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ABSTRACT In the last decade, Deep Learning (DL) has revolutionized the use of artificial intelligence, and
it has been deployed in different fields of healthcare applications such as image processing, natural language
processing, and signal processing. DL models have also been intensely used in different tasks of healthcare
such as disease diagnostics and treatments. Deep learning techniques have surpassed other machine learning
algorithms and proved to be the ultimate tools for many state-of-the-art applications. Despite all that success,
classical deep learning has limitations and their models tend to be very confident about their predicted
decisions because it does not know when it makes mistake. For the healthcare field, this limitation can have a
negative impact on models predictions since almost all decisions regarding patients and diseases are sensitive.
Therefore, Bayesian deep learning (BDL) has been developed to overcome these limitations. Unlike classical
DL, BDL uses probability distributions for the model parameters, which makes it possible to estimate the
whole uncertainties associated with the predicted outputs. In this regard, BDL offers a rigorous framework to
quantify all sources of uncertainties in the model. This study reviews popular techniques of using Bayesian
deep learning with their benefits and limitations. It also reviewed recent deep learning architecture such as
Convolutional Neural Networks and Recurrent Neural Networks. In particular, the applications of Bayesian
deep learning in healthcare have been discussed such as its use in medical imaging tasks, clinical signal
processing, medical natural language processing, and electronic health records. Furthermore, this paper has
covered the deployment of Bayesian deep learning for some of the widespread diseases. This paper has also
discussed the fundamental research challenges and highlighted some research gaps in both the Bayesian
deep learning and healthcare perspective.

INDEX TERMS Bayesian deep learning, Bayesian neural networks, deep learning, healthcare, MCMC,
MC-dropout, variational inference.

I. INTRODUCTION in data as well as the availability of a large amount of data

Machine learning has grown in popularity in the last decade,
expanding from applications of models from a few available
datasets to a wide range of scientific and technological fields.
Deep learning (DL) is a subfield of machine learning which
employs neural network structures that consist of an input
layer, an output layer, and multiple hidden layers that can be
range from two to tens or hundreds of layers with millions or
even billions number of parameters, such as ResNetv2 and
GPT-3 [1]. The ability to extract hidden useful knowledge
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made DL models more successful as they are faster at pro-
cessing a big amount of data, and this made DL make a
historical shift from classical machine learning techniques.
This success has given DL the opportunity to be applied in
a variety of scientific domains, among which is healthcare.
DL in healthcare has advanced to the point that it can now be
applied in several subfields that have proven to outperform
human skills, such as medical imaging [2]. These models can
take different types of data as input, such as images, text,
and health records, and produce various types of output, such
as generating images, predicting classes, and analyzing text,
with the ability to handle multiple different types of inputs
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at once and generate multiple types of output in complex
models. In addition to medical imaging, deep learning meth-
ods have been extensively investigated in disease diagnostics,
pharmaceuticals, and drug discovery [3].

Despite its promise and advancement, which may surpass
medical practitioners in many circumstances, deep learn-
ing has only been used sparingly in healthcare disciplines
such as medical imaging readings. However, as compared
to a decade ago, the number of DL applications in use
has increased dramatically [4], [5]. Moreover, emerging
technologies such as cloud computing, big data processing
have contributed to advancing deep learning techniques in
healthcare [6], [7].

Despite the aforementioned potential and additional bene-
fits of deep learning, classical deep learning methods suffer
from overfitting and their models are data-hungry. Many
strategies have been created to tackle the overfitting problem,
the bulk of which were developed in the recent decade, such
as dropout, Lasso Regression (L1)/ Ridge Regression (L2)
regularizations, Drop-connect, etc [8]. These strategies rein-
forced deep learning models, allowing them to overcome the
overfitting issue and to be less vulnerable to bias and noise
associated with data. Yet, classical deep learning models
appear to be perfect tools for knowledge extraction from data;
but is this the case? To answer this question the output of
these models has to be evaluated. Classical deep learning
models have promising results compared to other machine
learning algorithms. However, such models use the maximum
likelihood approach to update model parameters and all of
the parameters used in these models are a single-point esti-
mate. Yet, like other machine learning algorithms, classical
deep learning models are too confident about their output
and decision. This is due to the fact that these models are
uncertain about their outputs and the model “doesn’t know
when it doesn’t know” [8]. Thus, classical deep learning
models are naively confident without taking into considera-
tion the uncertainty associated with data and the model itself.
Exploring and quantifying such uncertainties is very crucial
for deep learning models, particularly in decision-sensitive
contexts such as healthcare applications. To achieve this,
Bayesian neural networks emerged and gained popularity
in recent years. Bayesian neural networks, also known as
Bayesian deep learning (BDL), use probability theory tech-
niques to extract knowledge from provided datasets. This is
performed by combining prior information and the likelihood
of data to provide posterior distributions, and thus make
inferences about the model’s unknown parameters while also
dealing with model uncertainty. These two names are being
used interchangeably in the research community, for sake
of simplicity, Bayesian deep learning (BDL) will be used
throughout this work. BDL has better performance, partic-
ularly where data are insufficient or scarce, especially when
it is hard or expensive to get more data. Despite the fact that
BDL outperforms classical deep learning in most cases, it is
underused by the research community and has a long way
ahead before it reaches its full potential.
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The main contributions of this paper are summarized as
follows:

« To the best of our knowledge, this is the first review
effort that addresses the usage of BDL in healthcare to
benefit the research community.

« Reviewing the Bayesian methods for deep learning
models.

o A comprehensive review of BDL in healthcare appli-
cations, such as disease diagnostics/ detection, medical
imaging, clinical signal processing, and electronic health
records, is provided.

« Main challenges in both BDL and healthcare prospec-
tive, are highlighted.

« Some research gaps and open issues in the field that need
further investigation are discussed.

The rest of this work is organized as follows. Section 2
discusses the main research gaps. Section 3 introduces
Bayesian deep learning. Section 4 briefly overviews the deep
learning models and architectures. A review of the most popu-
lar Bayesian techniques for deep learning models is provided
in section 5. Section 6 covers a review of BDL applications
in healthcare, such as medical imaging tasks, signal process-
ing, natural language processing, electronic health record,
and audio processing. Discussion of BDL application on
diseases diagnostics covered in section 7. Challenges facing
the implementation of BDL in healthcare from the BDL and
healthcare perspective are highlighted in section 8. In addi-
tion, some open issues and research gaps are discussed in the
same section. Finally, section 9 concludes the remarks of this
work.

Il. RESEARCH GAP AND MOTIVATION

The existence of, object detection, and so on. The exis-
tence of research covering different aspects of BDL in
healthcare is essential for assisting newcomers in the field
in identifying knowledge gaps. In classical deep learning,
Shamshirband et al. [9] have published a review on classical
deep learning in healthcare in 2020. They discussed deep
learning architectures that are commonly used in healthcare,
DL models for specific disorders, and a comparison of DL
approaches in healthcare. Nisar et al. in [10] published a
review paper in 2021, which covers different aspects of
classical DL in healthcare. Flowing their introduction, the
paper covered the following topics: (1) some deep learning
methods and their use in healthcare, (2) DL use in the ner-
vous system, cardiovascular system, and respiratory system,
(3) methods, datasets, and applications of DL in healthcare,
(4) Some research opportunities and challenges of DL in
healthcare. Qayyum et al. [11] presented a study in 2020 in
which they reviewed classical DL approaches in healthcare
with relation to security and privacy considerations, as well
as challenges in this regard. In a different section of the
paper, the authors presented possible solutions to the concerns
discussed in previous sections, as well as a list of research
gaps in the field. Pandey et al. [12] presented a review article
in 2019 that covered the following topics: deep learning
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methods and techniques in healthcare, some experimental
analysis of DL methods, challenges of DL in healthcare, and
some applications of deep learning in the field of healthcare.
Kim et al. [13] released a paper in 2019 that focused on
medical imaging. Many areas of classical DL for images in
the realm of healthcare were discussed in the study, includ-
ing classification, segmentation registration, object detection,
and so on.

Few reviews on BDL have been published in recent years.
In 2017, Polson et al. [14] have published a review paper on
BDL. Their review covered the following topics: probabilis-
tic deep learning, how to find a good predictor for Bayes,
algorithms for model learning, an example of an application,
and potential future research directions in the discussion part.
Wang et al. [15] have published a review on BDL in 2016 and
the same researchers extended the same review and published
another paper [16] in 2020. In later work, these topics are
covered: DL architectures, probabilistic graphical models,
BDL in detail, as well as some models and applications of
BDL. In 2019, Xuan et al. [17] published a review in this
manner and covered some definitions of the field, stochastic
process and its manipulation, posterior inference, application
for machine learning tasks, and some real-world applica-
tions. In 2020, Charnock et al. [18] published a paper on
BDL that addressed various types of uncertainty, Bayesian
neural networks with applicable methods, practical imple-
mentations of BDL in two approaches (numerically using
MCMC, and approximation methods). In addition to reviews
on BDL, few researchers have worked on Uncertainty Quan-
tification (UQ) as BDL has widely contributed to the topic.
In 2021, Abdar et al. [19] have published an extensive review
on UQ in DL. In regards to BDL, the study explored Bayesian
techniques for UQ, various Bayesian and other DL applica-
tions for machine learning tasks, as well as some research
gaps and future directions. Moreover, Alizadehsani et al. [20]
presented a detailed study on uncertainty handling in medical
data, which covered work done in the previous 30 years.
The paper also looked at some previous work on Bayesian
inference for UQ.

A wide overview that covers most of the topics linked
to BDL in healthcare would save time and effort that may
be spent reading much-related work to discover the field’s
research area. Despite the existence of various review publi-
cations in the field of classical DL and BDL in healthcare,
such as those listed above, there is no review of publicly
available work particularly on BDL in healthcare to the best
of our knowledge. To overcome the shortage of reviews in
BDL in healthcare, this work aims to provide a compre-
hensive review that covers different aspects of employing
BDL in healthcare. This work intends to serve as a starting
point for researchers interested in the BDL in healthcare, and
materials contained in it are targeted at newcomers to the
field as well as BDL researchers seeking research gaps in the
healthcare field. This paper covers all the following: Bayesian
inference and approximation methods, Bayesian deep learn-
ing in healthcare applications, disease diagnostics, and some
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challenges and/or opportunities for future research in the
field.

Ill. BAYESIAN DEEP LEARNING

BDL refers to probabilistic deep learning that is based on the
Bayes theorem. Bayesian methods combine prior “‘expert”
information and the likelihood of data to produce posterior
distributions, which can represent different uncertainties in
the model [8]. It is worth mentioning that there is another term
used in some of the published work, which is the Bayesian
treatment for the neural network ‘“sometimes referred to as
the Bayesian neural network.” Bayesian treatment for neu-
ral networks is a more general topic of using the Bayesian
method in neural network models where Bayesian methods
were used for tuning weights, using Bayesian optimization
inference, using Bayesian activation functions. On the other
hand, BDL, “which can also be called a Bayesian neural
network,” is concerned with estimating the posterior dis-
tribution of data, especially to deal with different kinds of
uncertainties. BDL has several advantages compared to clas-
sical deep learning [17]. First, in addition to dealing with
overfitting, particularly when the data is insufficient to feed
the model, BDL is used to represent and quantify uncer-
tainties of DL models based on the probabilistic foundations
of Bayesian statistics. Second, it makes advantages of using
experts’ prior knowledge, which refers to beliefs about data
and its distribution before seeing any data. Third, BDL uses
probability distributions for model parameters “weights and
biases”, which implicitly interpret model output without the
need of doing multiple tests and cross-validation of datasets.
The prior and likelihood distributions can take any shape of
probabilistic distributions such as Normal, Gamma, Beta, and
Cauchy. Figure 1 shows the difference between BDL and
classical DL.

