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ABSTRACT Sleep experts manually label sleep stages via polysomnography (PSG) to diagnose sleep
disorders. However, this process is time-consuming, requires a lot of labor from sleep experts, and makes
the participants uncomfortable with the attachment of multiple sensors. Thus, automatic sleep scoring
methods are essential for practical sleep monitoring in our daily lives. In this study, we propose an automatic
sleep scoring model based on intrinsic oscillations in a single channel electroencephalogram (EEG) signal.
We applied noise assisted bivariate empirical mode decomposition (NA-BEMD) to extract the intrinsic mode
components and an attention mechanism in deep neural networks to provide weights to the components
depending on their significance to sleep scoring. In particular, through the attention mechanism, we found
an interpretable model by examining the oscillations that correspond to specific sleep stages. Therefore,
we analyzedwhich frequency components aremore weighted to a sleep stage than the others, when themodel
classifies sleep stages, and, as a result, confirmed that the model assigns convincing weights to the frequency
components for each sleep stage. Additionally, the model consists of a one-dimensional convolutional neural
network (1D-CNN) to extract features of an epoch and bidirectional long short-term memory (Bi-LSTM)
to learn the sequential information of the consecutive epochs. We evaluated proposed model using Fpz-Cz,
Pz-Oz, and F3-M2 channel EEG from three different public datasets (Sleep-EDF-2013, Sleep-EDF-2018,
WSC) and demonstrated that our model yielded the best overall accuracy (Fpz-Cz: 86.22%-82.67%, Pz-Oz:
83.63%-80.15%, F3-M2: 84.20%) and macro F1-score (Fpz-Cz: 80.79%-76.90%, Pz-Oz: 76.89%-72.98%,
F3-M2: 74.88%) compared with the state-of-the-art sleep scoring algorithms using single channel EEG. As a
benchmark test, FIR bandpass filters were compared, and it was confirmed that NA-BEMD was superior
to the traditional filters in all experiments, demonstrating that the proposed model is interpretable and a
state-of-the-art sleep scoring algorithm.

INDEX TERMS Electroencephalogram (EEG), automatic sleep scoring, deep neural networks, attention
mechanism, bivariate empirical mode decomposition.

I. INTRODUCTION
Sleep is a crucial factor to maintain a healthy life for human
beings. Deterioration of sleep quality causes various sleep
disorders such as insomnia, sleep apnea, and parasomnia [1].
Numerous people suffer from sleep disorders, which are
diagnosed by sleep experts who conduct a multi-parametric
test called polysomnography (PSG) [2]. The classification
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of multiple sleep stages, called sleep scoring or sleep
stage scoring, is carried out through PSG. Sleep experts
determine sleep quality by analyzing the distribution of
each stage across all night sleep stages. PSG monitoring
measures physiological signals including electroencephalo-
gram (EEG), electrocardiogram (ECG), electrooculogram
(EOG), electromyography (EMG). Based on the study of
Rechtschaffen and Kales (R & K) [3] or the American
Academy of Sleep Medicine (AASM) [4], sleep stages are
decided over 30-second intervals called epochs, by sleep
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experts. In the R&K standard, PSG signals are classified
into six stages: wakefulness (Wake), non-rapid eye move-
ment (NREM) stages (N1-N4), and rapid eye movement
(REM). The AASM standard combines the N3 and N4 stages
into slow-wave sleep (SWS) stages or N3 stages. In this study,
we use the AASM standard to classify the five sleep stages.

Manual sleep scoring by sleep experts is time-consuming,
requires a lot of labor, and makes participants feel uncom-
fortable due to a number of sensors attached to them during
sleep. In addition, different sleep scoring results are produced
by different sleep experts, even during re-scoring by the
same expert [5]. To solve these issues associated with manual
sleep scoring, automatic sleep scoring algorithms have been
developed using a single-channel EEG. In contrast to the
manual approach, automatic sleep scoring is consistent and
reduces the scoring time, labor, and cost [6].

Several state-of-the-art machine learning and deep learning
algorithms for the analysis of biosignals have been suggested
for automatic health diagnosis and monitoring systems.
In [7],the authors proposed the prediction of stroke using the
random forest algorithm based on ECG signals. In addition,
a health monitoring system for the stroke prognostics using
SVM is proposed by [8]. In [9], convolutional neural
network (CNN) [10] was proposed for the seperation of the
motor imaginary responses using EEG signals. Moreover,
Senyurek et al. [11] analyzed respiratory signals for the
puff detection based on CNN and long short term memory
(LSTM) [12].

