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ABSTRACT The use of face masks has become a widespread non-pharmaceutical practice to mitigate
the transmission of COVID-19. However, achieving accurate facial detection while people wear masks
or similar face occlusions is a major challenge. This paper introduces a model to detect occluded or
masked faces based on fused convolutional graphs. This model includes a deep neural architecture with
two spatial-based graphs that rely on a set of key facial features. First, a distance graph is used to identify
geographical similarity between the facial nodes that represent certain key face parts. Second, a correlation
graph is formulated to compute the correlations between every two nodes that represent two different
augmented facial modalities. Transfer learning is then performed using a pretrained deep architecture
as a baseline to map the abstract semantic information into multiple feature filters. Then, discriminant
graph convolutions are constructed based on the fusion of distance and correlation graphs. This model
evaluates two tasks of facial detection, which are the binary detection of masked or unmasked faces, and
multi-category detection of masked, unmasked, or occluded face with no mask. The experimental results
on two benchmarking real-world datasets show that the proposed deep learning model is highly effective
with an accuracy of 98% achieved in binary detection. Even with high variance in image occlusions, our
proposed model has great promise in detecting and distinguishing between types of facial occlusion with
an accuracy of 86% reported in multi-category detection.

INDEX TERMS Correlation graphs, deep learning, distance graph, graph convolutional networks, face mask,
occluded face detection, spatial features.

I. INTRODUCTION
Face masks, in combination with physical distancing and vac-
cination, are one of the most effective preventive measures for
slowing down the rapid spread of SARS-CoV-2 (COVID-19)
[1] and have become widely adopted as a standard precau-
tionary measure [2]. Though face masks were already used
in certain contexts such as healthcare and environments with
excessive pollution, the commonplace use of masks by the
public in daily life has increased significantly.

Owing to the rising popularity of masks, there is now a
demand for accurate, real-time image recognition techniques
that can effectively detect both masked and non-masked
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faces for public health and security purposes. Masked faced
detection (MFD) aims to address this by using facial recogni-
tion algorithms to detect whether a person is wearing a face
mask or not. However, there are various shapes and styles of
face masks that hide different amounts of a person’s cheeks,
nose, and mouth. In current literature, most MFD detection
algorithms have been devised to detect the existence of masks
over face [3], but few has attempted to simultaneously deal
with MFD and occluded face detection (OFD) where the face
is distracted by a non-mask object. Moreover, automation
of the detection process is needed to make adoption of the
technologies feasible in real-world security scenarios [4],
such as the person authentication at access checkpoints [5].
Face detection technologies are mainly based on artificial
intelligence (AI) and machine learning solutions, where many
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computer vision applications, including image classification
and recognition [6]-[9], have reported high performance.
From a facial recognition perspective, OFD and MFD have
the added complication of fewer key facial parts visible to
perform identification, such as nose, mouth, and cheeks. Even
common effective face detectors, including YOLOv3 [10],
RefineFace [11], LLE-CNNs [12], and Faster R-CNN [13],
which largely rely on such important face parts, have shown
a performance drop when dealing with face masks or occlu-
sions [14]. Moreover, the available datasets for detecting face
masks or occlusions are relatively insufficient to train the
detection models [3], and it becomes essential to improve the
discrimination quality of OFD systems.

In recent years, a large body of research has attempted
to address such challenges in the domain of MFD and OFD
based on deep learning approaches [12], [15]-[19]. Machine
learning models based on deep neural networks, such as
convolutional neural networks (CNNs), are superior in face
detection and recognition, which utilize many popular pre-
trained models [20]-[22].

Graph convolutional networks (GCNs) are among the more
effective CNN-based models for identifying key features
in various computer vision applications [23]-[28]. Conven-
tional CNNs can be generalized by GCNs using spatial or
spectral filters to deal with real data. However, learning graph
representations are relatively complex with the restriction
on the depth of architecture layers, as well as unfavorable
redundant computations [29]. Therefore, there is a lack of
research utilising GCN-based models for MFD or OFD.
The current paper investigates the capability of GCN-based
architectures in extracting discriminant key features to con-
tribute towards detecting masked or occluded faces more
accurately.

