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ABSTRACT This paper presents an adaptive and weighted model predictive control (MPC) algorithm for
autonomous driving with disturbance estimation and prediction. Unexpected and unpredictable disturbances
in the real world limit the performance ofMPC. To overcome this limitation, this paper proposes adaptive and
weighted prediction methods with a sliding mode observer and a weighting function with the grey prediction
model. The sliding mode observer is designed for disturbance estimation with finite stability conditions, and
the estimated disturbance is predicted using the grey prediction model. Based on the adaptive and weighted
prediction method, the length of prediction horizon and cost value of each predicted state are adjusted in
real time to eliminate any negative impact on future predicted states. Meanwhile, a variation in the cost
value, which is caused by prediction horizon adaptation and weighted prediction, may harm the control
performance as it can excessively increase or decrease the model uncertainty. Therefore, an input weighting
factor is adapted in the MPC cost function based on an exponential weighting function. The performance of
the proposed adaptive control algorithm is evaluated using CarMaker software under longitudinal and lateral
autonomous driving scenarios.

INDEX TERMS Autonomous driving, disturbance estimation, grey prediction, model predictive control,
sliding mode observer, weighted prediction.

I. INTRODUCTION
Autonomous vehicles represent an important part of the
mobility platform for transportation and shipping applica-
tions because of their features such as safe control and con-
venient driving without requiring a human driver. For these
features, the target value tracking performance should be
ensured by appropriate control technologies that can with-
stand various conditions, including physical, control input,
and state conditions. Relative displacement states, such as
lateral and yaw angle, are generally used as target values for
the path tracking of autonomous vehicles. The time deriva-
tives of these states can be used as target values according to
the controller type and available information. Various control
methods are used for target value tracking; these methods
include robust and predictive control algorithms are used for
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sliding mode control and model predictive control (MPC),
respectively. Sliding mode control [1] can be designed based
on a sliding surface, and various surfaces can be designed
to improve the control performance despite the disturbance
due to the stability condition in the Lyapunov direct method.
Because of its robustness, this technique has been used for
the tracking control of vehicles. However, there are some
limitations: the controller only considers current states, and
chattering may occur due to a discrete injection term of
the control input. Accordingly, MPC [2] has also been used
for the multi-input multi-output (MIMO) system control of
vehicles based on a reasonable prediction model. Because
MPC can consider states and input constraints, predictive and
realistic optimal control inputs can be computed if the system
model can represent the actual dynamics of the system. How-
ever, model uncertainty, which can be increased or decreased
over the MPC prediction process, is inevitable. This unpre-
dictable uncertainty can also have a negative influence on
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the performance of MPC. Therefore, a reasonable estimation
of current disturbances and a reasonable prediction of future
disturbances are essential for maintaining the control stability
of MIMO control systems. The following text describes algo-
rithms that have been proposed to improve the performance
of adaptive MPC by estimating, predicting, and rejecting
disturbances.