Early studies on automatic sleep scoring extracted
time-frequency features from an epoch of a single channel
EEG and employed machine learning algorithms to classify
the sleep stages. For example, Oropesa et al. [13] used
wavelet packet transformation (WPT) to provide localized
time-frequency components and estimate the sleep stages
using an artificial neural network (ANN). A continuous
wavelet transform (CWT) was utilized by Fraiwan et al. [14]
for their time-frequency component features obtained from
EEG signals, which were classified using linear discrim-
inant analysis (LDA). Furthermore, Fraiwan et al. [15]
applied Choi–Williams distribution (CWD), Hilbert–Huang
transform (HHT), and the CWT for instantaneous feature
extraction, which was classified using a random forest
algorithm. In addition, Sharma et al. [16] decomposed EEG
signals into amplitude and frequency-modulated components
using an iterative filtering method to extract the sleep
stage-related features and applied naïve Bayes, k-nearest
neighbor, multi-layer perceptron, decision tree, and random
forest algorithms for classification.

Recently, deep learning approaches have been applied for
automatic sleep scoring algorithmswith or without traditional
signal processing, which exhibit superior performance than
conventional methods. In particular, the architectures of
CNN and recurrent neural network (RNN) [17] are mainly
applied for sleep scoring algorithms. Because CNN is well
known to extract accurate feature information from input
data, they can well recognize the characteristics of the

EEG amplitude or frequency components. Additionally, RNN
has a memory cell architecture to utilize the temporal
features of the EEG signals across consecutive epochs
to estimate sleep stages. For example, Yildirim et al. [18]
constructed a 16-layer one-dimensional CNN (1D-CNN) to
extract EEG features and classified six sleep stages using
fully connected layers and a softmax function. In addition,
Zhu et al. [19] divided an epoch into 29 multiple windows
to effectively capture sleep spindles or k-complex features
and applied 1D-CNN and a self-attention mechanism for
each window. In another study, 1D-CNN and Bi-LSTM were
combined to estimate five class sleep stages [20], where
1D-CNN was pretrained using oversampled data to solve the
class imbalance problem. There are other approaches that
combine frequency analysis and deep learning algorithms.
For example, Phan et al.. [21] employed Short Time Fourier
transform (STFT) to produce time-frequency representations
of a single channel EEG and then conducted sleep scoring
using 1D-CNN. Michielli et al.. [22] extracted 55 features
of EEG in the time and frequency domain using various
statistical parameters, an infinite impulse response (IIR)
bandpass filter, and a power spectrum, which were fed into
the LSTM to classify four class sleep stages.

Currently, the state-of-the-art deep learning models for
the automatic sleep scoring use the frequency components
extracted through Fourier-based decomposition algorithm
such as Fast Fourier Transform (FFT) or only raw EEG
signals as their input [23]–[26]. The Fourier-based decompo-
sition algorithms could not deal with reflect the non-linearity
and non-stationarity of EEG signals [27]. If the raw EEG
signal is fed into the deep learning model, the combined
characteristics of the frequency components could be learned.
However, it would be difficult for the model to train the
features of each frequency components. In addition, it is
crucial to look into the frequency components separately
since several studies have already established specific
components corresponding to a certain sleep stage [28].
For this issue, we propose a deep learning model with
a data-driven frequency decomposition algorithm and the
attention mechanism for the automatic sleep scoring. The
main contributions of this paper are as follows.
• We apply a noise assisted bivariate empirical mode
decomposition (NA-BEMD) to extract frequency com-
ponents with its dyadic filter bank property. As a data-
driven model, NA-BEMD can extract intrinsic oscilla-
tions in a signal, which can be accurately decomposed
the sleep stage-related components in EEG signals [29].

• We design a novel deep learning architecture consisting
of 1D-CNN and Bi-LSTM to extract features from each
epoch of an EEG signal. The 1D-CNN with residual
connections extract feature of an epoch, and Bi-LSTM
learns the sleep stage transition rule using features of
epochs generated by the 1D-CNN.

• We employ the attentionmechanism to choose important
frequency components for each sleep stage, producing
weights to the input nodes of the networks based
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TABLE 1. Epoch numbers corresponding to sleep stages in Sleep-EDF and
Wisconsin sleep cohort dataset.

on their significance [30]. The frequency components
decomposed through NA-BEMD are the input of the
deep neural networks, and their attention weights are
decided based on their contributions to the classification
of each sleep stage.

• The weight information through the attention mecha-
nism could make us understand how the deep neural
network architecture processes the input data to obtain
the final classification results rather than a black-box
function.

• We demonstrate that the proposed model could classify
5 sleep stages using three different datasets, recorded
in different conditions, without modifying the model
hyperparameters and architecture, inferring the accom-
plishment of the generalized sleep scoring model.

This paper is structured as follows. Section II illustrates the
public datasets used in the experiment, the proposed model
architecture, and the evaluationmethod of the model in detail.
In Section III, the performance of the generalized model is
demonstrated using the evaluation process and compared
with the existing works. In Section IV, the main contribution
is discussed in more depth based on the experimental results,
and the last section concludes the paper and describes the
future research directions.