In this paper, a graph-based deep learning model that is
efficiently able to detect faces with/without masks or faces
with non-mask occlusions in images is introduced. The pro-
posed model aims to generate a set of key facial features, uti-
lizing two convolutional representations, which are distance
and correlation graphs. Each individual spatial filter forms a
separate graph notation of facial parts, which in turn provides
a fused GCN-based architecture used to represent the final
generic image descriptor. This model also benefits from the
transfer learning conducted to use the learned kernels trained
on general face detection images for the specific MFD/OFD
task. Most importantly, the model performance is evaluated in
two classification tasks, which are binary and multi-category
detection. The main contributions of this work are summa-
rized as follows:

1) A deep learning model is developed using two
GCN-based distance and correlation representations
to detect faces with masks or occlusions. On one
hand, the distance graph indicates a distinct relation-
ship between the facial features with the utilization of
weighted distance functions. On the other, the correla-
tion graph indicates the correlation between the spatial
features based on the historical usages (i.e., inflow or
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outflow) in each time interval. These two graphs are
then convolved (fused) to generate a multi-graph model
that is then used to learn the general discriminative
characterizations of occluded faces.

2) Two classification tasks are examined in this work. The
first task determines whether the face is covered by face
mask or not (i.e., binary detection). The second more
challenging task categorizes the test face image into
one of three classes: masked, unmasked, or occluded
face with no masks.

3) Two large benchmarking datasets have been restruc-
tured and manipulated in order to evaluate the per-
formance of the proposed model on a sufficient and
diverse collection with a total of 38000 images.

The remaining sections of this paper are organized as
follows. Section II presents the recent studies and related
works in the domain of MFD and OFD using deep learning
techniques. Section III introduces the work methodology and
it illustrates the generic pipeline used to construct the graph-
based image descriptors. Section IV discusses the experimen-
tal results obtained in the binary and multi-category face
detection tasks. Finally, Section V concludes this paper with
potential future directions.

Il. RELATED WORK

Face detection has traditionally been an intricate challenge for
computers due to the animated and dynamic nature of faces,
but with the technological progress and the development of
algorithms in the field of Al and deep learning, face detection
has become effectively solvable [30]-[32].

Advances in the field of face detection are indebted to the
work of Viola et al. [33] which takes a person’s photo and
compares it with images stored in a database. A shortcoming
of this work is that in the case of any deviations from the
facial expressions made in the database causes the matching
process to be invalidated and subsequently the performance
of the existing in-house face detection algorithms to drop
noticeably. Research efforts have intensified in this domain to
create models more robustly capable of detecting face masks
under various circumstances.

Deep learning methods are among the most successful
approaches that have been widely examined in the domain of
non-mask face detection, including deep features [34], [35],
face detection on social media [36], [37], and video-based
face detection [38], [39]. Deep learning algorithms allow the
artificial neural networks to learn the key facial points and
their locations in a comprehensive way [40]. Many sophisti-
cated approaches have adopted the unrestricted scenario for
face detection techniques, due to the limitations caused by
distortions, exaggerated expressions, or large obstructions,
which also made the dataset used to process such scenarios
so limited.

With this increasing research work in the field of MFD and
OFD, a database containing a large number of images became
an essential demand. There are many datasets of masked faces
available to the public but few contain sufficient images to
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feed and train the deep learning models on diverse images
with challenging face occlusions.

However, many image collections have been recently pro-
posed in literature for MFD and MFR. Vu et al. [41] proposed
combined Local Binary Pattern (LBP) and deep learning
features using RetinaFace, and they provided a new dataset
called COMASK?20. Wang et al. [4] provided three types
of facemask datasets: Real-world Masked Face Recognition
Dataset (RMFRD), Masked Face Detection Dataset (MFDD),
and Simulated Masked Face Recognition Dataset (SMFRD).
Prasad et al. [17] also introduced two datasets consisting of
people’s images in real natural scenes: MASK-face vl and
MASK-face v2. Liu et al. [19] constructed the HKBU-MARSs
V2+ dataset that consists of high-quality face masks taken
under a wide variety of lighting settings, and a large number
of related videos. Ge et al. [12] introduced the MAFA dataset
which consists of 35 806 synthetic masked faces and real
images collected from the internet with various orientations
and occlusion degrees, in which at least one part of each
face is occluded by mask. Also, they proposed LLE-CNNs
to recover the missing facial cues by various masks.