BDL can deal with two types of uncertainty in general:
Aleatoric and Epistemic uncertainty. Aleatoric uncertainty
refers to the uncertainty associated with data, which might
be due to the nature of the data, noise, or anomalies that
exist among data. Whereas, epistemic uncertainty refers to
the uncertainty associated with the model structure and model
parameters [21], [22]. This is due to the fact that the aleatoric
uncertainty is derived from data, and the model developer
or researcher has no control over data, as it cannot be
reduced [8]. On the other hand, epistemic uncertainty can
be controlled, and the Bayesian method is an efficient way
to deal with this type of uncertainty while avoiding overfit-
ting [23]. In contrast to other methods, when the same input
is fed to the model, BDL produces different outputs, which
is caused by sampling methods and probability distributions
used.

The main idea behind the BDL is to define the poste-
rior of data for the neural networks model to quantify the
model’s uncertainty. To calculate posterior, the prior distri-
bution P(w) is chosen for the model parameters, which is
primarily based on previous experience, and most of the
time the Gaussian/Normal distribution is usually used as the
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FIGURE 1. Basic Neural Network. (A) a simple classical NN, (B) a simple Bayesian NN.

default prior. The likelihood P(D|w) is calculated using given
data before calculating the posterior (conditional probability).
The posterior is always proportional to the prior times’ like-
lihood. The Bayes theorem is defined in (1).
PA|B) = P (A) .P(B|A) 0
P(B)

In BDL, the probability of parameters given data P (w | D)

is used, and the Bayesian equation can be defined as in (2).
P (w) .P(D|w)
P(|D) = P(D) @)

The term marginal likelihood (evidence) which is P(D) is
used to normalize the posterior.

To generate the posterior P(w|D) distribution, the prod-
uct of likelihood and prior are computed for all parameters,
which involves finding integrals over all parameters, which
is referred to as P(D) or evidence ‘“‘marginal likelihood”.
The integral may be calculated analytically if the form of the
posterior distribution is known, especially when conjugate
probability distributions are used for prior and likelihood.
However, in most cases “where distributions are not conju-
gate”’, the posterior distribution is intractable, which implies
it cannot be solved analytically. The posterior is calculated
in this manner using approximation methods, often known
as sampling. With all of its variances, Markov Chain Monte
Carlo (MCMC) is the most frequently used sampling method
for Bayesian inference. Despite the fact that the MCMC
provides promising results when compared to other methods,
it has not gained popularity in deep learning models. This is
due to computation issues, as this method requires thousands,
if not millions, of samples to calculate posterior. To overcome
the MCMC computation issues, some approximation meth-
ods are gaining popularity in the deep learning community,
such as Variational Inference (VI) and Monte Carlo Dropout
(MC-Dropout).

To find the predictive distribution P (y* | x*, D), weights
w of networks are considered as variables. y* are predicted
outcomes, x* are observations, and D is training data, while
P(w|D) is the true posterior distribution. The approximate

VOLUME 10, 2022

posterior g(w) is used instead of the true posterior in order
to find the predictive distribution, as shown in (3).

P(y*|x*,D) = /P(y* |x*, ®) P (w|D)dw

~ / P (y*|x*, 0) g(w)dw A3)

IV. DEEP LEARNING ALGORITHMS AND ARCHITECTURES
In its basic form, deep learning refers to neural networks with
more than one hidden layer between input and output. Current
state-of-the-art deep learning models have hundreds of these
hidden layers such as in the GPT-3 model [24]. Although
there are many distinct layers in deep learning models, the
main architectures used in most deep learning models are
Fully Connected Neural Networks (FCNNs), Convolutional
Neural Networks (CNNs), and Recurrent Neural Networks
(RNNSs). Deep learning models can have thousands or mil-
lions of parameters to be trained, and complex models can
have billions of parameters. Model weights (parameters) can
be tuned using optimization algorithms such as Gradient
Decent (GD), Stochastic Gradient Decent (SGD), Adam, and
others, where each parameter in classical deep learning mod-
els has a single value. However, for BDL, it is represented by
a distribution that takes the number of parameters associated
with undertaken distribution. The normal distribution, for
example, has mean (i) and standard deviation (o) as param-
eters, for that when upgrading weights of a classical deep
learning model to BDL, the number of parameters almost
doubled for the same model structure [8].

A. FULLY CONNECTED NEURAL NETWORKS (FCNNS)

The FCNNs are made up of only neurons and layers of
models, where all input from previous layers is linked to every
neuron in the next layer. The most obvious purpose of neurons
is to think about it as linear regression for each neuron, which
consists of input data x, weights w, and bias wg to produce an
output of neuron y. The FCNNs are mathematically defined

36541



IEEE Access

A. A. Abdullah et al.: Review on Bayesian Deep Learning in Healthcare: Applications and Challenges

Feature Mags

Feature Maps (10x10um)

Input [FLERLE ]
(2Ewd6al

Feature Maps
{1Zx12xn]

Convolution

|3x3] Kernal Paoling Convolution
(2u2) {3x3) Kernal
FIGURE 2. A network with CNNs and FC layers.
as seen in (4).
n
yi = wo + Z wiX; “4)

i=1

The neuron’s value must pass through an activation func-
tion, and if the value following the activation function is zero,
the neuron will be discarded for that instance [21]. Otherwise,
the value will be passed to the next layer in the network. The
activation function’s output value varies based on the type
of activation function used. The sigmoid activation function,
for example, will have an s-shape curve with the output
being between 0 and 1. Another example is Rectified Linear
Unit (ReLU) activation function. It has a linear shape for
values bigger than 0 and a O for anything smaller or equal to 0.
The mathematical expression of this is shown in (5) and (6).

fO = )
+e
ReLU: f (x) = max(0, x) (6)

Sigmoid :

Almost every DL models have at least one fully connected
instance, even if it is just at the output layer. To update
the weights and outputs to probability distributions, almost
all early BDL attempts used FCNNs [25], [26]. Figure 3
describes the structure of the FCNNs model.

B. CONVOLUTIONAL NEURAL NETWORKS (CNN)

CNN is the most popular and widely used deep learning archi-
tecture for image data. Layers that use convolution methods
on some input to produce certain outputs are referred to as
CNN. Filters are used as a sliding window in the convolu-
tion process to go through all regions of input to produce
a feature map. Pooling layers with convolution layers are
used in the downsampling process to minimize the amount of
produced features and hence the computation. The input can
be a tensor of one, two, or three dimensions, and the output
takes a similar shape in most cases. Over the years, many
CNNs architectures are developed and some of the popular
architectures are LaNet, ResNet, VGGNET, EfficientNet, and
others [27]. In addition to being the most popular method
for image processing, CNNs are also used in other machine
learning tasks, such as video processing, natural language
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processing NLP, and time series prediction [28]. CNN has
also gained popularity in BDL in the last few years, and they
have been used in different applications including medical
imaging [29], text identification [30], genome studies [31],
and others. Figure 2 illustrates the main architecture of the
CNNs model.

C. RECURRENT NEURAL NETWORKS (RNNS)

RNNs are one of the most commonly used architecture
for deep sequential learning, which is used for sequence
or streaming data, such as video, audio, and time-series
prediction [32]. These networks contain recurrent “‘cycle”
links between the neurons of the same layer. RNNs contain
memory cells, which enable the model to remember data
from the past, and that is important for forecasting future
outcomes. The RNNs need to keep a state of current and
previous input to predict the output of the network. In other
words, at least theoretically, the state of all previous inputs
is required to compute the result. When the sequence gets
bigger, the initial weight is no longer accessible, the vanishing
gradient descent problem occurs, and the performance of the
RNNs is reduced. Thus, different architectures have been
developed to overcome this issue; one of those is Long Short-
Term Memory (LSTM) model. The LSTM is recommended
for managing each memory cell for both state and output
values throughout the learning process. The cell state “C”
is the key component of the LSTM model. LSTM does not
change cell state or remove its value; it can only regulate it
through different gates of LSTM. The forget gate (f;) decides
what information does no longer needed in the cell state based
on input (x;) and previously hidden layer (%;_1) using the
sigmoid (o) function, which works as shown in (7).

fi = o (o [h—1, x] + by) @)

The next gate (layer) in the LSTM decides which informa-
tion shall be passed or retained in the cell state. It consists of
two steps. First, the input gate which takes x; and &, using
o function to calculate the result. Second, the candidate gate
C which takes x; and h,_; using tanh function to calculate
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results as illustrated in (8) and (9).

ir = o (w; [h—1, X ] + b;) (8)
C = tanh (we [hi—1, x:] + be) )

The current Cell state value is calculated using previous
values as indicated in (10).

Ct :ﬁ * Ct—l + it * (Ct (10)

Lastly, the output of the LSTM (Oy) is calculated. O; can
be calculated using x;, and &, based on sigmoid function,
and multiplied by tanh of C; as shown in (11) and (12).

Or = 0 (wo [h1—1, xt] + by) (11)
hy = O, * tanh(C,) (12)

In comparison to other architectures of neural networks,
RNNs models have not gained popularity in BDL applica-
tions. This is due to the computational power needed for
complex models. Nonetheless, it has been used by some
researchers for different BDL applications, such as Natural
Language Processing (NLP) [33] and Forecasting [34]. The
LSTM model’s main architecture is depicted in Figure 4.

V. BAYESIAN INFERENCE AND APPROXIMATION
METHODS

The learning process in BDL is based on predicting the pos-
terior. It is based on sampling from the posterior distribution
using the Bayes theorem, which requires prior and likeli-
hood combinations. However, posterior sampling is a difficult
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and computationally expensive process, because of the high
dimensionality of the sampling space. In addition, both the
prior and the likelihood may belong to different families of
distribution that cannot be computed analytically, rendering
the posterior untraceable. Despite the need for sampling,
only a few sampling methods have gained popularity in BDL
models, with the others either requiring further investigation
or were not very successful for this task. The most popular
sampling algorithm is Markov Chain Monte Carlo (MCMC),
which refers to the exact sampling method. The Variational
Inference (VI) and MC-Dropout are other sampling methods
that are widely used for a posterior estimation, which are
considered approximation algorithms. The following are the
three sampling methods used to sample from the posterior
distribution.

A. MARKOV CHAIN MONTE CARLO (MCMC)

The MCMC sampling method is based on the probability
of each generated sample taken into consideration previous
samples, resulting in a chain of samples mimicking the target
distribution. One property of MCMC sampling is the possibil-
ity of transitioning from a given state to a different state within
the distribution in finite steps without having to stay in loops
in a chain for a long period of time [18]. Samples produced
at the beginning of the chain are rejected in this method. This
rejection is done because of the error associated with it such
as bias toward the initial conditions, and this process of rejec-
tion is called burned-in [35]. Although the burned-in wastes
some computation and time, it is essential to diminish error in
order to achieve better performance to reach the equilibrium
distribution of samples. Burned-in sample sizes are not fixed
and may require different lengths based on the complexity
of the distribution and the MCMC method employed, thus
they should be carefully chosen. The large size of burned-in
samples requires more time to compute enough samples,
while the small size of burned-in may have the effect of
the initial condition, thus lowering the performance [35].
Another important issue to consider is the sample correlation
because each subsequent sample is calculated using the cur-
rent sample. To address this issue, some methods of MCMC
such as Metropolis Hasting employ step size, which refers
to discarding a number of samples before considering a new
one [36]. New samples are calculated using (13).

PXi=x|Xi-1=x-1,.... X1 =x1)
= P(X; = x| X;—1 = x1-1) (13)

The MCMC offers the best performance in sampling from
the posterior distribution for BDL, but it is computationally
costly and difficult to implement [21]. The most popular
MCMC methods are Gibbs sampling, Metropolis Hasting,
and Hamiltonian Monte Carlo. Gibbs sampling requires
knowing the shape of the posterior distribution in order to
sample from it. The Metropolis-Hasting algorithm has the
advantage of not requiring the true probability distribution to
be sampled from; instead, the proportionality of the function
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used is sufficient for sampling. The Metropolis-Hasting algo-
rithm begins with the random initial value. Then, the new
sample is taken from points near the ascending point. In case
the new sample has a better likelihood, the sample is con-
sidered. Otherwise, the sample is considered based on a
pre-determined probability and rejected if the probability
is not met [37]. Hamiltonian Monte Carlo made use of
Gibbs sampling walking steps and the Metropolis-Hasting
algorithm’s acceptance mechanism [18]. Hamiltonian Monte
Carlo is the most popular MCMC sampling method for
BDL [38], [39].