II. MATERIALS AND METHODS
A. DATASETS
We employed three different channels of EEG from three
public datasets to train and evaluate the performance of the
proposed method. There are two Sleep-EDF dataset (2013
and 2018 version) [31] and Wisconsin sleep cohort dataset
(WSC) [32]. In this study, a single-channel of EEG signal
is analyzed considering the development of convenient sleep
monitoring device with minimum number of wires. The
distributions of epochs from the 5 sleep stages and the number
of participants for each dataset are described in Table 1.
As shown in Table 1, the numbers of epochs among all the
sleep stages are unbalanced. In addition,WSC has the highest
number of participants among the datasets, and Sleep-EDF-
2018 has the largest number of epochs among the datasets.

1) SLEEP-EDF DATASET
The Sleep-EDF dataset is often used in many automatic sleep
scoring studies [33]. There are three PSG records, consisting
of EEG signals with configuration of Fpz-Cz and Pz-Oz
channel, EOG signals, and chin EMG signals, recorded at a
sampling rate of 100Hz. In addition, it contains hypnogram
information with annotation of six sleep stages labeled based
on R&K standard. We combined the N3 and N4 stages
into the N3 stage to satisfy the latest AASM standard [4]

FIGURE 1. The architecture of our model. Model is trained for two step.
Feature learning for an epoch, first training step, includes 1D-CNN layers
and a attention layer. Learning of epoch sequence, second training step,
includes Bi-LSTM layers. Each layer containing trainable parameters is
optimized during two-step training.

with five sleep stages classification. There are two different
participant groups in the Sleep-EDF dataset, that is, Sleep
Cassette Study(SC) and Sleep Telemetry Study (ST) groups.
SC group records were obtained in the study about the age
effects on the sleep of the healthy participants aged between
25 and 101 years old, without any sleep-related medication.
On the other hand, ST group was recorded in the study of the
temazepam effects on the sleep of the insomnia participants.
We only utilized records of healthy participants from SC
group in the 2013, 2018 versions, which have records from
20 and 78 participants, respectively, on the Fpz-Cz and Pz-Oz
channel configurations.

2) WISCONSIN SLEEP COHORT DATASET
Wisconsin Sleep Cohort (WSC) dataset includes 2570 PSG
records from 116 participants of various races with various
physiological signals such as EOG, EEG, EMG, ECG, and
SpO2 [32]. EEG was recorded on the configurations of
F3-M2, Fz-M2, Cz-M2, C3-M2, Pz-M2, O1-M2 channels at a
sampling rate of 200Hz, and F3-M2 channel data was utilized
for our benchmark test. In WSC dataset, the participants have
a maximum of 5 records, obtain during 5 different visits of
the participants (visit1-visit5). In this study, we employed
the dataset from visit4 to visit5, which are the most recent
data group in WSC dataset and they had become sufficiently
familiar with the laboratory environments.

B. OVERVIEW OF THE MODEL
Fig 1. illustrates the overall architecture of the proposed
model for the automatic sleep scoring. After the segmentation
of the EEG signal into a 30-second epoch, the raw signal in an
epoch is decomposed into 5 components using NA-BEMD,
corresponding to the important frequency components to the
sleep scoring, delta (0.5-4Hz), theta (4-8Hz), alpha (8-13Hz),
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beta (13-30Hz), and gamma (30Hz-) band components [34].
Also, at the same time, the epochs are z-score normalized.
The five decomposed components are fed into the input
layer of the proposed networks together with the normalized
EEG signal as Z-scores. They are weighted through an
attention layer, and the features of the 5 weighted frequency
components and the normalized EEG signal are extracted
respectively through the 1D-CNN. The extracted features of
10 epochs are considered as one sequence, and Bi-LSTM
learns the successive epoch patterns among the 10 epochs.
Additionally, the model is trained in two-step to more train
network of first step than network of second step, since
network of first step is deeper and more complex than second
step and cause overfitting issue faster. Therefore, the model
is trained network of second step using pre-trained network
of first step as backbone. Through this, the generalization
performance of the model was improved with preventing the
overfitting issue of network of first step.

C. MODEL DESCRIPTION
1) NOISE ASSISTED BIVARIATE EMPIRICAL MODE
DECOMPOSITION
Empirical mode decomposition (EMD) is a data-driven
frequency decomposition algorithm in an adaptive way,
which decomposes signals without any basis function [35],
and thus it couldwell extract the intrinsic oscillations from the
nonlinear EEG signals as demonstrated by Park et al.. [36]
In contrast with the wavelet and Fourier analysis, EMD has
few restrictions on a signal and no fixed basis function [37].
A raw signal x(t) is sequentially decomposed into intrinsic
mode functions (IMFs), ck (t) and residue rn(t), through the
iterations of the sifting process (see Eq 1).

x(t) =
n∑

k=1

ck (t)+ rn(t) (1)

During the sifting process, upper envelope eu(t) and lower
envelope el(t) are identified with interpolating all local
maxima and minima, and compute the local mean m(t) of
these two envelopes. After this, m(t) is repeatedly subtracted
from the input data. If the residue rk (t) after the subtraction
satisfies the two stopping criteria, ck (t) is assigned with rk (t).
The two stopping criteria are defined as follows: first, the
mean of the upper and lower envelopes is close to zero,
and second, the number of extreme values and zero crossing
points should be the same or only differ by one. Algorithm 1
describes the details of EMD.