Many contributions have responded to the need for effec-
tive approaches to detect face masks. However, the existing
face detectors typically rely on the uncovered facial parts and
have therefore shown a noticeable performance drop when
applied to images of masked faces [14]. The following section
discusses some recent approaches mainly based on the deep
learning algorithms and architectures.

Lightweight face detection systems that run in real-time
platforms such as mobile devices have also been developed.
Nagrath ef al. [18] proposed a deep learning model called
SSDMNV2 based on MobilenetV2 for real-time mask detec-
tion. It has the advantage of using lightweight embedded
devices such as Raspberry Pi and NVIDIA Jetson Nano. The
model was evaluated on a medical face mask dataset. It out-
performed the pre-existing models trained on the same dataset
such as LeNet-5, ResNet-50, VGG-16, and AlexNet. Mili-
tante et al. [42] also built a real-time system using CNN-based
VGG16 model to classify persons into masked or unmasked
faces, and it triggers a warning alarm using Raspberry Pi to
those not wearing facemasks.

GAN-based deep learning systems have also been utilised
in many MFD applications. Din et al. [43] developed a
GAN-based network to unmask the detected face masks
and synthesize the missing facial parts with fine details and
regions reconstruction. Two face discriminators were used:
one for learning the global structure of the person’s face, and
one for learning the missing regions. A set of synthetic images
is created using the CelebA dataset. Luo et al. [44] developed
the EyesGAN model which is based on the composition of
people’s faces from their eyes. Two techniques were used
to build this model, which are the perceptual loss and the
self-attentional mechanism in GANs. Huang er al. [45] also
used the Resnet50 classifier as a deep-learning framework for
building a masked face recognition model that was evaluated
on a new proposed Webface-OCC dataset.
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Video-based detection approaches have also been intro-
duced to detect or recognize face with masks or occlusions.
Snyder et al. [46] developed a system to classify persons
into masked or unmasked faces using a CNN-based model,
which includes three steps: detecting human subjects in
videos using a ResNet-50 model with a hierarchical feature
network (FPN), extracting human faces from videos using
multitasking convolutional neural networks (MT-CNN), and
classifying faces into masked and unmasked by training a
CNN classifier. A real data set was collected from educational
settings. Joshi et al. [47] also presented a real-time video-
based system to detect the face mask using MTCNN face
detection model with MobileNetV2. Mandal et al. [48] used
the Resnet50 classifier as a deep-learning framework for
masked face recognition evaluated on the RMFRD dataset.
Sethi et al. [49] examined two-stage deep-learning detec-
tors using MobilenetV2, Resnet50, and AlexNet models for
detecting face masks in real-time with different images.
Draughon et al. [50] also presented a CNN-based system to
track people’s movement in public areas and detect any faces
with occluded parts.

Other research efforts have adopted a hybrid approach that
uses aspects of both traditional machine learning and newer
deep learning models. Loey et al. [51] developed a hybrid
system that detects the facemask by extracting image fea-
tures using Resnet50 and classifies the facemask using SVM,
decision trees, and ensemble algorithms. The model was
evaluated on RMFRD and LFW datasets. Oumina et al. [52]
proposed a hybrid system combining traditional machine
learning algorithms with deep learning models to detect the
face mask. It extracts image features using MobileNetV2,
VGG19, and Xception then classifies the face mask using
K-NN and SVM. The SVM classifier with MobileNet-V2
model reported the best detection accuracy.