B. VARIATIONAL INFERENCE (Vi)

The MCMC sampling approach is computationally costly and
difficult to scale up for complicated deep learning models and
large datasets. As a result, various methods for overcoming
this constraint have been developed, although with some
tradeoff between scalability and performance. In this regard,
the variational inference VI is the most popular approxi-
mation method used for sampling from the posterior dis-
tribution. Despite the fact that VI does not have the same
exact distribution; yet, it performs well in estimating the
target distribution with considerably less sampling, making
it suitable for application in large-scale and complex models
and datasets. A number of parameters required for VI to be
trained in deep learning models are based on the prior and
posterior distributions used. The learning process for models
tends to tune these parameters to produce a distribution that is
as close to the desired distribution as possible. The Kullback—
Leibler (KL) divergence measure can be used to describe
the similarity or divergence between two distributions, the
posterior “p(x;)” and the variational distribution “q(x;)”,
as follows:

N p@xi)
Dki(p Il ) = ;” (x;) .log <q<x,-)) (14)

The goal is to have a variational distribution that is
very similar to the posterior, which means that the distance
between the variational and true posterior distributions should
be reduced [40], [41]. Figure 5 depicts the main difference
between MCMC and VI methods.

C. MONTE CARLO DROPOUT (MC-DROPOUT)

Dropout techniques are being used in deep learning mod-
els for regularization purposes, which prevent models from
overfitting during training [42]. The methodology behind
the dropout is shutting down or discarding some neurons in
a given layer with a certain probability during the training
process for each iteration or epoch. The dropout can be acti-
vated during the testing and evaluation process with a certain
probability of neuron dropping to estimate the probability
distribution of the targeted instance [23]. This technique is
referred to as Monte Carlo dropout (MC dropout). It is similar
to variational inference used to estimate posterior distribu-
tion. This method is even faster than variational inference
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because it has fewer parameters and requires less time for
the model to converge. Figure 6 illustrates the MC-Dropout
mechanism.

VI. BDL IN HEALTHCARE SYSTEMS

BDL has been used in healthcare to perform various tasks on
various types of data. Despite the fact that it is not widely
employed in healthcare, some work has been done covering
various aspects of healthcare. In this section, we review the
most recent BDL work in the field of healthcare applications.

A. MEDICAL IMAGING

Medical imaging, often known as radiography, is a branch
of medicine in which doctors reconstruct images of various
body components for diagnostic or therapeutic purposes.
BDL has been used in medical imaging to tackle different
types of problems associated with it. Compared to other areas,
medical imaging gained the most popularity of using BDL.
Medical image classification is the most obvious example
where DBL is used to classify medical images to improve
prediction performance and/or to quantify different types of
uncertainties. In addition, there is also work in medical image
segmentation, registration, reconstruction, and enhancement.

1) IMAGE CLASSIFICATION

Image classification is the process of arranging images by
some given classes to assign labels to each image. This clas-
sic image processing task has somewhat gained popularity
among BDL researchers. Although most people associate
“image classification” with supervised learning multiclass
classification, it actually refers to a broader spectrum of
machine learning applications. Raczkowski et al. [43] have
proposed a BDL model named (ARA-CNN) which stands
for Accurate, Reliable, and Active Bayesian Convolutional
Neural Network for classification of histopathological images
of colorectal cancer. Their model displays the level of
uncertainty associated with each image, which can be used
to detect mislabeled images. The proposed method, how-
ever, was only evaluated on one balanced dataset. There-
fore, it will be interesting to see how it performs on other
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FIGURE 6. The difference between MCMC (A) and VI (B), inspired by [17].

datasets. Song et al. [44] used BDL to classify intraoral can-
cer images, and the uncertainty was used to propose more
reliable readings from the images. The proposed model was
based on VGG19 and used the MC-Dropout method as a
Bayesian approximation. Their study had limitations in that
it only applied the proposed method on a single dataset of
2350 cheek mucosa images, and there were few performance
details compared to other published studies. Filos et al. [45]
tested different Bayesian methods such as Mean-Field varia-
tional inference (MFVI) and MC-Dropout to investigate the
robustness of BDL models for diabetic retinopathy classifica-
tion. The VGG architecture was used as a basis for most of the
tested models. According to the results, for the retinopathy
dataset, MC-Dropout and ensembles methods outperformed
MFVI, and combining the two methods can improve perfor-
mance. The strength of the paper comes from a comparison
of multiple different models and their performance although
only a single medical dataset was used with some other
non-medical datasets. Yadav er al. [46] used convolutional
BDL to classify Parkinson’s disease using functional mag-
netic resonance imaging (fMRI). They designed a model of
BDL to feed slices of fMRI images to the network, and the
proposed network was comparable to LaNet-5, but for 3D
fMRI images. The weak point of this work is the author
only proposed a single model, and details of the Bayesian
inference implantation were not given, although details of the
test implementations and hardware were given. Liu ef al. [47]
used BDL for UQ in a chest X-Ray image classification
task using Stochastic Weight Averaging Gaussian (SWAGQG)
[48]. They used different CNN-based architecture, including
DenseNet, ResNet, ResNeXt, and SENet, each with a dif-
ferent number of layers, and they used the CheXpert dataset
that contains over 200 thousand X-ray images. The paper’s
strength is that it used multiple models to compare perfor-
mance, although it did not publish results for all lesions in
the CheXpert dataset that was used for testing. In another
study, Khan et al. [49] adopted BDL to predict breast cancer
existence and achieved significant results for sensitivity. Mul-
tiple tasks, such as classification, segmentation, and image
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enhancement have been implemented in this work, but no
details of implementation have been provided. By the same
token, Kwon et al. [50] investigated both aleatoric and epis-
temic uncertainties while employing BDL for UQ for image
classification using decomposition moment-based prediction.
They used three segmentation datasets, two of which are
Ischemic stroke lesion segmentation and one retinal image
dataset to extract vessels. The proposed method used vari-
ational inference to sample from the posterior distribution.
It is worth mentioning that that work was the continuation
of a previously published work, by the same authors, two
years earlier. In another related medical image classifica-
tion study, Khairnar et al. [51] used Convolutional BDL on
breast histopathological images for uncertainty quantifica-
tion in classification. In their proposed approach, they used
activation functions with learnable parameters to address
CNN’s shortcoming in both the Bayes and non-Bayesian
frameworks. This work differs from most others in that it
used variational inference method in convolutional layers too
rather than fully connected layers alone. In another study
by Van Molle et al. [52], DBL was used for quantifying
uncertainty in the classification of skin lesions. The proposed
method used ResNet50 as a feature extraction method and
MC-dropout was used as a Bayesian approximation to inves-
tigate uncertainty associated with images. The authors have
estimated uncertainty per class for the proposed method, but
the shortcoming of this work is the performance comparison
with some existing work. Oloyede et al. [53] used BDL for
Covid-19 X-ray images classification. The proposed BDL
models were compared to a non-Bayesian model to inves-
tigate the applicability of Bayesian CNN with comparison
to classical CNN. The paper used variational inference to
sample from the posterior distribution. The limitation of
this paper was that it only used a single very small dataset
of 50 images, and results were not compared to existing
methods. In another work, Gour et al. [54] deployed BDL
for uncertainty-aware of chest X-ray images classification
for Covid-19. The presented method was based on Effi-
cientNet and used MC-Dropout as a Bayesian approximation
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TABLE 1. A summary of published articles that used BDL for medical
image classification.

Refer Bayesian DL model/
ence Year . Purpose .
o, technique architecture
[43] 2019  Variational  classification of CNN with
dropout histopathological  inspiration from
images of ResNet,
colorectal cancer DarkNet
[44] 2021  MC- Classification of VGG19
dropout intraoral cancer
images
[45] 2019  MFVI, classification of VGG
MC- diabetic
dropout retinopathy
[46] 2021 MC- Classification of CNN similar to
dropout Parkinson's LaNet-5 (For
disease using 3D images)
fMRI
[47] 2020 MC- classification of DenseNet201,
dropout chest X-Ray ResNet152,
images SENet154,
ResNet,
ResNeXt
[49] 2017  Variational  Breast Cancer Own
inference prediction implementation
of CNN
[50] 2019  Variational  Uncertainty Own
inference Quantification in implementation
image of CNN
classification
[51] 2020  Variational  Classification and ~ Own
inference UQ ofBreast implementation

Histopathology of Bayesian
Image CNN

[52] 2019  MC- classification of ResNet50
dropout skin diseases
[53] 2021  Variational  Classification of Own
Inference Covid-19 from implementation
chest X-ray of CNN
images
[54] 2020 MC- Uncertainty EfficientNet
dropout aware
classification of
Covid-19 from
chest X-ray
images

method for estimating posterior. The results were compared
to multiple existing methods which outperformed them.
Table 1 summarizes the above-mentioned studies that applied
BDL methods for medical image classification with their
Bayesian technique, purpose, and model structure used.

2) IMAGE SEGMENTATION

Another image processing task that is particularly useful in
medical imaging is image segmentation. Image segmenta-
tion tends to partition an image into segment(s) that share
similar properties, resulting in a simpler form of the image
that can be further processed and analyzed. Medical image
segmentation is used to find regions of interest such as fining
objects, volume, shape, and boundaries of objects. Objects
can be different organs, tissues, bones, external items and they
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can have different shapes and sizes. This task is particularly
useful for radiologists since they deal with various kinds of
images, and it can be used as a computer-aided technology
as a second opinion by radiologists. Several papers have been
published in recent years using different architectures of BDL
for medical image segmentation. U-Net is the most popular
deep learning architecture for the image segmentation task,
and it is a fully CNN network. It mainly consists of constric-
tive and expansive parts. The constrictive part down-samples
an input, whereas the expansive part over-samples an input.
Figure 7 illustrates different types of image segmentation.
Orlando et al. [55] used BDL for photoreceptor layer
of cells segmentation from Optical Coherence Tomogra-
phy (OCT) images. They proposed a model for segmenta-
tion based on the U-NET architecture. It used the Bayes
model to estimate epistemic uncertainty and error rate for
areas of interest. The proposed model used MC-dropout as a
Bayesian approximation technique to define epidemic uncer-
tainty. Implementation details of the proposed method are
specified in the paper. The only shortcoming of the proposed
work is the use of a single small dataset. In another work,
Roy et al. [56] adapted BDL in QuickNAT architecture for the
entire brain segmentation structure-wise quality control using
MRI T1 images of the brain. The QuickNat has a U-shaped
architecture with two-dimensional fully-CNN that segments
slices of an image using both coronal and sagittal axes. The
proposed method also used MC-Dropout for sampling from
the posterior distribution as a Bayesian approximation. The
MC-dropout is used to define the proposed model’s voxel-
wise (volume pixel of 3D images) uncertainty. What makes
this work stand out from the crowd is that the proposed
model uses the whole brain instead of a single region of
the brain. McClure et al. [57] used BDL in brain segmenta-
tion using MRI images. In addition to the MC-dropout, the
proposed model adapted spike-and-slab dropout to acquire
dropout probability and individual uncertainty associated
with weights. The model predicted uncertainty for voxel-wise
error rate to predict the quality control manual annotation.
The strength of the paper comes from the implementation of
different Bayesian methods and the performance comparison
of methods. Hiasa er al. [58] used Bayesian-CNN based
U-Net for muscle segmentation from Musculoskeletal for CT
scan images. The suggested model used MC-Dropout as a
Bayesian approximation for segmentation as well as quanti-
fying uncertainties in the model. The model performed better
than previous work on two datasets used by authors. Fur-
thermore, the proposed technique investigated uncertainty in
multi-class for organ segmentation and how it may be utilized
to execute predicted segmentation without the requirement
for ground truth data, as well as reducing manual annotation
for samples in the active learning task. Ma et al. [59] used
BDL in a dense U-Net for segmentation of pancreas using
the statistical shaped method. The Bayesian VI approach was
used in the proposed model to overcome statistical shape
model shortcomings such as localization and initial condition
sensitivity. According to the authors, the results outperformed
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FIGURE 7. Image segmentation types.

the state-of-the-art results from previously published works.
The paper’s flaw is that it does not describe how the proposed
model and hyperparameters are implemented.