Akpan and Hassapis [3] proposed two adaptive MPC algo-
rithms consisting of online process identification and pre-
dictive control parts. The two control strategies, nonlinear
MPC and generalized predictive control, were designed in
the predictive control part. For the process identification,
a process model was approximated using a series-parallel
neural network structure trained by recursive least squares.
AnMPC schemewith guaranteed closed-loop asymptotic sta-
bility was proposed in [4] for a class of constrained nonlinear
time-delay systems with discrete and distributed delays. A
locally asymptotically stabilizing controller and Lyapunov–
Krasoskii functional of the locally stabilized system were
designed and employed for the terminal cost of the MPC.
The proposed method was demonstrated by a numerical
example. Pourjafari and Mojallali [5] proposed an MPC-
based voltage control scheme to overcome voltage insta-
bility, which has a close relationship with the adequacy of
reactive power and the response under load-tap changers.
Zeng et al. [6] presented a new multivariable grey prediction
model by adding dependent variable lag, linear correction,
and random disturbance terms to the traditional grey model.
The proposed model was proved theoretically, and three
case studies were conducted for performance evaluation.
Pedersen et al. [7] compared three methods to investigate
the superheat performance in a refrigeration system with
respect to disturbance rejection: traditional gain scheduled
proportional–integral-based controller, predictive functional
controller, and predictive functional controller. Han et al. [8]
proposed a new congestion control method to compensate for
the effects of nonlinear disturbance, uncertainty, time-varying
delay, and input constraint. The authors designed a state feed-
back congestion controller by applying the MPC approach,
and they analyzed the stability of the closed-loop system
using a Lyapunov–Kraovskii functional. Fukushima et al. [9]
proposed an adaptive MPC algorithm for a class of con-
strained linear systems. It was designed so that the adaptive
control algorithm could estimate system parameters online
and produce a control input that would satisfy input and
state constraints for possible parameter estimation errors.
The robust MPC method using a comparison model was
combined with an adaptive parameter estimation method.
Li and Shi [10] studied the event-triggered MPC problem for
continuous-time nonlinear systems subject to bounded distur-
bances. Based on themeasured error between the system state
and its optimal prediction, an event-triggered mechanism
was developed and used to design an event-triggered MPC
algorithm with the dual-mode approach. Kohler et al. [11]
presented a tube-based framework for robust adaptive model
predictive control (RAMPC) for nonlinear systems subject

to parametric uncertainty and additive disturbances with the
set-membership estimation method. This study showed that
the RAMPC algorithm ensures robust recursive feasibility
and robust constraint satisfaction. Hajizadeh et al. [12] pro-
posed an adaptive MPC algorithm with dynamic adjust-
ments of constraints and objective function weights based
on estimates of the plasma insulin concentration for arti-
ficial pancreas systems. The performance of the proposed
adaptive MPC algorithm was demonstrated by simulation
case studies. Garimella et al. [13] addressed the problem of
motion planning among obstacles for quadrotor platforms
under external disturbances and with model uncertainty. They
proposed a novel nonlinear MPC optimization technique to
address the aforementioned problem. The technique incor-
porates specified uncertainties into the planned trajectories.
Babaie et al. [14] developed a supervised learning MPC to
cancel common-mode voltage in a three-phase NPC inverter
while tracking the control objectives of capacitor voltage bal-
ancing, load current reference tracking, and common-mode
voltage suppression. In the study, the weighting factor for a
cost function was optimized, and the developed algorithm
was evaluated under several experimental and simulation
tests. Rosolia et al. [15] presented a reference-free learn-
ing model predictive controller for linear systems, which
can improve performance by learning from previous iter-
ations. Simulation results showed the effectiveness of the
control logic. Li et al. [16] proposed a latent variable iter-
ative learning MPC method for trajectory tracking in batch
processes, where a state–space model was used to express
the dynamic characteristics of the internal model. Koller et
al. [17] presented a learning-based MPC scheme that can
provide provable high-probability safety guarantees. For the
design of the control algorithm, regularity assumptions on the
dynamics were exploited under a Gaussian process prior to
constructing provably accurate confidence intervals on pre-
dicted trajectories. Based on the results of previous studies,
it can be seen that there exist various methods to design
robust and adaptive MPC algorithms, including parameter
estimation, event-triggered methods, and disturbance com-
pensation. Generally, the methods used for adaptive MPC
algorithm design are based on mathematical models or rule-
based approaches. However, model- and rule-based design
methods have limitations in that they can have a positive
influence on control performance under limited conditions
considered in the design process and there always exist unpre-
dictable internal and external disturbances. However, because
MPC generally has advantages such that the system state and
input constraints can be considered and human-like predictive
control inputs can be derived if model uncertainty is not rela-
tively large,MPC has been used for variousmultivariable sys-
tems, including vehicle control systems. As vehicle systems
become more complex and nonlinear, vehicle system models
have the same limitation as above in that there always exist
unpredictable internal and external disturbances. To over-
come this limitation, several studies have developed diverse
advanced MPC algorithms based on stochastic-, prediction-,
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and learning-based methods for vehicle system control as
follows.