Even though GCNs have shown superiority in various
computer vision application, few studies have investigated the
performance of GCNs in MFD and OFD tasks. Ren et al. [53]
introduced a dynamic graph representation to adaptively
remove the nodes representing the occluded parts in bio-
metric including faces and iris images. The proposed model
applies dynamic graphs matching with various distance mea-
sures and adjacent matrices. Ye ef al. [54] proposed a deep
learning model based on GCNs for detecting face masks.
It extracts image features using DenseNet101 then recognizes
and classifies the facemask using GCN on MAFA dataset.
Recently, Alguzo et al. [55] also proposed a deep learning
model based on multi-GCNs to determine and detect people
wearing masks. This model produces a multi-graph structure
using convolutional filters that utilizes a 4D facet tensor as
an input function, and it includes a convergence layer to
capture multiple facial expressions. The real-world masked
face dataset (RWMFD) was used to evaluate the proposed
model.

This paper introduces a new deep learning model based
on the fusion of two spatial graphs with several filters
constructed effectively to generate a discriminating generic
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FIGURE 1. The main phases of the proposed OFD pipeline.
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image representation. The RWMFD dataset is also replaced
with two alternative datasets, MAFA and Human Faces,
which are more sufficient in terms of size and diversity.
Additionally, the work in [55] only determines whether the
detected face is covered by a mask or not, while in this paper
we perform both the binary OFD and multi-category OFD
(i.e., unmasked, masked and occluded).

ill. METHODOLOGY

A. DEEP ARCHITECTURE PIPELINE

In this section, the deep learning model used to detect the
face-mask based on two convolution-based graphs is intro-
duced. As shown in Figure 1, this model pipeline involves
several phases, as will be detailed in the following sub-
sections. The dataset images are first prepared using two
benchmarking collections preprocessed to fit the architecture
requirements with data augmentation to increase the diversity
of challenging and confusing images. The proposed architec-
ture includes several graph convolutional layers that include
the graph convolution fused using the correlation and distance
graphs, which represent multiple filters with shared weights.
The baseline architecture is initialized with the pretrained
VGG16 model [21] to perform an efficient transfer learning
procedure. Specifically, the weights learnt in the VGG16
model are used in the training process to obtain better gen-
eralization capability while learning the features of the new
domain-specific images (i.e., masked and occluded faces)
especially in the lower layers. This architecture also includes
several top layers (e.g., dropout, dense, and fully connected
layers), which end with a prediction layer to classify the input
images.

B. DATASET PREPARATION

1) MAFA DATASET

The MAFA dataset [12] is one of the largest datasets con-
tributing to the development of the MFD algorithms. It con-
sists of 30 811 facial images collected from various websites
such as Google, Bing and Flickr with different degrees of
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occlusion. Each image contains at least one face wearing
a mask. MAFA is characterized by a variety of degrees of
occlusion, types of face masks, textures, as well as a large
proportion of hand-covered faces. MAFA can be grouped into
two categories: faces covered with a typical face mask (i.e.,
medical or colored), and faces covered by hands, scarves,
or any other objects impeding its identification. Figure 2(a)
shows a set of image samples from the MAFA dataset.

2) HUMAN FACES DATASET

The Human Faces Dataset (HFD) [56] consists of about 7
200 images collected from the internet. It also contains few
GAN generated ‘fake faces’ to challenge the functionality of
dealing with real and generated faces. The dataset is char-
acterized by its diversity of ethnicity, gender, and ages, with
many images of elderly people. In our experiments, the HFD
was used in the training phase to train the model on the fully-
featured exposed face. Figure 2(b) shows a set of the HFD
samples.

3) DATASET SPLIT

The dataset used to train, test, and validate the proposed
model in the binary detection (i.e., unmasked or masked
faces) consists of 29 209 images for training, 7 557 images
for testing, and 1 245 images for validation (77%/20%/3%).
The second task is to classify input images into one of three
classes: masked, unmasked, and occluded faces. The MAFA
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TABLE 1. A description of images split used for training and testing.