In another work, Saidu et al. [60] proposed an active
learning method based on BDL U-Net architecture for image
segmentation. The proposed method used the CNN model for
images with MC-Dropout as Bayesian approximation to pre-
dict model uncertainty. The proposed model was applied to
four different medical image datasets. The use of active learn-
ing for segmentation tasks and the application of the model
to different medical datasets are two of the work’s strengths.
Sedai et al. [61] used BDL for UQ for semi-supervised
segmentation tasks of OCT images of retinal cells. In semi-
supervised learning, only a limited amount of data are labeled
and the rest of the data are unlabeled where the model is
trained on them to make predictions. The proposed model was
trained on labeled data for segmentation using BDL, which
produces soft segmentation labels with their uncertainty that
are then applied to unlabeled data. The proposed method
was based on dense U-Net architecture and used MC-dropout
as a Bayesian approximation method. The strength point of
the proposed model is the deployment of BDL for semi-
supervised tasks. Sander ef al. [62] used BDL for automatic
segmentation using dilated CNNs to produce a mask for
segmentation and maps of spatial uncertainty. The generated
spatial uncertainty map was used on automatic segmentation
which increased the performance of segmentation while hav-
ing assistance from the human intervention for high uncer-
tainty regions. The proposed method used MC-dropout as a
Bayesian approximation to generate spatial uncertainty maps.
On the bright side, the paper well-described hyperparameters
in detail, but it did not compare the method to other state-of-
the-art methods. Sedai et al. [63] used BDL for segmentation
and uncertainty estimation of OCT images for retinal layers.
The Bayesian method was used to quantify uncertainty for
pixel-wise OCT images for the segmentation task. Because
high uncertainty is nearly always the result of erroneous
segmentation, the BDL uncertainty maps come in helpful for
finding wrongly segmented pixels and areas of images. The
proposed method used MC-dropout as a Bayesian approxi-
mation method to generate the uncertainty map for segmenta-
tion. The strong point about this paper is that the authors have
mentioned details of hyperparameters and compared their
proposed method performance with two existing methods.
Jena et al. [64] used BDL for diseases segmentation and
uncertainty associated with it. The authors used three medical
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imaging datasets for the brain, cells, and chest diseases. The
authors have clearly defined hyperparameters in detail and
used several datasets to examine the performance of the
proposed method, however, it has flaws in that it does not
compare their model’s performance to existing state-of-the-
art methods. Antico et al. [65] used BDL in the segmentation
of knee arthroscopy for ultrasound images. The proposed
model was based on Bayesian CNN and used MC-dropout
as a Bayesian approximation method. Besides using BDL
for segmentation, the model took advantage of MC-dropout
to find pixel-wise uncertainty of the image. The model was
tested on the femoral cartilage of knee image for ultrasound
and MRI, which outperformed classical CNN. The perfor-
mance details of the proposed methods were not compared
to other state-of-the-art methods, although different datasets
and hyperparameters were used. Liu et al. [66] used BDL for
segmentation of the Amygdala Subnucei region of the brain.
The proposed model used Bayesian CNN for 3D images and
deployed MC-dropout as Bayesian approximation for seg-
mentation and uncertainty quantification. Because targeting
and segmenting sub-regions with high accuracy is a hard task
for classical deep learning, BDL was deployed for such tasks.
It achieved better results compared with the state-of-the-art
methods, especially with the presence of an uncertainty quan-
tification map. Liu et al. [67] used BDL for automatic seg-
mentation and uncertainty estimation for the prostate zonal of
peripheral zone and transition zone. The proposed model used
Bayesian CNN with attention mechanism and MC-dropout as
a Bayesian approximation method for finding zonal segmen-
tation uncertainty. It is worth mentioning that this is the only
method that used the attention mechanism for segmentation.
Garifullin et al. [68] used BDL to segment images of diabetic
retinopathy lesions. The proposed method used Bayesian
CNN with MC-dropout as a Bayesian approximation method
to estimate pixel-wise uncertainty of segmentation of four
types of lesions. The work’s merits include good visualization
charts that can rapidly grab the reader’s attention. However,
there is not much in terms of model performance when
compared to other methods presented. Table 2 summarises
the above-mentioned studies that applied BDL methods for
medical image segmentation with their Bayesian technique
and study purpose. Largent et al. [69] utilized BDL for
brain segmentation of preterm infants depending on post-
hemorrhagic hydrocephalus. The study used T2 MRI brain
images which refer to MRI images that highlight fat and water
content in the body. The study adopted MC-Dropout method
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TABLE 2. A summary of articles that used BDL for medical image
segmentation.

TABLE 3. A summary of articles that used BDL for medical image
registration.

Reference Bayesian

Reference Bayesian Year . Purpose
Year techni Purpose no. technique
no. echnique [70] 2016 Variational UQ in image

[55] 2019 MC-dropout Segmentation of'the mfe.reflce, MCEMC reglstra'uo? -
photoreceptorlayer in [71] 2019 Variational Image registration for
pathological OCT scans inference deformable medical

[56] 2019 MC-dropout Segmentation of entire brain images
using MRI T1 images [72] 2020 MCMC Image registration for

[57] 2019 MC-dropout Segmentation and UQ of unsupervised
brain MRI images deformable brain MRI

[58] 2019 MC-dropout Muscle segmentation using [73] 2021 MC-dropout Brain image registration
CT scan

[59] 2018 Variational Segmentation of pancreas

inference using CT scan _ other factors. In this regard, Le Folgoc et al. [70] applied BDL

[60] 2021 MC-dropout Active learning image . . . . . . . .
segmentation and UQ to quantify uncertainty in medical image registration using a

61 2019  MC-dropout  Semi-supervised sparse Bayesian model. The presented model use as the

[61] p P p Bay del. The p ted model used VI as th
z)eégmentation and UQ of approximate Bayesian method for sampling from the poste-

T images . s e . ” .

& 3019 MC-dropoul  Segmentation and UQ for rior (?}strlbutl'on and u§ed MCMC as the e.xact asymptoti
cardiac MRI cally” Bayesian sampling method. According to the authors,

[63] 2018  MC-dropout  Segmentation and UQ for the VI mechanism does well in the inference process similar

= R (S)CT’S retinal — to MCMC, however, the uncertainty estimation of V1 is not as

t tat . .

641 oL Known egmentation and UQ for good as MCMC. The strength of their paper comes from using
chestdiseases &

[65] 2020  MC-dropout Segmentation of knee both VI and MCMC, which is rarely used by the research
arthroscopy community.

[66] 2019 MC-dropout  Segmentation and UQ of the Deshpande et al. [71] employed BDL for deformable med-
Amygdala Subnuceiregion . . . . . . . .
of the brain ical image registration. Deformable images registration is

[67] 2020  MC-dropout  Segmentation and UQ of the an essential task in medical imaging that has a variety of
prostate applications, including multi-modality image fusion, tem-

[68] 2021 MC-dropout  Segmentation and UQ of poral changes in structure, and so on. The proposed work
diabetic retinopathy lesions . . .

[69] 2022 MC-dropout  Segmentation of brain for used BDL for corrupted images by nonlinear geometric

preterm infants

of Bayesian approximation to sample from the posterior dis-
tribution. The proposed method was tested on 27 subjects
that were manually labeled for different parts. In addition
to the segmentation results, the proposed Bayesian method
was used to generate uncertainty maps associated with output.
Several results were demonstrated in the presented work for
various hyperparameters and models, indicating the differ-
ence between various configurations and which configuration
performs better. However, the proposed method was not com-
pared to other state-of-the-art methods and they used a small
dataset for training and testing.

3) IMAGE REGISTRATION

Image registration is the process of transforming two or
more images into similar coordinates that are geometrically
aligned to reduce the differences between them. This process
is essential for analyzing and preprocessing images that are
generated from different sources, under different conditions,
and at different times. This process is particularly useful
in medical image analysis. This is due to the fact that the
different conditions of images that deep models can be trained
on and the ability to test generated everyday images by a
different radiologist using different angles, lightning, and
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distortion. Because of Bayesian model characteristics, the
model parameters were tuned to have a probability distri-
bution, which increases the performance of the image reg-
istration. The proposed methods were investigated on a few
datasets of deformed images. In another similar application,
Khawaled et al. [72] used BDL for unsupervised deformable
image registration of brain MRI. Unsupervised DL models
for deformation image registration are trained on available
data to estimate and measure the deformation through cal-
culating similarity and differences target and other images.
The trained deep learning model was then used on other
data that was apart from training. The posterior distribution
of the model evades overfitting even when the size of the
dataset is small. The proposed model used stochastic gradient
Langevin dynamics to sample from posterior as a Bayesian
method for image registration, and uncertainty associated
with deformed images were quantified. The paper is one
of the few works that have deployed MCMC for Bayesian
sampling. Cui et al. [73] used Bayesian CNN for brain image
registration. The suggested method used MC-dropout as a
Bayesian method to sample from posterior for the regis-
tration task as well as producing the geometric uncertainty
map for the uncertainty associated with the registration pro-
cess. Table 3 summarises the above-mentioned studies that
applied BDL methods for medical image registration with
their Bayesian technique and study purpose.
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4) IMAGE RECONSTRUCTION AND ENHANCEMENT

Image reconstruction is the process of creating images from
incomplete or scattered data which can either be two or three-
dimensional images. The incompleteness or scattered data
can be generated or caused by different sources such as radi-
ation reading for medical images or noisy object removal in
an image. It is particularly useful in medical applications for
generating useful images, which in some cases may require
applying some mathematical methods. For three-dimensional
images such as CT and MRI, this technique has the ability
to create three-dimensional images as brain images from a
variety of two-dimensional images. This technique can also
be used to sharpen images or sharpen edges for objects in
images as a preprocessing technique for other image pro-
cessing tasks like image segmentation. On the other hand,
image enhancement is the process of modifying images to
result in a visually better image or improving them for addi-
tional processing and analysis. Image enhancement results
in an accurate visual representation of images and improves
the quality of image features for image processing tasks.
This task is achievable through different mechanisms such
as image sharpening, noise removal, and adjusting image
intensity.