Ripaccioli et al. [18] illustrated the use of stochastic MPC
for power management in vehicles equipped with advanced
hybrid powertrains and proposed several control strategies
mainly based on heuristics or rules and tuned certain refer-
ence drive cycles. Tsao et al. [19] presented a stochastic MPC
algorithm that leveraged short-term probabilistic forecasts
for dispatching and rebalancing autonomous mobility-on-
demand systems. The authors also presented a core stochastic
optimization problem in terms of a time-expanded network
flow model to design the controller. Seo et al. [20] pre-
sented a motion planning algorithm for lane change with a
combination of probabilistic and deterministic prediction for
automated driving under complex driving circumstances. For
the design of a vehicle motion planning algorithm for a lane
change, a collision probability was defined using a reachable
set of uncertainty propagation; furthermore, the lane change
risk was monitored using predicted time-to-collision and
safety distance to guarantee safety in lane change behavior.
Moser et al. [21] proposed a stochasticMPC approach to opti-
mize the fuel consumption of vehicles. A real measurement-
based conditional linear Gauss model was developed and
trained to estimate the probability distribution of the future
velocity of the preceding vehicle. He et al. [22] proposed
a stochastic model predictive controller for air conditioning
systems to improve the energy efficiency of electric vehicles.
The velocity predictor was adopted based on a Markov chain
to realize a sense of future disturbances over the stochas-
tic MPC horizon; three control approaches were compared
in terms of electricity consumption, cabin temperature, and
comfort fluctuation. Rosolia et al. [23] developed a novel
learning MPC technique for application to an autonomous
racing problem, with the aim of minimizing the time to com-
plete a lap by analyzing data from previous laps to improve
performancewhile satisfying safety requirements. Elsisi et al.
[24] proposed a hybridization method between discrete-time
Laguerre function and MPC to formulate the MPC with few
parameters using a recent artificial intelligence technique.
Various scenarios were considered to confirm the superiority
of the proposed control method. The same author Elsisi [25]
suggested an optimal design for the nonlinear MPC based on
a newly improved intelligence technique known as modified
multitracker optimization algorithm. This modification was
carried out using the opposition-based learning and quasi
OBL approach. The author in [26] also provided a new design
of the adaptive MPC for blade pitch control in wind energy
conversion systems using the crow search algorithm. With
the help of a new artificial intelligence technique named bat-
inspired algorithm, Elsisi et al. [27] developed an optimal
design of the MPC with superconducting magnetic energy
storage (SMES) and capacitive energy storage (CES) devices
for load frequency control.

These studies focused on the development of stochastic
MPC and learning-based MPC algorithms using past data to
enhance control performance by reducing the negative impact

of model uncertainty and improving the MPC optimization
algorithms.

In our study, an adaptive and weighted MPC algorithm
with disturbance estimation and prediction was developed for
autonomous driving by the application of the grey prediction
method and weighting function. The main contributions of
this study can be summarized as follows with problem state-
ments of each issue:

(Problem statement) Uncertainties can be predicted unrea-
sonably in the prediction step of the MPC, which can have a
negative impact on control performance.

(Contribution-1) A prediction horizon adaptation algo-
rithm using disturbance estimation and prediction was pro-
posed to improve the MPC performance.

(Contribution-2) A weighted prediction algorithm for the
MPC was designed to decrease the negative impact of unrea-
sonable uncertainty prediction on control performance by
adjusting weighting values for predicted states.

A state–space model-based MPC algorithm was formu-
lated with physical constraints, such as input magnitude and
input change rate limits, to design an adaptive and weighted
MPC controller. The lumped disturbance of the error dynamic
equation was also estimated using a sliding mode observer
with finite stability conditions. The estimated disturbance
was used for disturbance prediction using the grey prediction
method, and the predicted future disturbances were used to
determine the length of prediction horizon. The exponential
weighting function was designed with a time constant func-
tion to determine weighting values in the cost function. The
time constant function was designed based on the change rate
of the estimated disturbance. A negative impact from uncer-
tainty can be reduced through adaptive prediction horizon
and weighted cost values. The performance of the designed
algorithm was evaluated using the CarMaker software under
autonomous driving scenarios, such as car-following and lane
change scenarios.