Task Class Tra.m Vahdgte Tes.t Total
split split split

) Masked 25,159 714 4,938 30,811

Binary Unmasked 4,050 531 2,619 7,200

Masked 18,289 500 3,500 22,289

Multi-class  Unmasked 5,223 500 1,477 7,200

Occluded 5,895 500 2,127 8,522

and HFD were manually labelled, to train, test, and validate
the proposed model. As result, it consists of 29 407 images
for training, 7 104 images for testing, and 1 500 images for
validation (77%/19%/4%). Table 1 summarizes the classes
and number of images set for the binary and multi-category
detection and classification tasks. The unmasked images are
from the HFD dataset and the remaining images are all the
MAFA masked and occluded face images.

4) IMAGE PREPROCESSING

Image data augmentation is a common and effective
technique used in data preprocessing to artificially create
modified versions of the images, such as flipping, scaling,
rotation, and shearing. One of its most important benefits is
to improve the generalization capability of the trained model.
We have applied three data augmentation operations to the
input images, which are rescaling image by a factor 1/255
to obtain a range of [0-1], generating a random brightness
in the range [0.3-1.5] where the values above 1.0 brighten
the images and values less than 1.0 darken the images, and
rotating images randomly in the range [0-360] with a rotation
range of 30.

C. GRAPH CONVOLUTIONAL REPRESENTATION

Given a graph G(V, E) where V is a set of vertices and E is a
set of edges, let v; € V indicate a node and e;; = (v;, v; € E)
indicate an edge pointing from v; to v;. A neighborhood of a
node v is defined as N,y = u € V|(u,v) € E. An adjacency
matrix A is defined as n x n matrix with A;; = Oif ¢;; ¢ E and
Ajj = 1if e;; € E. Each graph contains the node attributes
X, where X € R is a node feature matrix and x, € R?
represents the features vector of node v. In addition, a graph
has edge attributes X¢, where X¢ € R™*¢ is a matrix of edge
features with x,, € R° representing the features vector of
edge (u,v).

For the task of face mask detection, the goal is to analyse
the images through a graph capable of analysing the spatial
details and extracting the best discriminant features from
images. To this end, we introduce a graph-based convolu-
tional network that contains three main steps: graph gener-
ation, graph fusion, and graph convolution.

1) GRAPH GENERATION

Graph construction is essential to develop a successful graph
convolutional model. This is achieved based on the impor-
tant relationships between the nodes. To capture the diverse
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relationships among nodes, we construct two subgraphs,
which are the distance graph and correlation graph.

For the distance graph, each node is connected to its
neighbors by edge, whereby close nodes indicate a distinct
relationship which is based on the geographical law that
states ‘everything is related to everything else, but near things
are more related than distant things’. This highlights the
importance of determining the distance between the nodes
in order to build the graph based on the distance between
these nodes. To determine the weight between two nodes,
we use the reciprocal of the distance so that closer pixels
will be linked with higher weights. Two types of distance
functions are utilized, which are a power-law function and a
linear function [57]. The distance graph is defined as follows:

Ga(V, E)yeight = Distance™" )

For the correlation graph, the historical usages (outflow
or inflow) of each node are calculated in each time interval
and the correlations between every two nodes are then com-
puted as the inter-node link weights in the graph. We use the
Pearson coefficient to calculate the correlation [58], [59]. The
co-relation graph is defined as follows:

0 doy1---don-1
rio O -1 N
Ac = : Co : @
dy_10 -+ - 0

where 7; j denotes the Pearson correlation between I and J.

2) GRAPHS FUSION

A two-graph convolutional layer is used to fully exploit
different graphs that contain heterogenous useful spatial
information. Our model conducts graph fusion then graph
convolution using the formulated distance and correlation
graphs.