Schlemper et al. [74] used BDL to quantify the uncertainty
associated with the model for reconstructing MRI images.
Two datasets of cardiac MRI were used in this work. The
uncertainty in the proposed model was particularly effective
in high-uncertainty regions, in which the model might fail to
construct the image from available data. The authors used
the MC-dropout method as a Bayesian approximation to
determine the epistemic uncertainty in the proposed model.
The authors also investigated the relationship between the
uncertainty and error associated with predicted images and
found a correlation between the two, indicating that the error
in the model mostly comes from high uncertainty regions
in images. The strength point of the paper is that several
different models and parameters were implemented with
visualization of their performances. These models, however,
were not compared to other existing states of the models.
Du et al. [75] used BDL for multi-view visual image con-
struction from human brain activities using functional-MRI
(fMRI). The authors relied on visual stimuli and educed fMRI
to represent the correlation between the two viewpoints. The
published work used a linear model of BDL to identify the
voxel correlation in addition to handling noise in data to avoid
the overfitting of the proposed model. Marinescu et al. [76]
used Bayesian approach generative models for image recon-
struction. The purpose of using the generative model in this
work was to overcome the distribution shift of test data. This
is performed by having a single image generator for different
image reconstruction tasks. The proposed model was tested
on three datasets among which were two medical datasets:
chest X-ray and brain MRI datasets. The proposed method
used variational inference for sampling from the posterior
distribution. The performance of different hyperparameters
for models was tested and compared to other state-of-the-art
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models. Yang et al. [77] used the Bayesian method for a
Positron Emission Tomography (PET) scan reconstruction.
They proposed a Multilayer Perceptron (MLP) patch-based
model for PET scan reconstruction using VI for model reg-
ularization. This method was used to increase the read-
ability region of the radioactive tracer that was added to
the human body’s liquids. The results of the paper were
well-visualized, and details of model hyperparameters were
described, however, not many details were mentioned com-
pared to other existing methods. Barbano er al. [78] used a
Bayesian model for knowledge transfer of learning outcomes
of iterative reconstruction. The authors used VI for Bayesian
approximation to sample from the posterior distribution. The
proposed method firstly trained the model for reconstruction
on supervised data with ground truth labels using Bayesian
VI and then fine-tuned the model parameters based on sam-
ples adaptation measurements using unsupervised data. The
model also provided uncertainty quantification for the unsu-
pervised data. Tanno et al. [79] used Bayesian techniques for
image enhancement to identify different parts of uncertainty.
To quantify the uncertainty associated with model parame-
ters and data noise ‘“‘aleatoric and epistemic,” they applied
their proposed method to diffused MRI images for super-
resolution tasks. The outputs were predicted based on these
two uncertainties. As in other publications, the authors con-
cluded that uncertainty quantification enhances the perfor-
mance of models, particularly for shifted distribution cases.
In addition, the area with a high error rate mostly has high
uncertainty which indicates the positive correlation between
uncertainty and error. In different work published earlier by
Tanno et al. [80] which the work [79] was based on, they
used Bayesian methods for diffused MRI super-resolution to
quantify uncertainties that are a result of noise in data and
model parameters. Li e al. [81] used BDL for time-series data
for high resolution of fluorescent images with high density.
The proposed method was used for structure reconstruction of
super-resolution fluorescence microscopy. The authors used
experimentally calibrated parameters to overcome the prob-
lem of overfitting in the model. The suggested model used
MC-dropout as a Bayesian approximation method to sample
from the posterior distribution. Table 4 summarizes papers
that used BDL methods for medical image reconstruction
and enhancement with their Bayesian technique and research
goals.

5) OTHER TASKS IN MEDICAL IMAGING

In addition to the above-mentioned task in medical imag-
ing, there is also some published work that covers different
tasks for medical imaging. Hassan et al. [82] used incre-
mental learning for cross-domain adaptation for retinopathy
to extract anomalous retinal in optical coherence tomogra-
phy (OCT) images. The authors used only few-shot learning
instead of training for a long period of time. The benefit
of using incremental is that it requires less training for new
images without the need for models training for a long period
and with no need for past training images. They used a
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TABLE 4. A summary of articles that used BDL for medical image
reconstruction and enhancement.

Reference Year Bayeslan Purpose
no. technique
[74] 2018  MC-dropout  UQ for MRI image
reconstruction
[75] 2018  Variational Multi-view image construction
inference from human brain activities
using fMRI
[76] 2020  Variational Generative image reconstruction
inference
[77] 2018  Variational PET scan reconstruction
inference
[78] 2021  Variational Knowledge transfer of learning
inference outcomes of iterative image
reconstruction
[79] 2021 Variational UQ for neuro image
dropout enhancement using dMRI
[80] 2017  Variational UQ for noise associated with
dropout input using dMRI
[81] 2018  MC-dropout  time-series data for high-

resolution fluorescent images

Bayesian multi-object function to enable the network to know
the gap and the semantic relation of new and trained images.
Multiple well-known CNN architectures were used in their
work such as MobileNet, ResNet-50, ResNet-101, and VGG-
16. Gal et al. [83] worked on active learning for image data
using BDL models which was the first attempt to apply BDL
in active learning. They used Bayesian CNN for their pro-
posed work. Despite the fact that the paper was not entirely
focused on healthcare, they did use a skin cancer (melanoma)
image dataset (ISIC2016). They also fine-tuned the VGG-16
which was pre-trained on ImageNet. Mahapatra et al. [84]
used BDL for active learning tasks in both classification and
segmentation tasks. They used Generative Adversarial Net-
works (GANSs) to produce chest X-Ray images that have chest
lesions features. The proposed model used the most useful
samples for training to have more informative features. BDL
was used to find and use samples generated by GAN with
the most informative features and characteristics of lesions.
They took advantage of using VGG16 and ResNet18 which
were pre-trained on ImageNet. The paper did not mention
the sampling method for BDL, although it described other
hyperparameters of the model. Gou et al. [85] used BDL for
classification and segmentation of Subarachnoid hemorrhage
disease using CT scan images of the head. The purpose of the
BDL in the proposed method was to estimate the uncertainty
associated with model predictions and based on that estima-
tion, professionals can decide the reliability of the predicted
output. Moreover, the authors implemented a model for semi-
supervised learning to illustrate the regions with uncertainty
on the images for segmentation. The paper used MC-Dropout
as a Bayesian approximation for sampling from posterior dis-
tributions and used EfficientNet structure for building a clas-
sification model. The models’ performance for classification
and segmentation was not compared against other state-of-
the-art methods, although multiple different hyperparameters
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FIGURE 8. Ratio of Different BDL techniques used for medical image
processing.

were tested. Nakao et al. [86] employed BDL for anomaly
detection in chest PET/CT scans using F-fluorodeoxyglucose
tracers. The proposed model used MC-Dropout as a Bayesian
approximation method to sample from the posterior distribu-
tion. The proposed method was evaluated on only 34 images
from a small dataset of less than 1900 PET/CT scans with no
abnormalities. In terms of the ROC curve, the proposed model
performed very well and reached 99.2%, but not so well in
other measurements. The obtained results were compared to
a limited number of relevant works, although other works
did not use the same number of images, which indicates why
there is a performance disparity.

BDL has been used in a variety of medical imaging
activities; however, not all of them have received equal
attention. As it can be seen in section 6.1 that most of
the published work was for image classification and seg-
mentation tasks. More investigations are needed in deploy-
ing BDL for other medical image tasks, particularly for
uncertainty quantification, interpretation, and trustworthiness
tasks. Another important point to be highlighted is the use of
Bayesian methods for medical imaging tasks, as illustrated
in Figure 8 the majority of the reviewed works have used
MC-Dropout. In general, images have a very large number
of features for consideration which makes them complex
structures, and MC-Dropout is the fastest method to converge,
so most researchers use it as their primary method. Only a
few papers have used the MCMC method since it takes a lot
of computational power for the model to reach an equilibrium
state, although it has more accurate results compared to other
methods.

B. MEDICAL SIGNAL PROCESSING

Medical signals are the result of a living being’s subder-
mal tissues’ accumulated action potentials. Medical signals
are records in space, time, or space-time of a biological
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occurrence in a living being, such as heart beating, con-
tracting muscle, and brain electrical activities. The electrical,
chemical and mechanical activity that occurs throughout this
biological process can provide signals that can be detected
and evaluated. As a result, medical signals include useful
information that can be used to analyze the physiological
mechanisms underlying a specific biological event or system,
as well as for medical diagnosis. These signals are tempo-
rally based actions that can be measured either electrically,
as in Electroencephalography (EEG), which records electro-
grams from brain electrical activities; or magnetically, as in
Magnetoencephalography (MEG), which records brain acti-
vations using magnetic fields. The nature of these signals
is random, and they cannot be accurately predicted. These
signals are crucial to determine how does brain or heart is
functioning which mostly cannot be evaluated through med-
ical imaging. Medical signal processing has gained popular-
ity among BDL researchers. In this regard, Chai et al. [87]
used BDL to classify mental fatigue using EEG signals.
The authors used Principal Component Analysis (PCA) as
a preprocessing technique for dimensionality reduction to
reduce the amount of EEG channels from 26 to only 6 and
used power spectral density for feature extraction. The exper-
iment used eyes open and eyes closed cases to measure the
fatigue status of the brain. The paper did not go into details
regarding how the BDL was used, such as which sampling
method was used to sample from the posterior distribution,
but instead focused on the PCA in more detail. However,
Chai et al. in earlier work [88] used BDL as a classifier
to compare EEG feature extraction for fatigue detection.
They used Power Spectral Density (PSD) for feature extrac-
tion, which has been used by many other researchers. For
comparison, they used different feature extraction techniques
including Power Spectral Entropy (PSE), Wavelet, and Auto-
Regressive (AR). The authors concluded that AR has better
performance than other techniques used for feature extrac-
tion. Interestingly, the authors have not indicated whether or
not the AR will perform better when using classical DL. The
same group of researchers Ngo et al. [89], published another
work using BDL for the classification task of Nocturnal
Hypoglycemia based on EEG signals. Hypoglycemia is a
common condition that diabetes patients face during sleeping
at night. The proposed method did not specify the sampling
method or distribution type for the BDL. In another study,
Handojoseno et al. [90] used BDL to predict the occurrence
of freezing of gait before happening in Parkinson’s patients
using EEG signals. Freezing of gait is a disorder on gait
that affects Parkinson’s disease patients when they lose the
ability to move unexpectedly and momentarily, resulting in
falls even when patients have the intention to move and walk.
In their proposed method, the authors used two preprocessing
techniques: directed transfer function for brain connectiv-
ity actions and Independent Component Analysis (ICA) to
separate the components of a signal. The BDL was used to
predict the occurrence of freezing the gait with having five
seconds before its occurrence. The Bayesian method was
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used as a regularization technique to prevent the model from
overfitting. The author suggested that additional investigation
with more data and applying more methods in real life is
needed, in order to prevent freezing of gait occurrences for
Parkinson’s patients. Although the authors included imple-
mentation details on the number of layers and neurons used,
they did not describe how the BDL was adapted in the pro-
posed method, such as which sampling method was used.
Fruehwirt et al. [91] used BDL to detect Alzheimer’s disease
severity using neurophysiological markers EEGs. BDL was
used to create a multivariate predictor to detect the severity
of the disease using EEG markers. In addition, to predict the
output distribution, BDL was used in the proposed model to
quantify uncertainty. Two sampling methods were used in the
proposed models, namely MC-dropout as Bayesian approx-
imation and Hamiltonian Monte Carlo (HMC) as an exact
sampling technique to sample from the posterior distribution.
Results from the different models showed that BDL with
HMC sampling outperformed MC-dropout and classical DL.
The reason for this is that the distribution is approximated
for MC-dropout, which underestimates the predictive uncer-
tainty, according to the authors. The strength of the proposed
method comes from using HMC. The paper, however, did
not compare the gained results with other existing methods.
Lee et al. [92] adopted BDL for artifact removal from EEG
signals. ICA was used to extract independent components
from EEG signals and other information that was not part
of independent components were treated as artifacts and
removed. BDL was used for classification purposes alongside
ICA. The MC-dropout was used as a Bayesian approximation
to sample from the posterior distribution. In addition, the
proposed method used the attention mechanism to improve
the performance by concentrating on a region of interest.
However, the authors did not compare the archived perfor-
mance form datasets with state-of-the-art models.