BEMD was originally developed for complex-valued time
series data [38]. Unlike the conventional univariate EMD,
BEMD can process bivariate data in the complex-valued form
and decompose it to complex-valued IMFs, which have real
and imaginary parts for the bivariate data. The procedure of
the BEMD algorithm is elaborated in Algorithm2.

Since the EEG signal is non-stationary and non-linear time
series data, the EMD method could be suitable to decompose
EEG signals due to its data driven process [35]. However,
the distribution of the frequency components in each IMFs

Algorithm 1 Procedure of Empirical Mode Decomposition
1: Let x̃(t) = x(t)
2: Find all local maximum and minimum values of x̃(t)
3: Identify upper envelope eu(t) and lower envelope el(t),

through a cubic spline interpolation
4: m(t) = (eu(t) + el(t))/2
5: rk (t) = x̃(t) - m(t)
6: If the condition of rk (t) meet the stopping criterion,

assign ck (t) with rk (t), otherwise x̃(t) = rk (t) and iterate
step 2-5

7: x̃(t) = x̃(t) - ck (t)
8: Iterate step 2-7, until rk (t) has no more oscillations

Algorithm 2 Procedure of Bivariate EmpiricalModeDecom-
position
1: Set the direction dn = 2nπ/D (1 ≤ n ≤ D), D = 2
2: Project the complex-valued signal x(t) on a direction dn:
pdn (t) = Re(e

−j2nπ/Dx(t))
3: Find the local maxima {(tni , p

n
i )} of pdn (t)

4: Interpolate the set {(tni , e
−i2nπ/Dpni )}, building a tube in

time, real and imaginary axes
5: Obtain the tangent g′dn on a tube in the direction of dn
6: Iterate step 2-5 twice with n = 1, 2
7: Average all tangents: m(t) = 2(g′d1 + g

′
d2
)/D

8: From this step, it is the same as sifting processing of the
conventional EMD.

decomposed using EMD is not uniform. For example, the
range of the frequency components in the first IMF of one
EEG signal would be different from the frequency range of
the other EEG signal. Thus, even if an EEG training dataset
including a specific order of IMF is learned by a classification
model, the model might not classify the other testing dataset
due to the inconsistent frequency distribution of the IMFs.
In order to solve the above issue, we apply to a noise-assisted
BEMD using two channels which are a raw single channel
EEG and a white Gaussian noise signal with 0.1 standard
deviations of the EEG. Since the IMFs of a white Gaussian
noise have a dyadic filter bank property, it could also derive
the similar dyadic frequency components in the EEG IMFs
of the other channel, which could solve the mode mixing
problem within the decomposed IMFs [39].

In this study, we applied NA-BEMD to the epochs to
extract six IMFs covering a frequency range from 0.5Hz
to 50Hz. One example of the six IMFs from an epoch are
displayed in Fig 2., and it shows that NA-BEMD produces
the different oscillations in data-driven way considering
the non-linearity and non-stationarity of the EEG signal.
In addition, the averaged power spectra of all epochs’ IMFs
of the participant are shown in Fig 3., where the dyadic
filter bank property can be noted. As the sifting process of
NA-BEMD proceeds, slower oscillations are extracted than
the earlier components. IMF1 contains high frequency noise,
which could be found heuristically during an experiment
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FIGURE 2. One example of six IMFs from an epoch of a participant,
‘SC4001E0’, in the Sleep-EDF dataset. IMF2 - IMF6 are fed into the
Attention layer and IMF1 is discarded since high frequency noise.

learning the sleep scoring model using all 6 IMFs and 5 IMFs
discarding IMF1. The 5 IMFs without IMF1 improved the
sleep scoring performance, and thus the proposed model
learned the 5 components only.

2) ATTENTION MECHANISM
Fig 4. illustrate the structure of an attention layers. The
attention layer generates attention weights and executes
element-wise multiplication to the input data. This atten-
tion mechanism consists of squeeze and excitation opera-
tions [30]. In squeeze operation, the five IMFs are fed into the
global average pooling (GAP) layer to compress the global
spatial information into a descriptor. The excitation operation
computes the dependencies among the components using
fully connected layers and non-linear functions. The formulas
for these operations are as follows in Eq 2-4.