Firstly, both graphs are merged into one graph by calcu-
lating the weighted summation of their adjacency matrices
extracted from each image. Because adjacency matrices of
graphs are located in different ranges, the adjacency matrix A
for each graph is normalized as follows:

A=D1A+1 3)

where [ is an identity matrix and D is a diagonal matrix
calculated as follows:

N—-1
Y Agj 0 -0
J=0
NZ—:I 0
0 Aiienn
D= iz @)
N-—1
0 0 - Y Ay_1j
J=0

The results from Equation (4) are a normalized adjacency
matrix for each image with a self-loop in which the self-loop
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maintains the information of the node in the convolution part,
a key design strategy in graph neural networks [57]. Then,
the fusion result is further normalized by adding a softmax
operation to the weight matrix. Specifically, if we have N
graphs to blend together, the fused graph can be defined as
follows:

N
F =Y WA Q)
i=1

where Wl.l is weight matrix.

3) GRAPHS CONVOLUTION

Now, we perform the convolution operation based on the
fused graph F denoted as [H}, Hf, ..., Hlk], where H is the
hidden state. The convolution layer is then applied to each
segment to produce a sequence of feature matrices denoted
as [le,le, ...,ZIK ] These feature matrices are fed into
the convolutional layer chronologically. Finally, we take the
output feature matrix of the last hidden state H as the output
of the convolutional layer.

Accordingly, any input images are fed to the input layer
then to the first multigraph layer. This layer generates mul-
tiple distinct graphs for image matrix and selects the graph
with the optimal features that represent the facial image parts.
Then, the architecture includes a dropout layer to drop the
graph features with no key discriminating values (i.e., val-
ues approaching zero). The output of the first multigraph is
passed to the next multigraph layer then again to a dropout
layer, and so forth.

In the top layers, a dense layer is added to reduce the
dimension of node features to a smaller size which reduces
the training and testing run time and complexity. Finally, the
last softmax layer uses this final descriptor of graph features
to predict the test images and labels them with masked or
unmasked faces in the binary task and masked, unmasked
or occluded faces in the multi-category detection. It is worth
mentioning that we use the ELU activation function in the low
graph convolutional layers and the ReLLU activation function
in the top fully connected layers. This model is trained end-
to-end to generate the optimal learning weights through a set
of training epochs and image batches.

IV. RESULTS AND DISCUSSION

A. EVALUATION SETUPS

All experiments were carried out using Python as a develop-
ment language and a set of rich libraries including Tensor-
Flow and Keras as a development platform with a powerful
GPU processor. Table 2 lists the hyperparameters used in the
model training and testing. The best parameter listed in this
table were empirically chosen, where the number of nodes
was set to 100 but finally reduced to keep the most informa-
tive nodes and relations. Also, the number of epochs were
initially set to 50 but an early stopping approach was used
to stop training the model when the performance becomes
stabilized.
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TABLE 2. The list of hyperparameters used in our experiments.

Hyperparameter Value
Dropout 0.2

Loss function Cross-entropy
Optimizer Adam

Batch size 64

Initial graph nodes 100

Learning rate le-4

Verbose 1

Epochs 50

Given that the model prediction is finally determined by
binary and multi-classification, we have utilized four dif-
ferent measures to evaluate the performance of multi-graph
deep model as follows: True Positives (TP) indicates that
the model predicted the class of image as (Mask) and it
is actually (Mask); False Positives (FP) indicates that the
model predicted the class of image as (unmasked) and it
is actually (Mask); True Negatives (TN) indicates that the
model predicted the class of image as (unmasked) and it is
actually (unmasked); and False Negatives (FN) indicates that
the model predicted the class of image as (Mask) and it is
actually (unmasked). Additionally, the model performance is
also measured by a set of standard metrics, including recall,
precision, accuracy, and F1-score.

B. EXPERIMENTAL RESULTS

In this section, we discuss the experimental results of the
proposed multi-graph deep model for the binary and multi-
class detection tasks.

1) BINARY DETECTION

Figure 3 demonstrates the training and validation results of
the model for the binary detection task. As can be observed
in Figure 3(b), the accuracy increases smoothly to reach about
99% on the training phase, while it decreases slightly on the
validation phase to reach approximately 98%. As a result, the
model maintains high training and validation accuracy, which
confirms that there is no overfitting or underfitting that could
affect the model generalization ability. Moreover, the model
can quickly learn and converge in a small amount of training
epochs. Similarly, in Figure 3(a), the misclassification rates
denoted by the loss function are very low in the training phase
which is around 0.016, while in the validation phase reaches
around 0.057.