The remainder of this paper is organized as follows.
In Section 2, the problem formulation is explained, and
the proposed adaptive controller is conceptually described.
Section 3 describes the adaptive and weighted MPC algo-
rithm, and Section 4 presents the performance evaluation
results. Finally, Section 5 presents a summary of the study
alongside a limitation analysis and discussion of future
works.

II. PROBLEM DESCRIPTION AND OVERALL CONTROLLER
CONCEPT
In the real world, control performance may be degraded
generally by internal and external disturbances. The current
disturbance can be estimated, but there always exists a time
delay due to computation time, and a future disturbance is
unpredictable. In the prediction step of the MPC formulation,
an exact future disturbance is required to compute accurate
optimal predictive inputs. However, it is impossible to predict
future disturbance using the estimated current disturbance
because it cannot represent the actual current disturbance due

VOLUME 10, 2022 35253



K. Oh, J. Seo: Development of Adaptive and Weighted Model Predictive Control Algorithm for Autonomous Driving

FIGURE 1. Detailed model schematic of the proposed adaptive and
weighted MPC.

to time delay, and the future disturbance is unpredictable,
as described. This inaccurate current and future disturbance
information can have a negative influence on the control
performance of MPC because the cost function for MPC
will have an inaccurate value due to the wrong disturbance
information. In order to overcome the limitations caused by
inaccurate future disturbance information, we designed an
adaptation algorithm of the MPC prediction horizon using
the grey prediction method and a weighting function for
cost values of predicted states. For the estimation of the
current disturbance, a sliding mode observer was designed
using a discrete injection term with finite stability conditions.
Figure 1 shows a detailed model schematic of the proposed
adaptive and weighted controller.

The MPC block consists of three sub-blocks, constituting
error calculation, predicted output, and quadratic program-
ming, as shown in Fig. 1 (detailed model schematic). In the
error calculation block, a state error is calculated using the
target state xt and current state x. Based on the calculated
state error, the prediction horizon adaptation algorithm was
designed such that the predicted outputs are calculated using
the adapted prediction horizon Np and computed weighting
value Qw from the weighting value determination block. The
length of prediction horizon for a predicted output can be
adjusted based on the threshold approach using the predicted
disturbance. The future disturbance is predicted using the
grey prediction method, and the current disturbance d is
estimated based on a sliding mode observer under finite
stability conditions. The estimated disturbance d̂ along with
the designed weighting function is used to determine the
weighting value. The weighting function was designed so that
the effectiveness of the predicted states is decreased if the
disturbance negatively affects the control performance. Based
on the aforementioned functional flow, the control inputs u
can be computed based on the MPC algorithm, and the first
element of the computed predictive control inputs is selected

as the current control input. The next section describes the
adaptive and weighted MPC algorithm in detail.

III. ADAPTIVE AND WEIGHTED MODEL PREDICTIVE
CONTROL
The proposed MPC algorithm uses two methods of adap-
tive and weighted prediction to cope with the negative
effect on control performance by unpredictable distur-
bances and lessen the computational burden of the
algorithm.

The two methods for the MPC parameters adaptation
consist of the parts of ‘prediction horizon adaptation’ and
‘weighting value determination’. For the prediction horizon
adaptation, it was designed that the length of the prediction
horizon of the MPC is adjusted by the estimation and pre-
diction of disturbance. Particularly, the current disturbance
is estimated robustly using a sliding mode observer and the
estimated disturbance is predicted using the grey prediction
method. Then, the number of prediction steps is determined
based on the estimated and predicted disturbances by apply-
ing the threshold approach. If there exists a predicted distur-
bance larger than the predetermined threshold value at the ith
prediction step (1 ≤ i ≤ Np), the prediction step is selected
as (i-1) for the adaptation algorithm.

