while using the task length and
number of childs.

• During the Resource Allocation phase, the decision tree
and the summation of the features in the task’s matrix
are used to select the VM with the lowest value.

• Some features are used to enhance the makespan
(i.e., computation cost, Earliest Finish Time (EFT), and
parent location).

The average improvement rate of makespan, in percent,
of the proposed TS-DT algorithm compared to existing
HEFT, TOPSIS-EWM, andQL-HEFT algorithmswere deter-
mined using Equation (12) and presented in Table 4.

TABLE 4. Improved average rate of makespan (in %) of the proposed
TS-DT algorithm.

According to the comparative results in Table 4, We found
that the proposed TS-DT algorithm outperforms, in average,
the default HEFT, TOPSIS-EWM, and QL-HEFT algorithms
by approximately 5.21%, 2.54%, and 3.32%, respectively.

B. RESOURCE UTILIZATION
TS-DT, HEFT, TOPSIS-EWM, and QL-HEFT algo-
rithms with respect to resource utilization using Mon-
tage_25, SIPHT_30, Cyber-Shake_30, and Epigenomics_24
workflows using 5, 10, 20, and 40 VMs are presented in
Figure 10. Based on the comparison results in
Figure 10 (a)-(d) (See Equation (6)), we confirmed that the
proposed TS-DT algorithm outperforms the existing algo-
rithms in terms of resource utilization for any number of
VMs. This is possible because, during the Resource Matrix
phase, the proposed TS-DT algorithm selects the minimum
of the total length of tasks assigned to each VM. The total

FIGURE 9. Comparative results for makespan.

instruction’s length of tasks on VM considers the devices’
consumption rate.

The average improvement of the proposed TS-DT algo-
rithm in terms of resource utilization in percentage in relation
to the existing HEFT, TOPSIS-EWM, and QL-HEFT algo-
rithms were determined using Equation (12) and presented
in Table 5.
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FIGURE 10. Comparative results for resource utilization.

According to our comparative results in Table 5 show that
the proposed TS-DT algorithm outperforms, in average, the
default HEFT, TOPSIS-EWM, and QL-HEFT algorithms by
approximately 4.69%, 6.81%, and 8.27%, respectively.

C. LOAD BALANCING
The load balancing of each VM is calculated by the ratio
of the number of tasks and the total execution time in VMs
(See Equation (7)). The implementation results of our pro-
posed TS-DT, HEFT, TOPSIS-EWM, and QL-HEFT algo-
rithms with respect to load balancing using Montage_25,

TABLE 5. Improved average rate of resource utilization (in %) for the
proposed TS-DT algorithm.

SIPHT_30, Cyber-Shake_30, and Epigenomics_24 work-
flows using 5, 10, 20, and 40 VMs are presented in Figure 11
from (a) to (d).

According to the comparison results in Figure 11 is found
that the proposed TS-DT algorithm outperforms the existing
other algorithms in terms of load balancing. This is because
that during the Resource Matrix phase (Feature 3), the pro-
posed TS-DT algorithm considers the length of the total task
on each VM when assigning a new task to VM. Finally, the
TS-DT select the minimum value. So, the phase is influenced
by the device load at similar rates.

The average load balance improvement in the percentage
of the proposed TS-DT algorithm relative to the existing
HEFT TOPSIS-EWM, and QL-HEFT algorithms has been
determined using Equation (13) and illustrated in Table 6.

TABLE 6. Improved average rate of load balance (in %) of TS-DT
algorithm.

According to the comparative results in Table 6, it is found
that the proposed TS-DT algorithm outperforms, in average,
the default HEFT, TOPSIS-EWM, and QL-HEFT algorithms
by approximately 33.36%, 19.69%, and 59.06%, respectively.

D. POWER CONSUMPTION
In the heterogeneous cloud platform, the power consump-
tion consists of two components; busy power consumption
and idle power consumption. During the power process-
ing operations, the busy power consumption is the energy
consumed, and the idle power consumption is the energy
consumed during the VM in the idle state [40]. In order
to accurately calculate the power consumption, the work
in this paper estimates the busy power consumption and
idle power consumption of the VM, respectively. Then,
the total power consumption of the VM is obtained using
Equations (8, 9, 10, 11, 12, and 13). According to the imple-
mentation results, it is found that our proposed TS-DT algo-
rithm increases power consumption relative to the HEFT,
TOPSIS-EWM, andQL-HEFT algorithms, this is because the
following reason:

36148 VOLUME 10, 2022



H. Mahmoud et al.: Multiobjective Task Scheduling in Cloud Environment Using Decision Tree Algorithm

FIGURE 11. Comparative results for load balance.

• The proposed TS-DT algorithm selects the minimum
of CP and VM with EFT for the assigned task to VM
during the Resource Matrix phase. This means that
the proposed algorithm consumes the high available

TABLE 7. Average in power consumption (in %) of the proposed TS-DT
algorithm.

FIGURE 12. The hypervolume of the compared algorithms for Montage.

FIGURE 13. The hypervolume of the compared algorithms for
Epigenomics.

VMs specifications, which increases the power con-
sumption rate of the devices.

According to the implementation results in Table 7, it is
found that the proposed TS-DT algorithm increases the
power consumption relative to the default HEFT, TOPSIS-
EWM, and QL-HEFT algorithms by approximately 12.89 %,
43.52 %, and 28.38 %, respectively. This is considered the
main limitation of the proposed TS-DT.

Generally, the averageMakespan, resource utilization, load
balance, and power consumption of the proposed TS-DT,
HEFT, TOPSIS-EWM, and QL-HEFT algorithms are shown
in Tables (4,5, 6, and 7).

With respect to makespan, resource utilization, and load
balance, the performance of the TS-DT algorithm is better
than that of HEFT, TOPSIS-EWM, andQL-HEFT algorithms
in most cases, which is also confirmed by the hypervol-
ume as shown in Figures (12, 13) for Montage and Epige-
nomics workflow. This is because the HEFT algorithm is a
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single-objective scheduling algorithm and does not consider
other objectives such as load balance and resource utilization.
At the same time, the TOPSIS-EWM algorithm is designed
to select the best virtual machine for each task for multi-
objective workflow scheduling. It doesn’t taking into consid-
eration any user preferences like deadlines, load balance, and
resource utilization. In contrast, the QL-HEFT algorithm for
solving large-scale task optimization issues has limitations,
such as the Makespan task schedule.

VIII. CONCLUSION AND FUTURE WORK
In this paper, a new task scheduling algorithm using multi-
objective based on a decision tree, called TS-DT algorithm,
is proposed for a cloud computing environment. The pro-
posed TS-DT algorithm targets minimizing the makespan,
enhancing load balance, and maximizing resource utiliza-
tion. A comparative study was conducted to evaluate the
performance of the proposed TS-DT algorithm relative to the
HEFT, TOPSIS-EWM, and QL-HEFT algorithms. Accord-
ing to the comparative results, the proposed TS-DT algorithm
outperforms the HEFT, TOPSIS-EWM, and QL-HEFT algo-
rithms by reducing the average makespan by 5.21%, 2.54%,
and 3.32%, respectively, improving the average resource
utilization by 4.69%, 6.81%, and 8.27%, respectively, and
improving the average load balancing by 33.36%, 19.69%,
and 59.06%. The main limitation of our proposed TS-DT
algorithm is the increase in power consumption has been
increased by around 12.89%, 43.52%, and 28.38%, respec-
tively, relative to the existing HEFT TOPSIS-EWM, and QL-
HEFT algorithms.

More performance parameters could be concerned in
future work, such as power consumption, fault tolerance, and
scalability.
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