The proposed model generated over 2 million nodes to
represent and select the optimal discriminating descriptor of
facial key features, which in turn gained an overall accu-
racy of 98%. Additionally, the detector accuracy is high in
terms of precision, recall and FI-score, which shows the
capability of our model in detecting the masked or unmasked
faces. The results confirm the high capability of our pro-
posed model in predicting masked faces in the test dataset
which achieved 0.98, 1.00, and 0.99 for precision, recall, and
F1-score, respectively. Similarly, it achieves a high accuracy
in predicting the unmasked faces in the test dataset which
achieved 0.99, 0.95, and 0.97 precision, recall, and F/-score,
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FIGURE 3. The results of (a) loss and (b) accuracy rates for the binary
detection task during in training phase.

TABLE 3. The performance measures of binary classifier.

Precision Recall Fl-score
Masked Faces 0.98 1.00 0.99
Unmasked Faces 0.99 0.95 0.97
Weighted Avg. 0.98 0.98 0.98

respectively with a total of 7,557 supported images. There-
fore, the model is able to accurately detect masks even with
different colors, styles, shapes and coverage areas.

We conclude that the model can accurately detect masks
with an accuracy of 99% achieved in the training phase and
an accuracy of 98% achieved in the testing phase.

A summary of the performance results calculated from the
confusion matrix and achieved by the binary classifier are
shown in Table 3.

2) MULTI-CATEGORY DETECTION

Figure 4 demonstrates the training and validation results
of the model for multi-category detection (i.e., masked,
unmasked, and occluded faces). As can be observed in Figure
4(b), the accuracy is high in the training phase, but drops
down in the validation phase to approximately 85.19%. This
accuracy variance indicates a slight overfitting even though a
cross-validation was applied in the model training, as well as
an early stopping rule to guide the learning procedure before
it begins to over-fit. However, this is justified in the model
because the number of occluded images, selected in the vali-
dation phase of the binary and multi-category detectors, was
relatively small compared to the number of images available
for training the model on the masked faces.
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FIGURE 4. The results of (a) loss and (b) accuracy rates for the
multi-category detection task in the training phase.

As a result, the model tends to consume additional facial
attributes (represented by graph nodes) while learning the fea-
tures of occluded faces effectively. As we focus on investigat-
ing the effectiveness of GCN-based deep features in detecting
and classifying occluded or masks faces, adding sufficient
images with occluded faces to the collection generated by
the data augmentation applied in our model may help in
providing better performance.

Nevertheless, the model can quickly learn and converge in
a small amount of training epochs. Similarly, in Figure 4(a),
the misclassification rates indicated by the loss function are
also low in the training phase, estimated at 0.19, while in the
validation phase it reached about 0.4. In the testing phase,
the overall accuracy achieved is 0.86, and the model reported
0.90, 0.87, and 0.89 for precision, recall, and FI-score,
respectively. Similarly, it achieves high accuracy in predicting
the unmasked faces for the test dataset which achieved 0.98,
0.91, and 0.95 precision, recall, and FI-score, respectively.
Also, the results of predicting the occluded faces are 0.65,
0.75, and 0.66 for precision, recall, and FI-score, respec-
tively. A summary of the performance results calculated from
the confusion matrix and achieved by the multi-category
classifier is shown in Table 4.

We conclude that the model is able to accurately dis-
tinguish between the face mask and any other face occlu-
sions with different coverage areas. Figure 5 shows a set
of sample images predicted by the model and classified
into masked, occluded or unmasked faces. However, the
nature of images with occluded faces in each category have
influenced the learning and generalization ability of multi-
category classifier. Therefore, predicting the category of the
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TABLE 4. The performance measures of multi-category classifier.

TABLE 5. Comparison with the recent state-of-the-art methods.

Precision Recall F1-score
Masked Faces 0.90 0.87 0.89
Unmasked Faces 0.98 0.91 0.95
Occluded Faces 0.60 0.75 0.65
Weighted Avg. 0.89 0.86 0.87

m Mkﬂ].