Gc = GAP(xc(t)) =
1
L

L∑
t=1

xc(t) (2)

Aw = σ (W2δ(W1Gc)) (3)

xatten(t) = xc(t)� rescale(Aw) (4)

where δ and σ denote the Relu and sigmoid functions. W1
and W2 are trainable weight vector in the attention layer,
W1 ∈ R3×C and W2 ∈ RC×3. The attention weights,
Aw, extracted through the sigmoid function are multiplied by
the IMFs. Through the attention layers, the performance is

FIGURE 3. Averaged power spectra of the EEG IMFs from a participant,
‘SC4001E0’ in the Sleep-EDF dataset. Note the dyadic filterbank property
of the IMFs decomposed using NA-BEMD.

FIGURE 4. Attention layer before the 1D-CNN layers. C denotes the
number of IMFs and L is the number of samples in a 30-second epoch.
Squeeze operation is global averaging pooling (GAP) and blue circles
represent fully connected layers. Aw is attention weight that is the output
of the sigmoid function.

improved by focusing on the important IMFs for classifying
the sleep stage. An IMF with a large attention weight could
contain significant features for the model task. Since the
outputs of the sigmoid function have values between 0 and 1,
they are scaled corresponding to the significance of the
components [30].

3) 1D-CNN FOR AN EPOCH’s FEATURE LEARNING
We use 1D-CNN with various filter sizes in all the convolu-
tion layers to extract features from the decomposed 5 IMFs
and raw EEG signal. A large sized filter would detect large
patterns well, while a small sized filter would recognize small
patterns [40]. In detail, there are 13 convolution layers with
various filter sizes instead of the fixed size, 6 max-pooling
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FIGURE 5. The architecture of 1D-CNN with the residual connections. The
residual connection is the process of adding the output F (x) into the
identity x of the trainable layers. The stride of all convolution layers and
max-pooling layers is 1 and 2 respectively. This architecture is applied to
both IMF components and raw EEG signals.

layers, and global average pooling layer in the 1D-CNN,
shown in Fig 5.. Each convolution layer has the ReLU, which
is a non-linear activation function. In addition, we apply the
residual connection to solve the vanishing gradient problem
and to ease the training of the network by adding identity
x to the output F(x) [41]. Therefore, this method allows
the CNN layers to be deeper and improve the performance
with the increased layer depth. [42] In addition, the residual
connections are relatively easier to be optimized, compared
with vanilla CNN. The features extracted from the IMF
components and the normalized raw signal are concatenated
and processed through two fully connected layers, and finally,
five sleep stages are classified using the softmax function
shown in Fig 1.. The extracted features from 10 epochs are
transferred to the next Bi-LSTM layers.

4) BI-LSTM FOR LEARNING OF EPOCH SEQUENCE
In general, successive sleep stages have regular patterns [43].
For example, if the participant is in the wake stage, then the
next stage is likely to be the wake or N1 stage. In addition,
N1 and N2 stages have similar patterns of the brain waves,

FIGURE 6. Architecture of Bi-LSTM consist of forward and backward
direction LSTM. The EEG features from x0 to x9 extracted from 10 epochs
are fed into the first Bi-LSTM layer, which could learn the sequential
patterns among the 10 epochs.

that is both stages have low amplitude and mixed frequency
properties in EEG signal. However, if sleep spindles or
k-complexes appear during a few minutes, all epochs in that
duration are scored as N2 stages. Therefore, in order to decide
a correct sleep stage between N1 and N2 or between Wake
and N1, a learning structure based on the consecutive epochs
is required. To learn this rule, the proposed model considers
10 epochs as one set and uses three Bi-LSTM layers that
could memorize information of the previous or subsequent
epochs [44]. Bi-LSTM layers can process sequences in
forward and backward direction with merging two LSTMs.
The input sequence xt is a feature vector of 10 epochs
extracted using 1D-CNN structure and t denotes the time
index in Bi-LSTM. This structure is formulated as follows:

−→
ht =

−−−→
LSTM (xt , ht−1) (5)

←−
ht =

←−−−
LSTM (xt , ht−1) (6)

yt =
−→
ht ||
←−
ht (7)

where
−→
ht and

←−
ht are hidden states of the forward and

backward networks. Finally, the output yt is made by
concatenating both hidden states. Thus, it could learn past
and future information. Fig 6. illustrates the Bi-LSTM layer
architecture. The outputs of Bi-LSTM layer from y0 to y9 are
fed into the next Bi-LSTM layer, and these Bi-LSTM layers
are stacked in three layers in the model.