In addition to EEG, several works have been done on
electrocardiogram (ECG) signals. ECG is used to test the
activities of the heart through an electrical signal that is
produced by heartbeats and recorded by sensors attached to
the skin. For this purpose, Aseeri et al. [93] used BDL to
classify the arrhythmias ‘““‘abnormal rhythm of heart beats”
through ECG signals. The proposed method estimates the
uncertainty associated with the predicted output. The pro-
posed method used MC-dropout as a Bayesian approxima-
tion method to quantify model uncertainty. In addition, the
Gated Recurrent Units (GRU) method was used instead of
the vanilla recurrent neural network, resulting in improv-
ing the performance of the proposed method. The proposed
method performed better than other state-of-the-art models
as described in related work sections of the paper. In another
work, Hua et al. [94] used BDL for the interpretability task
for ECG data since the classical DL cannot measure its
uncertainty to determine which and how each input affects
the predicted output. Since decision-making in the medical
field can be a very sensitive task, machine learning and
DL models should have ways describing how output(s) are
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predicted from input. For this purpose, the authors extracted
features from the ECG signals and fed extracted features to
the BDL model to describe how each feature affected the
output. The VI was used as a Bayesian approximation to
sample from the posterior distribution, and different types
of priors such as a horseshoe, half-Cauchy, and Gaussian
were investigated to perform the evaluation and comparison
of features for a classification task. The paper of Hua et al.
[94] is one of only a few papers that used different types of
prior distributions in BDL. Jagannath er al. [95] also used
BDL to extract the fetal cardiac signals. The fetal ECG can
be detected in an advanced stage of fetal growth. In a clinical
test, itis hard to detect anomalies in heart functioning because
of the lack of advanced tools for detecting signals to identify
anomalies. The authors used BDL to remove maternal ECG
from fetal ECG to improve the quality of a signal. However,
the details of BDL hyperparameters were not mentioned. Das
et al. [96] used BDL to detect atrial fibrillation from Photo
plethysmography. The proposed method was used to detect
atrial fibrillation from noisy photoplethysmography signals
using sensors from smart devices, such as smartwatches,
to quantify the uncertainty associated with the predicted out-
put. The proposed model used variational inference as an
approximation Bayes method. The authors described model
hyperparameters in detail along with the hardware used to run
the experiments; and compared results with some recently
published works. In another similar study, Belen et al. [97]
used Bayesian methods to quantify uncertainty for atrial
fibrillation classification using ECG signals. The proposed
method used VI as a Bayesian approximation to sample from
the posterior distribution. The authors described the structure
and hyperparameters of the models in charts and compared
the result with some of the existing methods. Their proposed
method; however, could not achieve the state of the perfor-
mance according to published results. Table 5 summarizes
papers that used BDL methods for medical signal processing
with their Bayesian technique and research goals.

C. MEDICAL NATURAL LANGUAGE PROCESSING (NLP)

NLP is a type of machine learning, which refers to the
techniques for analyzing speech and natural language. The
NLP does use Recurrent Neural Networks (RNN) to process
information since this information has a sequential shape.
NLP aims to enable the computer to understand the con-
tent of the text and the structure of the language to extract
useful knowledge and information from a given document.
When NLP is used in the healthcare field, it can help pre-
dict patient outcomes, enhance hospital triage systems, and
produce diagnostic models that detect early-stage chronic
disease. Physicians and medical staff are extensively adopting
medical reports of patients to keep track of patients’ status to
diagnose diseases. Proper use of these documents is an essen-
tial task since it has all information about the patient’s status.
Several types of research on medical NLP have been done
using classical deep learning techniques. Some examples of
medical NLP using classical deep learning are: predicting the
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TABLE 5. A summary of articles that used BDL for medical signal
processing.

Reference Bayesian

Year . Purpose
no. technique
[87] 2016  Not known Classification of mental
fatigue using EEG signals
[90] 2018  Not known Predicting of freezing of gait
occurrences among
Parkinson’s patients
[91] 2018  MC-dropout, Detection of Alzheimer's
MCMC disease severity using
(HMC) neurophysiological markers
EEG
[88] 2015  Not known Classification of EEG signals
[89] 2019  Not known Classification of Nocturnal
Hypoglycemia based on EEG
[92] 2020  MC-dropout Atrtifact removal from EEG
signal
[93] 2021  MC-dropout Classification of the
arthythmias using ECG signal
[94] 2021  Variational Interpretability task for ECG
inference data
[95] 2019  Not known Extraction ofthe fetal cardiac
signal
[96] 2020  Variational Detect atrial fibrillation from
inference Photo plethysmography
[97] 2020  Variational UQ for atrial fibrillation
inference classification using ECG

signals

length of stay in hospital for admitted patients [98], extracting
medication and drugs from patients’ reports [99], classifica-
tion of radiological reports [100], and lesion area detection
using CT reports [101]. Despite this, we are not aware of any
published work on medical NLP that has used BDL.

D. ELECTRONIC HEALTH RECORD (EHR)

EHR is an organized collection of patients’ electrically stored
data. These records are used to keep track of patients’ sta-
tus, which are shared between medical professionals within
the same network. EHR can store a large amount of data
regarding patients such as patients’ personal and physical
information, medical history, radiology images, treatments,
medication/drugs, and allergies. Effective use of this informa-
tion by medical professionals is crucial since it can save time
and lives in some cases. Many researchers have been working
on mining EHR data to extract knowledge using machine
learning and classical deep learning methods. However, only
a limited number of published works have been done on EHR
using Bayesian deep learning. Dusenberry et al. [102] used
BDL to analyze uncertainty associated with the model they
proposed for EHR. For sampling from the posterior distri-
bution, the authors used variational inference as a Bayesian
approximation. They also employed ensembles of classical
RNNs and Bayesian RNNs to determine the model uncer-
tainty, and they concluded that metrics used to measure
the model performance could not identify the uncertainty
associated with the model. The authors concluded that the
Bayesian method has the capability of capturing uncertainty
associated with models better than ensembles of models.
The paper also indicated that Bayesian models can provide
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TABLE 6. A summary of articles that used BDL for EHR processing.

Reference Bayesian

no. Year technique Purpose

[102] 2020 Variational UQ for EHR
inference

[103] 2019 MC-dropout  UQ for EHR

[104] 2020 Variational Prediction of the admitted
inference patients’ outcome in temporal

bases

[105] 2021 Variational UQ for EHR
inference

[106] 2021 Variational Individual-based prediction of
inference EHR

uncertainty as per individual features where ensemble fails
to do so. In another related topic, Qiu et al. [103] used
BDL for uncertainty quantification of EHRs. The proposed
method quantifies the uncertainty associated with data, which
refers to as noise ‘“‘aleatoric uncertainty”’. The proposed
work used MC-dropout as a Bayesian approximation for
sampling purposes. The authors concluded that reducing the
number of records to decrease the noise would improve
model performance. However, results obtained from the pro-
posed model were not compared to other published papers.
Deasy et al. [104] used the Bayesian approach with RNNs
to temporally predict the outcome of admitted patients. The
authors used variational inference as the Bayesian approx-
imation method to sample from the posterior distribution.
The proposed method used BDL to estimate uncertainty in
the predicted outcomes. When the model’s uncertainty is
low or when there are more data to predict, the proposed
method predicted the status of patients more frequently; and
when there is a high level of uncertainty associated with
output, it predicted the status of patients less frequently.
Although multiple models were tested for their performance,
the obtained results were not compared against other existing
works. Li et al. [105] used BDL and Gaussian processes for
uncertainty estimation in EHR. The proposed model used
MC to sample from posterior distribution 30 times for an
instance. Since both BDL and the Gaussian process can esti-
mate uncertainty using different methods, the combination
of them is beneficial to take the advantage of both meth-
ods to capture model uncertainty. The proposed method was
tested on EHR of heart failure, depression, and diabetes to
estimate uncertainty. Diaz ef al. [106] also used a Bayesian
method with a logical neural network to focus on individual-
based prediction on EHR. The logical neural network has the
characteristic of combining both classical neural networks
for the learning process and symbolic logic for identifying
knowledge and reasoning. To the best of our knowledge,
this is the first and only paper adapting the logic neural
networks. Table 6 summarizes papers that used BDL methods
for Electronic Health Records.

E. CLINICAL AUDIO AND VIDEO PROCESSING
Audio and video processing refers to the process of ana-
lyzing the content of audio or video in order to extract
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knowledge, such as object detection and tracking video or
sound recognition and noise cancellation in audio. Video and
audio have limited application in healthcare data analysis
compared to images. Nonetheless, they are indispensable and
have a vital role in healthcare applications such as ultrasound
video, endoscopy, and temporal speech disorder. Only a few
studies have used Bayesian deep learning techniques in this
field. One of those is the work of Bodenstedt er al. [32]
who used BDL for surgical workflow video analysis adapting
the active learning approach. The authors used MC-dropout
as a Bayesian approximation method for sampling and used
RNNs and LSTM models to analyze data. The main purpose
of this study was to determine what data points were to be
labeled ‘“‘annotated” in each step of the surgery by using tools
detection and operation stage segmentation. This paper is one
of the very few that used Bayesian LSTM. By the same token,
Liu et al. [107] used the BDL model to extract visual fea-
tures for speech recognition for people with physical speech
disorders. A speech disorder is common among people with
special needs, which in some extreme cases makes it impos-
sible to understand speech. In the proposed method, features
from visual representation and audio features were fused as
a multimodal approach for predicting speech and estimating
uncertainty associated with the predicted output. The pro-
posed method used variational inference to sample from the
posterior distribution which is approximated as Gaussian.

Other than medical imaging, which has been covered in
sections 6.2 to 6.6 of this paper, BDL has been used for a
variety of tasks in healthcare. While some tasks, such as med-
ical signal processing, have gained some popularity, others,
such as medical NLP, have, to our knowledge, received no
attention at all. It’s unclear why some tasks, despite their
importance in healthcare, have not received the attention they
deserve. In contrast to medical imaging, the majority of work
in non-imaging tasks have used variational inference, which
can clearly be seen in Figure 9. It seems that the MCMC
method has not gained popularity for non-medical imaging
tasks, this is because of its computational complexity.

VIl. BDL IN DISEASES DIAGNOSTICS/DETECTION

The process of determining which disease or condition is
causing a patient’s symptoms and signs is known as med-
ical diagnosis. For disease detection and diagnosis, a large
number of researches in machine learning and deep learning
have been developed. This section covers some diseases that
have gotten more attention than others using deep learning
techniques, especially BDL. It is worth noting that only a
few published works for each disease or type of the disease
are discussed in this section, and some diseases may have a
larger number of papers that are not covered in this section.
The following are some of the common diseases for which
the BDL models were used.

A. COVID-19

Coronavirus disease (COVID-19), a contagious disease,
is caused by the SARS-CoV-2 virus. The COVID-19
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B MCMC m Variational Inference MC-Dropout

FIGURE 9. Ratio of different BDL techniques used for other medical tasks
“non-image.”

pandemic has impacted many individuals around the world
in some form, and it has changed the way of life for most
people. COVID-19 has become one of the world’s biggest
challenges, if not the biggest one, in the past two years.
Thus, it got unprecedented attention that no other diseases
in human history had seen. Numerous research studies have
been published on COVID-19 in healthcare and other fields
of study. Several papers have been published to detect and
classify COVID-19 using machine learning and deep learn-
ing techniques. Yet, only a few papers have used BDL.
Ghoshal et al. [108] used a Bayesian-based CNN model to
estimate the uncertainty of chest X-ray images for COVID-19
detection. The authors adapted pre-trained ResNet50V2 as a
baseline for their proposed model and fine-tuned its param-
eters with available data. They used the MC-Dropweight
mechanism for sampling from the posterior distribution.
Dropweight works the same way as dropout, but instead
of dropping a neuron in a network ‘“‘similar to setting all
weights of inputs to zero”, it drops only some of the neu-
ron’s weights with a given probability. Cabras et al. [109]
also used BDL for estimation COVID-19 spreading in Spain
for a period of 14-consecutive days. The proposed method
was developed using the LSTM architecture and counts the
“likelihood” of the available data using the Poisson distribu-
tion. Instead of using Gaussian priors, which the majority of
BDL papers are based on, the proposed method uses Gamma
priors to quantify model uncertainty. Ucar et al. [110] used
SqueezeNet CNN architecture with Bayesian optimization
to detect COVID-19 from chest X-ray images. Since the
authors used a pre-trained SqueezeNet model, they fine-
tuned model parameters with chest X-ray images. According
to the authors, the model outperformed the state-of-the-art
models used for COVID-19 detection. Oloyede et al. [53]
deployed BDL to classify COVID-19 X-ray images and
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compared the model with the non-Bayesian model. The pur-
pose of this work was to investigate the applicability of
Bayesian CNN with a comparison to classical CNN. The
proposed BDL model achieved validation accuracy of 95%,
while the classical CNN model reached 87% after one
thousand epochs. In another work, Gour et al. [54] used
BDL for uncertainty-aware COVID-19 classification of chest
X-ray images. The suggested method was applied on three
state-of-the-art datasets and achieved promising results. The
results were compared with some other existing methods,
which overachieved the existing methods. Loey et al. [111]
employed CNN-based Bayesian optimization for the detec-
tion of COVID-19 using chest X-ray images. The purpose
of Bayesian optimization in this paper was to fine-tune the
hyperparameters of the network. The paper used balanced
datasets for training that consisted of more than 10 thousand
images of three classes, which are normal, COVID-19, and
Pneumonia. Multiple scenarios of the proposed model were
presented to compare results, and their best model perfor-
mance reached 96%. In recent work, Niraula ef al. [112] used
BDL for modeling the spread of COVID-19 in 245 health
zones in Spain using Spatio-temporal data. Because of the
nature of the data, the suggested method used LSTM archi-
tecture and adapted Laplace approximation as VI to sample
from the posterior distribution. The obtained results have not
been compared to other state-of-the-art methods in the field
due to the nature of the study and the data used.