FIGURE 5. Sample of test images predicted in the testing phase.

detected face remains challenging due to the high similarities
between the face masks and other occlusion objects hiding the
facial parts. Providing benchmarking datasets with sufficient
diverse types of masks and occlusions, real-world or synthesis
images, remains one of the main challenges in the field of
MFD and OFD.

3) ACCURACY COMPARISON

Most of the previous related work is based on typical deep
learning models such as CNN, R-CNN, YOLOv3, SSD,
GCN, DenseNet and LLE-CNNs. However, there are no
benchmarking datasets commonly used for evaluating the
performance of MFD. Therefore, the use of facial images
with masks generated synthetically is one of favourable alter-
natives. Moreover, the main aim of research works that use
MAFA or partial MAFA dataset is to detect masks, where our
proposed model is also able to classify the detected face either
occluded by a face mask or any other objects. Therefore,
we present here only the recent related works evaluated on
MAFA, partial MAFA, or merged with other datasets under

VOLUME 10, 2022

Ref. Detector (dataset) Accuracy
Prasad et al. [17] MaskedFaceNet (P-MAFA) 95.5
Avanzato et al. [60]  YOLOv3 (MAFA+WIDER) 84.0
Vinh et al. [61] YOLOV3 (P-MAFA) 90.1
Zhang et al. [62] R-CNN (P-MAFA) 84.1
Ryumina et al. [63] CNN (MAFA+RMFD) 96.0
Ye et al. [52] GCN (MAFA+MASK) 88.3
Geetal. [12] LLE-CNNs (MAFA) 76.4
Wang et al. [64] YOLO (MAFA+WIDER) 89.0
This paper Binary Detector (MAFA+HFD) 98.0
This paper Multi-class (MAFA+HFD) 86.0

different setups but with the aim of detecting the mask rather
than classifying the face images.

Table 5 summarizes the main characteristics and perfor-
mance of our GCN-based model and several recent works
devoted to the MFD detection task. The performance is shown
in terms of achieved accuracy on MAFA dataset or partial
MAFA (P-MAFA) where the training and testing images are
selected by different approaches in these related works. Our
proposed model is distinguished by representing the masked
facial features using a multi-graph convolutional network
and dealing with two classification tasks, which are binary
and multi-category detection. The proposed model shows a
comparable accuracy to the existing works with an accuracy
of 98% for the binary detection. It also achieves 86% in
multi-category detection obtained by a simple yet efficient
GCN-based deep architecture.

V. CONCLUSION

This paper introduced a new deep learning model using GCNs
to detect faces with masks or occlusions. This architecture
was developed with the aim of verifying its ability to extract
key features of faces obscured by masks or other elements
and to learn generic discriminant descriptors. This model is
mainly based on fusing the correlation and distance graphs
in a convolutional layer that is then followed by several
layers, such as dropout, dense and softmax layers. The train-
ing and validation procedures were efficiently conducted
without overfitting problems. The model proved its ability
in dealing with the binary MFD detection task with high
performance rates of precision, recall, and F'/-score, by which
the overall accuracy reached 98%. The multi-category OFD
task aims at classifying images into one of three classes:
mask, no mask, and occluded face with non-mask object.
The model also proved its ability to deal with the OFD task
with an overall accuracy of 86% achieved. The proposed
model outperforms many recent state-of-the-art approaches.
As a result, the proposed two-graph representations of key
facial features proved its superiority in providing a generic
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discriminating descriptor for the task of detecting occluded
faces. In future, other graph-based features could be inte-
grated into GCN architectures, such as using an interaction
graph to indicate whether two nodes representing two facial
parts interact with each other frequently. Integrating more
graph nodes representing various informative relationships
between the face parts and any mask or occlusion objects may
offer improved performance. The proposed model can also
be utilised as a monitoring system to track and warn people
not wearing masks, especially in public areas. Moreover, this
proposed model can serve as a masked or occluded face
detector for face identification to recognize the identity of
persons obscured with face coverings.
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