5) TRAINING DETAIL
In this study, the hyperparameters of our model were
designed experimentally through trial and error, where
several configurations were tried with twenty-fold cross
validations using the Sleep-EDF-2013 dataset. We adjusted
experimentally hyperparameters of 1D-CNN and Bi-LSTM,
the number of convolution layers and fully connected layers,
epoch sequence length, learning epochs, learning rate, and
batch size. We used the Adam optimizer with a learning
rate of 0.0001 and categorical cross-entropy as the loss
function. The batch size is 80 when batch feds to network
of feature learning for an epoch. 10 features of epochs are
bundled into one set and 8 sets fed to network of learning
of epoch sequence. In Fig 1., the output shape of the first
fully connected layer of 1D-CNN is (8,10,64), where the time
step and the number of attributes of Bi-LSTM are 10 and 64.
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In addition, each learning epoch of an EEG epoch feature
extraction learning and EEG epochs sequence learning is
8 and 50. Furthermore, the weight initializer in the model is
GlorotUniform and its random seed is 777.

D. EXPERIMENTAL SETUP
1) EVALUATION METHOD
Ten and twenty-fold cross validations were conducted to
validate the performance of the trained model [45]. In addi-
tion, the participants’ test data were completely blinded to
the training dataset for a fair inter-participant test. It should
except epochs of the test participants from the training
dataset. Therefore, because there are 20 participants in the
Sleep-EDF-2013 dataset, twenty-fold cross validation was
conducted, and ten-fold cross validation was performed for
the Sleep-EDF-2018 dataset and WSC dataset. This inter-
participant cross validation is practical to implement real
world applications.

2) ATTENTION WEIGHT ANALYSIS METHOD
When the proposed model classifies the sleep stages, the
attention weights are calculated and averaged during the
cross validation to analyze which frequency components are
weighted by the attention layer in a specific stage. In addition,
One-tailed t-test is also conducted to determine whether the
difference of the attention weights assigned to the frequency
components in each sleep stage is significant.

3) COMPARISON WITH FIR FILTER
To evaluate the performance of the NA-BEMD preprocess-
ing, the Fourier based FIR bandpass filter (BF) was compared
as a benchmark test. EEG signals are decomposed into several
sub-waves, beta (13-30Hz), alpha (8-13Hz), theta (4-8Hz),
delta (0.5-4Hz) waves, which were often used for sleep
scoring [46]. Corresponding to these frequency bands, IMF2,
IMF3, IMF4, IMF5 and IMF6 decomposed using NA-BEMD
were compared with fixing the model architecture.

4) PERFORMANCE METRICS
To evaluate the performance of the proposed model, three
performance metrics— recall (RE), precision (PRE), and
F1-score (F1)— were calculated. True positive (TP), true
negative (TN), false negative (FN), and false positive (FP)
were used to calculate the performance metrics as follows:

PRE =
TP

TP+ FP
(8)

RE =
TP

TP+ FN
(9)

F1 =
2× PRE × RE
PRE + RE

(10)

In addition, the overall accuracy (ACC), macro F1-averaging
(MF1), and Cohen’s kappa coefficient (κ) were also calcu-
lated to evaluate the performance of sleep scoring.

ACC =

∑C
i=1 TPi
N

(11)

FIGURE 7. Training and validation accuracy for random fold (i.e. first fold)
in Sleep-EDF dataset. Learning epoch of First training step is 8 and
second step is 50.

MF1 =

∑C
i=1 F1i
5

(12)

κ =
ACC − Pe
1− Pe

,

Pe =

∑5
i=1(TPi + FNi)(TPi + FPi)

N 2 (13)

where C denotes the number of classes and N the total
number of test data. Pe denotes the hypothetical probability
of the chance agreement [47].

III. RESULT
In this study, the proposed model was designed to classify
the five sleep stages: Wake, N1, N2, N3, and REM stages.
To evaluate the performance of the model, experiments were
conducted using Fpz-Cz, Pz-Oz, and F3-M2 channel EEG
signals from the Sleep-EDF datasets and WSC dataset, and
several performance metrics were utilized for the evaluation.

A. CLASSIFICATION PERFORMANCE
Fig 7. illustrates the accuracy graph of the proposed model
during the two-step training. The proposed model yields a
stable convergence of the training and validation accuracy.
Therefore, it demonstrates that the model is robust against
overfitting.

There is an imbalance problem in the number of sleep stage
labels. The epoch number of the N1 and N3 stages are smaller
than those of the other stages in the dataset, as shown in
Table 1. Thus, the F1 score and MF1 are important metrics
to measure the performance of the imbalanced dataset as
well as the overall accuracy. We verified the generalized
performance of the model through a total of 5 experiments
with three datasets using cross-validation. Table 2 shows the
confusion matrices and performances of the proposed model
using Fpz-Cz, Pz-Oz, and F3-M2 channel signals from the
Sleep-EDF dataset and WSC dataset. The left and right parts
in Table 2 show the confusion matrix and the performance
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FIGURE 8. An example of sleep scoring by a sleep expert and our model using ‘SC4001E0’ participant’s first night’s record from the Sleep-EDF dataset.
The blue line is the ground truth of the dataset, and the red dotted line is the sleep stage predicted by the proposed model.