B. CARDIOVASCULAR DISEASE

Cardiac disease refers to a disorder of heart functionality.
Cardiovascular disease is a type of disease that affects the
heart and blood veins. Smoking, high blood pressure, high
cholesterol, an unhealthy diet, and obesity can all raise
the risk of cardiovascular disease. Researchers have used
machine learning and deep learning techniques to assist
medical professionals in identifying and diagnosing car-
diac diseases. However, there are only just a few pub-
lished studies that have employed BDL for cardiac diseases.
Sander et al. [62] employed BDL for segmentation of some
parts of the human heart such as the left ventricle cavity, right
ventricle, endocardium, and myocardium at end-diastole and
end-systole. The designed method used MC-dropout for sam-
pling, and it was assessed on MICCAI 2017 dataset, in which
100 cases were used; 75 during training and 25 for testing.
Aseeri et al. [93] also used BDL to classify cardiac arrhyth-
mias based on ECG signals. The suggested method used
MC-dropout for sampling, and the model performance was
tested on three datasets (MIT-BIH for 48 patients, St Peters-
burg INCART with 75 records for 34 patients, BIDMC
dataset for 15 patients), which achieved an Fl-score of
98.8%, 99.2%, and 97.2%, respectively. Jagannath ef al. [95]
deployed BDL to extract the fetal cardiac signals using ECG.
The authors tested the proposed method on two datasets,
namely Physionet and DalSy. Four different methodolo-
gies were used to test the performance. Their obtained
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results, however, were not compared to other state-of-the-art
methods.

C. CANCER

Cancer is a disease that arises when cells in the human body
grow uncontrollably and unexpectedly in a certain region,
with the potential to spread to other parts of the human body.
Every living part of the human body is susceptible to cancer
because it can affect any type of human. Human cells can
get cancer, which can be inherited from parents, through
exposing cells to prolonged harmful radiation, or from natural
causes. Most types of cancer can be fatal when discovered
in their advanced stages. Thus, early detection of cancer is
crucial, as it can save a substantial number of lives each
year. Several works have employed machine learning and
active learning techniques to detect and diagnose this dis-
ease, with a few of them relying on BDL. For example,
Liu et al. [67] used BDL for uncertainty estimation and seg-
mentation of prostate cancer using MRI slices. The proposed
method uses an attention-based Bayesian U-Net structure
for segmentation and uncertainty estimation. The data for
model training and testing were collected from two pub-
lic sources to reach a total of 351 MRI scans. In another
study, Song et al. [44] employed BDL to classify intraoral
cancer images with uncertainty quantification for relatability.
The authors used the MC-dropout method for sampling and
pre-trained VGGI19 as a backbone, which was fine-tuned
using intraoral data with a probability of 0.5 as a dropout rate.
The proposed method was tested on a dataset that contains
images of 2350 cheek mucosa and the model reached an accu-
racy of 90%. Billah et al. [113] also deployed BDL to classify
cancer images and quantify uncertainty for blood cells (lym-
phocytes) cancer (lymphoblast). The proposed model used
the MC-dropout method for sampling, and each image had
50 samples. The authors used the (ALL-IDB2) dataset that
has 260 images of cancer cells (lymphocytes), and the model
reached a 94% accuracy rate.

D. PARKINSON AND ALZHEIMER

The brain is the main control unit in the human body, and
it can be affected by several diseases that may affect its
functionality. Alzheimer’s and Parkinson’s are two of those
diseases that affect brain function. Both diseases may share
some symptoms, but the main difference between them is that
Alzheimer’s does affect memory and language capabilities,
while Parkinson’s affects the brain functionality of thinking
and some physical problems. A large number of researchers
have used machine learning and deep learning methods to
apply to different tasks such as classification and segmenta-
tion, but only a few researchers have used BDL. Amongst
them is the work of Yadav er al. [46], which used Bayesian
CNN for Parkinson’s disease fMRI image classification. The
proposed method used MC-dropout for sampling, and the
data of 30 subjects were used to assess the performance of
the proposed method, which resulted in an average accuracy
of 97.92%. In another work, Roy et al. [56] employed BDL
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in the QuickNAT architecture for automatic segmentation
of the whole brain for Alzheimer’s disease. They also used
MC-Dropout for BDL sampling. The proposed method was
tested on four datasets (MALC-15, ADNI-29, CANDI-13,
and IBSR-18), where only the first one was used for training
and the number of instances for each dataset is written next to
the dataset’s name. Their results showed that the mean dice
score for datasets was between 81% and 88%. Handojoseno
et al. [90] used BDL to forecast freezing gait for 5 seconds
ahead of its occurrence using EEG signals for Parkinson’s
patients. The purpose of using BDL in the proposed method
was to avoid overfitting of the model. In total, 16 patients’
data sets were used; 11 for training and 5 for testing, with an
average age of 70 years old. The proposed model achieved a
sensitivity score of 85.86% and a specificity of 80.25%.

E. DIABETES

Diabetes is a chronic disease that affects the level of
sugar (glucose) in the blood. During the digestion process
in the stomach, food is broken down into glucose, which
then circulates throughout the human body via blood circula-
tion. The pancreas is responsible for controlling blood sugar;
when it rises, the pancreas releases insulin to balance it. The
cause of diabetes is that the pancreas cannot keep up with
releasing enough insulin to maintain a balance of sugar in
the blood. Several researchers have used machine learning
and deep learning techniques for different task-related to
diabetes. For instance, Filos et al. [45] compared the per-
formance of different BDL techniques for diabetic retinopa-
thy classification. The proposed model’s performance was
evaluated using the Kaggle diabetic retinopathy dataset,
which has five classes based on the severity of the dis-
ease. The Ensemble MC-dropout model performed best and
achieved accuracy and AUC of 92.4% and 88.1%, respec-
tively. Garifullin et al. [68] proposed a BDL model to seg-
ment images of diabetic retinopathy using MC-dropout to
estimate the uncertainty associated with predicted output.
The authors used the IDRiD dataset for diabetic retinopathy
and achieved a score of between 97.7% and 99.7% for the
ROC-AUC metric.

Table 7 summarizes the reviewed paper in section 7. It can
be seen that the most popular Bayesian method mentioned in
this section is MC-Dropout. The reason is that most of the
papers discussed in this section were using different tasks in
medical imaging, and as stated in section 6, the MC-Dropout
is the most popular method for imaging tasks. Another impor-
tant point to mention is that the number of applications of
BDL in healthcare is increasing. This is due to the importance
of BDL model features, especially its ability to handle differ-
ent types of uncertainties, which is a shortcoming of classical
deep learning models.

VIil. DISCUSSION

The majority of the published works on BDL in healthcare
applications have been reviewed in this paper, and their
Bayesian methods have been demonstrated in the preceding
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TABLE 7. A summary of articles that used BDL for EHR processing.

Reference

o, Year Disease Bayesian technique Purpose
[108] 2020 COVID-19 MC-dropweight Estimate the uncertainty of chest X-ray images for COVID-19 detection
[109] 2021 COVID -19 Not known estimation COVID-19 spreading in Spain
[110] 2020 COVID -19 Not known detect COVID-19 from chest X-ray images
[112] 2022 COVID -19 Variational Determine the spread of COVID-19 in Spain
Inference
[53] 2021 COVID -19 Variational Classification of COVID -19 from chest X-ray images
Inference

[54] 2020 COVID -19 MC-dropout Uncertainty aware classification of COVID-19 from chest X-ray images
[62] 2019 Cardiovascular MC-dropout Segmentation and UQ for cardiac MRI

Disease
[93] 2021 Cardiovascular MC-dropout Classification of the arrhythmias using ECG signal

Disease
[95] 2019 Cardiovascular Not known Extraction ofthe fetal cardiac signal

Disease
[67] 2020 Cancer MC-dropout Segmentation and UQ of'the prostate
[44] 2021 Cancer MC-dropout Classification of intraoral cancer images
[113] 2021 Cancer MC-dropout classify cancer images and quantify uncertainty for blood cells
[46] 2021 Parkinson MC-dropout Classification of Parkinson's disease using fMRI
[56] 2019 Alzheimer MC-dropout Segmentation of entire brain using MRI T1 images
[90] 2018 Parkinson Not known Predicting of freezing of gait occurrences among Parkinson’s patients
[45] 2019 Diabetes MEFVI, MC-dropout _classification of diabetic retinopathy
[68] 2021 Diabetes MC-dropout Segmentation and UQ of diabetic retinopathy lesions

sections. Medical image processing has gotten most of the
attention regarding BDL in healthcare, whereas other tasks
have received less devotion from researchers. Overall, image
classification and segmentation have the largest number
of published papers using BDL compared to other tasks,
as demonstrated in section 6. 1. Interestingly, the MC-Dropout
was the most common method being used for medical
image processing, while the VI method gained popular-
ity among non-image tasks in healthcare, as illustrated in
Figures 8 and 9. It is not surprising that MCMC has not
gained much popularity. However, with less than a tenth of the
work used, it deserves much more attention and investigation
because it has the potential to overtake many techniques cur-
rently in use. From both the Bayesian and healthcare perspec-
tives, this section will discuss the challenges and limitations
of BDL methods in healthcare. Furthermore, future initiatives
and some research gaps are discussed.

A. CHALLENGES FROM BDL PERSPECTIVE

Deep neural networks generally have more complex archi-
tectures than other machine learning techniques such as
Decision Tree, SVM, and KNN. Despite having a complex
architecture, which requires more computational power to
train models, DL models became popular in the last decade
because they achieved state-of-the-art results in numerous
machine-learning tasks. This all became possible thanks to
the availability of high computational power of computers.
Comparing BDL to classical DL is somehow similar to com-
paring classical DL to other machine learning techniques.
In several applications, BDL has proved to be superior to
classical DL in several situations, particularly in situations
where data has a high noise ratio or small datasets are used
[54], [57], and [74]. However, BDL models are more complex
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than classical DL and thus need more computational power to
achieve high performance when training large models. The
sampling process of BDL when sampling from the posterior
distribution necessitates substantial computer capacity. For
instance, when a model needs to find the precise posterior
distribution of a specific parameter in a model’s “weight”’,
MCMC techniques should be used to sample from the poste-
rior distribution, which might need thousands to millions of
samples to fine-tune a single parameter in a given model [70],
[72], [91]. For large models, this will be far from possible;
hence, approximation methods have become popular in BDL
applications. Approximation techniques have the disadvan-
tage of not being as exact as MCMC sampling techniques.
However, approximation techniques made it possible to apply
BDL to some very large and complex models. Despite the
scalability of approximation methods, models may require
additional parameters and more training to reach equilibrium.
When compared to classical DL, using VI for sampling with
a Gaussian prior requires twice the number of parameters and
more training for the model to converge [8].

Another challenge in BDL is the prior probability distribu-
tion, which is also known as the prior and is the expert’s belief
about the data and model parameters (weights) before seeing
the data. This belief is the main difference between Bayesian
and frequentist estimations in statistics. Prior knowledge in
Bayesian models does take the shape of a probability distri-
bution and it is based on an expert’s knowledge, which can
be represented in the model using different probability dis-
tributions such as Gaussian, Binomial, Gamma, Beta, Pois-
son, and others. Although the BDL has not been widespread
among deep learning researchers, from the published works,
researchers have rarely given importance to the use of dif-
ferent priors, which is the main purpose of using Bayesian
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inference. Among the reviewed papers, only references [94]
and [109] used and described different types of prior dis-
tributions for the unknown weights of the DL models. The
reason that various prior distributions, other than Bernoulli
for dropout and normal or Gaussian for VI, are seldom used is
that most published works use approximation methods where
normal/Gaussian works well for general purpose approxima-
tion. Another reason is that having some meaningful priors
for all parameters (wights) in large complicated models with
thousands or millions of parameters is extremely difficult,
if not impossible. Despite the above-mentioned reasons, some
probability distributions may fit better for some applications
than others. Medical image models, for example, may per-
form better with normal or Gaussian priors, as illustrated in
section 6.1, whereas the prediction for spreading COVID-
19 will perform better with the Poisson distribution [109].
Further investigation is needed to come up with the best prior
distribution choice for each type of application and data. For
small-size datasets, it is better to investigate different prior
distributions for each feature, in addition to MCMC sampling
techniques to sample from the posterior distribution to benefit
from the essence of the Bayesian model [94], [109].

The availability of proper tools to design and implement
BDL models is essential to advancing in the field. In addition,
open-source and other shared codes will have a vital role in
advancing and investigating different aspects of BDL. A few
frameworks have been developed for the implementation of
BDL in the last decade, such as TensorFlow Probability, Pyro,
PyMC3, Edward, and Stan. Compared to a few years ago,
some of these libraries and frameworks have significantly
improved, and developing models has become an easy task.
However, compared to what Bayesian statistics covers, these
tools are far from being enough or perfect for the task. This
is because these tools only cover the basics of what Bayesian
statistics offer, and there is a long way ahead for these tools
to cover all aspects of Bayesian statistics, even though real-
istically not every bit of detail needs to be addressed by
these tools. In addition to available tools, there is a lack of
available code implementations of published works in BDL.
For instance, based on our search of reviewed papers covered
in the previous sections, only a limited number, which is
roughly 20%, have made their code available, such as in refer-
ences [45], [54], [56], [63], and [76], and some of the papers
have not even described hyperparameters of their proposed
models. We believe that providing source code and data and
making them publicly available would considerably improve
the pace and progress of BDL models.

B. CHALLENGES FROM A HEALTHCARE PERSPECTIVE

When a substantial amount of data is available, classical deep
learning models tend to perform well and provide. However,
Bayesian deep learning models are the exception, because
they can perform well even when there are fewer data avail-
able. This is the case in healthcare applications, where some-
times only a limited number of data points are available, and
in some cases, most available medical datasets [54], [57] are
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small to medium in size compared to other fields of research.
Therefore, having a large amount of data in healthcare is
difficult for different reasons, including privacy issues and a
lack of access to appropriate medical centers and facilities,
especially in developing countries. The data availability issue
can be partially resolved through the collaboration of differ-
ent institutions involved in data collection and processing.

Another challenge with healthcare data is the lack of stan-
dards in its collection. Most of the time in healthcare, data
collection might be done months or years apart by different
medical specialists and different healthcare centers, resulting
in data inconsistency and discrepancy. Data collected may
include a substantial amount of noise, as well as redundant
and missing data. Cleaning and preprocessing these types of
inconsistencies in data is not an easy task, which might affect
the quality of the data collected. Therefore, it is essential to
have a standard procedure for data collection, and most of
the time, there are some standard operating procedures in
place. Yet, because of the difference between the available
tools for data collection under different circumstances, data
is not always collected uniformly. Another situation is when
data is collected from already existing sources and different
procedures are used during the data collection process.

Another main challenge in healthcare data is the distri-
bution shift [45], [76]. The term ‘“‘distribution shift” refers
to the vast variation in data collected from different sources
or at different times. For example, X-ray images could be
collected from a few different hospitals, each of which uses
a different type of machine with different settings. This issue
is not easy to resolve since it may be very costly and time-
consuming. Despite its good performance with noisy data,
BDL cannot work its magic on distributionally shifted data
where training and testing data are collected from different
sources with different settings. This issue is what makes
deploying DL models in healthcare so difficult since models
underachieve in performance with new data. This issue can
be alleviated slightly by employing techniques such as active
learning, in which human intervention can help train models
for new data, and incremental learning, in which models
learn about new data without forgetting or retraining on
old data.

Imbalance in training data is also a common issue in deep
learning in general, and particularly in healthcare data [46],
[551, [95], [99], and [110]. This problem particularly affects
results in classification and regression models where data
are not uniformly distributed. Models tend to perform very
well on classes with a high occurrence ratio (majority class),
while classes with a low occurrence ratio (minority class)
may rarely be classified or predicted. Numerous methods
have been developed to overcome data imbalance issues that
improve the performance of models to a certain level. In gen-
eral, BDL models perform better than classical DL when
data is skewed and imbalanced to a certain level. However,
for extreme cases of imbalanced data, which is the case in
many healthcare datasets, these methods do not produce good
results.
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C. RESEARCH GAPS

In this section, we will go through some of the research gaps
that have been raised in the implementation of BDL’s appli-
cation in healthcare. This list of research directions either has
shortages in published work or has not yet been addressed by
any means using BDL.

1) UNCERTAINTY QUANTIFICATION, INTERPRETABILITY,
AND CAUSALITY

When researchers in the field discuss uncertainty in DL mod-
els, the first thing that comes to mind is the use of BDL,
despite the fact that there are other alternative techniques
for quantifying uncertainty, such as ensemble models and
fuzzy logic. BDL has proven to be one of the most effective
techniques for uncertainty quantification. When we go a level
higher for clarification of model prediction, we will reach
interpretability. Classical deep learning works as a black box
since it cannot be determined how and why a given predicted
output has been chosen based on a given input. Luckily,
BDL can give insight on how and why a model predicted a
certain output given some inputs thanks to the use of BDL
structures. However, only a limited number of researchers
have taken advantage of this functionality by using BDL,
and from the reviewed papers in this study, we noticed that
only Hua et al. [94] used BDL for such a task. Therefore,
we believe that more research is needed in this area to fur-
ther investigate the ability of BDL for interpretation tasks.
Another fascinating topic in healthcare is causality, which
has received little attention from researchers. Causality (also
known as causal inference or casual analysis) is the study
of finding the cause and effect of a certain outcome, which
can be considered an optimal tool for analyzing healthcare
data. Bayesian inference can be used as a technique for causal
analysis. However, to the best of the authors’ knowledge,
no single published work in healthcare has used Bayesian
inference for causality analysis for DL models. It has only
been used by a few researchers in other areas of research.
As aresult, further study and investigation are required in this
field to offer knowledge of how valuable this field can be in
healthcare applications.

2) GENERAL GAPS OF BDL IN HEALTHCARE

Earlier sections of this study have reviewed BDL in health-
care, such as medical imaging and signal processing.
Although some of these papers have been reviewed, the
majority of published work has only covered the surface of
topics and opportunities in the field. In medical imaging, for
example, some papers have been published on the classifica-
tion task. Yet, there is a lot to be investigated when it comes
to classification because most of the published work has only
covered multiclass classification tasks. Nonetheless, there are
other classification types, such as binary classification, multi-
label classification, and hierarchical classification, where
BDL has not been used to model such problems and quantify
model uncertainty. Another task for medical image analysis is
segmentation, where only a few types of image segmentation
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have been covered by published work using BDL. To deter-
mine the practicality of these models and how the UQ affects
performance for different types of segmentation, such as
semantic segmentation, object/instance segmentation, panop-
tic segmentation, and edge segmentation, all types of image
segmentation should be investigated with BDL. Other med-
ical image tasks, such as image registration, image super-
resolution, and image reconstruction, have likewise received
little attention. To the best of the authors’ knowledge, there
is no single published work using BDL in clinical natural
language processing, which might create opportunities for
researchers to work in the field. EHR, audio, and video pro-
cessing have barely taken advantage of BDL, making them
an open subject for BDL to further investigate in more detail,
especially for uncertainty quantification tasks. In addition,
due to the lack of published work in those areas, such as
medical image captioning, medical image to a sequence that
can describe details of images, and text generation for clinical
reports, there are some areas of research that could have a
huge benefit in healthcare, as described in previous sections.

3) GAPS IN USING BDL FOR DIFFERENT MACHINE
LEARNING TASKS IN HEALTHCARE

Most of the published works in healthcare using BDL have
been reviewed in the previous sections. Among those, only
a few machine learning tasks have been covered, and some
of them have only a few related published works. It is
essential to know how much BDL can influence each of the
remaining machine learning tasks and deep learning architec-
tures. Despite its significant importance in healthcare, semi-
supervised learning is one of the useful machine learning
tasks that has not received the attention it deserves. Semi-
supervised learning comes between supervised and unsu-
pervised learning, where only a small amount of data has
labels for model training. Among the reviewed papers, only
Sedai et al. [61] used BDL for semi-supervised learning for
the segmentation task of the retinal layer. Another task that
has a shortage of using BDL for healthcare tasks is active
learning. Active learning requires human intervention to label
data as needed, since the dataset may not have enough
labeled data. This task is also important for healthcare appli-
cations since medical data labels do not always exist and
the process of labeling may be costly and time-consuming.
Only a few papers, including Raczkowski et al. [43],
Gal et al. [83], Mahapatra et al. [84], Saidu et al. [60], and
Bodenstedt et al. [32], have used BDL for active learning
tasks. Furthermore, except for Hassan et al’s [82] work,
continual learning and incremental learning are two different
machine learning tasks that can benefit healthcare but have
not been sufficiently investigated with BDL. In continual
learning, data is fed continuously to the model for training,
while in incremental learning; a trained model is retrained on
new data without having to use old data for training. Another
intriguing area that has received little attention is Graph neu-
ral networks, which can also be used to aid with graph data in
healthcare and benefit from BDL for uncertainty estimation.
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No published work has used a Bayesian graph neural network
for healthcare data, which opens up new opportunities in this
field.

IX. CONCLUSION

Deep learning has scaled up the use of machine learning
to an unprecedented level and has been deployed in most
fields such as computer vision, natural language processing,
and signal processing. In healthcare applications, deep learn-
ing models have been intensively used for medical imaging
tasks, signal processing, and electronic health record analysis.
Despite their success, classical deep learning models are suf-
fering from some issues, such as overfitting and establishing
the confidence level of the models’ output. To overcome these
issues, BDL has developed in recent years. For healthcare
data in general, BDL can be a better choice since it can
determine the uncertainty associated with data and is less
susceptible to noisy data, making it a good choice as a model
regularization technique. This paper provides a comprehen-
sive review of common BDL models used in the healthcare
field. Additionally, the most common Bayesian inference
methods in deep learning, such as MCMC, VI, and MC-
dropout, are described and reviewed. This paper reviewed
most of the published works that employed BDL for medical
imaging tasks such as image classification, segmentation,
registration, reconstruction, and enhancement. Other areas in
healthcare have also been reviewed, such as medical signal
processing, electronic health records, and video processing,
along with the implementation of BDL in a few widespread
diseases. Moreover, we discussed some challenges facing
researchers in both healthcare applications and BDL imple-
mentation, ending by presenting some future research gaps
and directions in this field.
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