TABLE 2. Confusion matrix and performance using each EEG channel
from three datasets.

metrics (PRE, RE, F1) of each sleep stage, and the overall
performance of the model is described using ACC, MF1 and
κ across all sleep stages. In Table 2, the model trained with

the Fpz-Oz channel performed better than that with the Pz-Oz
channel in Sleep-EDF dataset. This result demonstrates that
the Fpz-Cz channel has more distinct features than the Pz-Oz
channel for sleep scoring. Due to the data imbalance issue
among the classes in all the datasets, the overall accuracy is
higher than 80%, whereas MF1 is relatively lower than 80%.
In particular, the F1 score of the N1 stage is lower than those
of the other stages owing to the fewer number of epochs.
In contrast, the Wake and N2 stages with relatively a number
of epochs yielded high F1 scores. As a result, the performance
of sleep scoring using Fpz-Cz signals of the 2013 Sleep-EDF
dataset and Pz-Oz signals of the 2018 Sleep-EDF dataset
showed 80.79% and 72.98%MF1, i.e., the highest and lowest
performance among the five experiments, respectively.

Additionally, the proposed model was tested for the
separation between two class sleep stages (Wake, sleep), and
among the three (Wake, NREM, REM), and four class sleep
stages (Wake, Light Sleep, Deep-Sleep, REM), which can be
seen in Table 3. The fewer classes were classified, the higher
the performance of the proposed model was shown.

Fig 8. displays an example of automatic sleep scoring
algorithms scored by an expert and the proposed model.
Notably, most stages are well predicted except the N1 stage,
which might be due to lower occurrence than the others.

B. BENCHMARKING WITH OTHER STATE-OF-THE-ART
ALGORITHMS
In this section, we compare the sleep scoring performances
of the proposed model with those of other state-of-the-
art models. All studies used the same dataset and EEG
channel and the same cross-validation method as ours.
Table4 summarizes the benchmarking results of the per-class
F1 score and overall performance metrics. Our proposed
model using NA-BEMD has the highest overall accuracy and
Cohen’s kappa coefficient metrics for the three channel EEG
dataset. Additionally, the MF1 score is the highest except
the Pz-Oz channel EEG of the 2013 Sleep-EDF dataset,
where our model has a higher F1 score in the N2 and REM
stages than the other state-of-the-art algorithms and has a
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TABLE 3. Performance of model according to the types of sleep stages to
be classified.

comparable or higher F1 score in theWake, N1, andN3 stages
than the other models. As a result of the benchmark test using
an FIR bandpass filter instead of NA-BEMD, up to 1% lower
performance was observed than the model using NA-BEMD.
Therefore, the proposed model proved that NA-BEMD is an
efficient EEG decomposition method to classify the sleep
stages rather than the Fourier-based frequency decomposition
approach.

C. INTERPRETABLE ATTENTION WEIGHTS OF THE
DECOMPOSED IMFs
The higher the attention weight given to the IMF, the more
important the frequency component of the IMF is to classify
the sleep stages. Each IMF has a certain frequency range
based on the dyadic filter bank property of NA-BEMD
(see Fig 3.), and the spectrum includes a unique EEG
frequency spectrum. IMF2 contains the beta (13-30Hz) and
alpha band (8-13Hz) frequency components, IMF3 alpha,
theta bands (4-8Hz), IMF4 little alpha, and theta and delta
bands (0.5-4Hz), and IMF5 and IMF6 mostly include delta
band frequency components. Fig 9. displays the mean and
standard deviation of the attention weights given to the IMFs
for each sleep stage. IMF2, which has the widest spectrum
including high-frequency components, had the highest mean
of attention weight in all stages. Notably, the highest mean
of attention weight was assigned to the Wake stage among
the mean of attention weights of IMF2. Also, the mean
of attention weights of IMF3 and IMF4, which contains
theta band spectrum, decreased from Wake stage to N3
stage In particular, IMF4, which contains a strong theta
band spectrum, had higher mean of attention weights for
N1 stage and N2 stage than that of IMF3. Additionally, the
mean of attention weights of IMF5 for the N3 stage epochs,
which contains a strong delta band spectrum, were higher

FIGURE 9. Attention weight of the IMFs for each sleep stage. The mean
and standard deviation were calculated using the attention weights
extracted from the test set of the first fold during the cross-validation of
the Sleep-EDF-2013 dataset. One asterisk (*) indicates p-value smaller
than 0.05 (p < 0.05). Two asterisks (**) indicate (p < 0.01).

than other stages. One-tailed t-test was conducted to confirm
whether these differences were significant. Interestingly,
these attention weights to the different IMFs are consistent
with the findings of the previous studies [28]. In addition,
it was confirmed that each sleep stage does not depend on
only one IMF, but multiple IMFs contribute to a sleep stage.

IV. DISCUSSION
Compared to the existing sleep scoring studies, the main
contributions of the proposed method are the applications
of NA-BEMD to extract the EEG frequency components
and the attention mechanism to emphasize the corresponding
frequency components to each sleep stage. Additionally,
a novel deep neural network consisting of 1D-CNN and Bi-
LSTM, and interpretability with the attention mechanism
are the main contributions to the automatic sleep scoring
research. These approaches are robust and reliable for the
sleep scoring using only a single channel EEG signal.

Since the sleep experts consider the slow and fast scales
in EEG signals as well as their amplitudes when classifying
the sleep stages, the automatic sleep scoring algorithm also
needs to decompose an EEG signal into several frequency
components and consider the significance of the compo-
nents corresponding to the sleep stages. For the frequency
decomposition, the traditional Fourier-basedmethod could be
utilized using its sine and cosine basis functions. However,
due to the limiation of its basis functions, it would not
handle the inherent non-linearity and non-stationarity of EEG
signals. To solve this issue, the data-driven decomposition
algorithm, EMD, has been applied. Furthermore, in order
to utilize the advantage of the dyadic filter bank property,
NA-BEMD is eventually utilized. The benchmark test of the
sleep scoring algorithms using NA-BEMD and FIR filters
demonstrates NA-BEMD outperforms the other.

The attention mechanism for the decomposed frequency
components as inputs to the proposed model yield high
weights to the components with large information about a
sleep stage, which could provide interpretability regarding the
proposed model and enhance the performance. For instance,
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TABLE 4. Bench mark results compared with other studies based on single channel EEG.

since IMF2 considerably varies among the sleep stages,
it could be crucial to classify the sleep stages. Thus, the
attention weights of IMF2 are high in all sleep stages, which
contain high-frequency components such as alpha or beta
bands, contributing the most to the classification of all sleep
stages. For the same reason, we found that the IMF5, which
contains low-frequency components such as the delta band,
contributes the most to the N3 stage classification, and other
IMFs contribute to the wake stage. Therefore, this method
not only improve the model performance, but also makes it
reliable with the explainability of the designed deep neural
networks.

Another main novelty of the proposed model is the
combination of the 1D-CNN and Bi-LSTM to extract the
features in each epoch and the continuous epochs. The
relations among the EEG epochs are crucial to define the
sleep stages due to the nature of the sleep cycles [49].
Therefore, the automatic sleep scoring model is designed to
consider this in the hidden state during the learning process.
To improve the performance of the model, a deeper 1D-CNN
layer with the residual connection is built, which also prevents
the overfitting of 1D-CNN through two-step training. As a
result, the proposed model outperformed the other state-of-
the-art methods in the five experiments the same channel of
EEG signal from the same dataset.

In the experiment, inter-participant cross validation was
conducted using the data of three EEG channels (Fpz-Cz, Pz-
Oz, and F3-M2) from the three public datasets. In particular,
the F3-M2 channel is useful for the implementation of sleep

monitoring wearable devices. It can be recorded from two
areas of the head, that is, behind the ear and in the front
of the head, which is hairless and more comfortable to
be attached than the other channels. In addition, because
the WSC dataset has data from participants of various
races —i.e., Asian, Black, Hispanic, Native American, and
White— the experiments using the WSC dataset demon-
strated that our proposed model could be generalized for
various ethnicities.

Although our model showed the best results with the most
performance metrics, there were a limitations. As the number
of N1 epochs is insufficient, the prediction probability of the
N1 stagewas still low, and the proposedmodel could not learn
features of sleep spindle or k-complex separately. Therefore,
for future works, we need to improve the performance of
the N1 scoring using a rule-based method which reflects the
N1 and N2 stage transition probability [50] or oversamples
augmenting N1 epochs [51]. Also, the proposed model could
be improved in performance by detecting the sleep spindle or
k-complex and extracting features in future works.

V. CONCLUSION
In this study, we propose a robust model for an automatic
sleep scoring method using an single channel EEG. In con-
trast to other state-of-the-art models, the proposed model
uses the noise-assisted bivariate EMD for the extraction
of the intrinsic modes of the EEG signals and applies a
residual connection and various filter sizes for the CNN
architecture to design a deeper and more robust model to
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improve the representative feature extraction performance.
Additionally, to learn the relationship between consecutive
epochs, 10 epochs are used as one sentence and are learned
using Bi-LSTM. Furthermore, the model was interpretable
using the attention mechanism. Based on these findings,
we prove that the proposed model shows the best per-
formance for three channel EEG signals from the three
public datasets compared with the other state-of-the-art
algorithms. Therefore, we expect that our robust model can be
practically applied to professional decision support systems
and wearable sleep monitoring devices.
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