In the second part, adaptation of weighting factors for
predicted states, the change rate magnitude of the estimated
current disturbance is used to determine the time constant
in a weighting function. Based on the exponential function,
the weight function was designed so that weighting values
are decreased to reduce the negative impact of the predicted
disturbances if the change rate magnitude of the estimated
disturbance is increased. Both blocks for prediction horizon
adaptation and weighting value determination in Fig. 1 are
divided into further sub-blocks. First, the prediction hori-
zon adaptation block consists of disturbance prediction and
prediction horizon determination blocks. In the disturbance
prediction block, a future disturbance can be predicted based
on the grey predictionmethod using the estimated disturbance
from the sliding mode observer. The predicted disturbance
is used to determine the length of prediction horizon for the
predicted output in theMPC based on the threshold approach.
Second, the weighting value determination is sub-divided
into change rate estimation and weighting function blocks.
The estimated disturbance from the sliding mode observer
is also used to determine the weighting value for adaptive
MPC with the weighting function. For the determination
of weighting values, the change rate (time-derivative of the
estimated disturbance) is estimated using a linear Kalman
filter in the change rate block, which is used to compute
the weighting values for adaptive prediction in the weight-
ing function block. The determined prediction horizon and
weighting values are used for adaptation of the length of pre-
diction horizon and effectiveness of the future states towards
control input derivation. The following sub-section describes
the designed MPC algorithm in detail.
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A. MODEL PREDICTIVE CONTROL ALGORITHM
The system model used to design the MPC algorithm in
state–space form and the system output y defined using output
matrix C are described as follows:

ẋ = Ax + Bu+ Fw (1)

y = Cx (2)

where A, B, and F represent the system, input, and distur-
bance matrices, respectively, x, u, and w represent the system
state, input, and disturbance, respectively. As part of theMPC
algorithm design, an error (e) dynamic model based on the
target state is required and e represents the error between the
vehicle’s target state and its current state. In the car-following
scenario, the clearance error and velocity error between the
preceding vehicle and the subject vehicle velocities are con-
sidered. The lateral displacement error and yaw angle error
are considered for the lane-change scenario. The following
equations represent the derived error dynamic model based
on (1) and the matrix definitions:

ė = Ae− Bu+ ẋt − Axt − Fw (3)

The system model in (3) must be discretized for design of
the MPC, and the Euler forward method was used for dis-
cretization in this study. Equations (4), (5), and (6) represent
the discretized error dynamic model of (3), output for error
ye, and matrix definitions, respectively.

ek+1 = ADek + BDuk + FDwD,k (4)

ye,k = Cek (5)

AD = A1t + In,BD = −B1t,

FD = ẋt − Axt − Fw,wD,k = 1t (6)

where AD, BD, and FD represent system, input, and distur-
bance matrices for the discrete system model, respectively,
and 1t and I represent discretization time and the identity
matrix, respectively. The n in (6) represents the number of
state (x) elements. Based on the error state defined in the
derived discrete error dynamics in (4) and the output error
from (5), the predicted output for the MPC formulation is
derived using matrices AD, BD, and FD as follows. Equa-
tion (7) is the predicted output Yp and (8)–(14) define the
matrices in (7).

Yp = Gpek + HpUp + Fpuk +MpWp + KpwD,k (7)

where uk is the current optimal control input and Up is
the system control input vector that contains future optimal
control inputs.

Gp =
[
CAD CA2D · · · CAND

]T (8)

Hp =


0 0 · · · 0

CBD 0 · · · 0
...

...
. . .

...

CA
Np−2
D BD CA

Np−3
D BD · · · 0

 (9)

Up =
[
uk+1 uk+2 · · · uk+N

]T (10)

Fp =
[
CBD CADBD · · · CA

Np−1
D BD

]T
(11)

Mp =


0 0 · · · 0

CFD 0 · · · 0
...

...
. . .

...

CA
Np−2
D FD CA

Np−3
D FD · · · 0

 (12)

Wp =
[
wD,k+1 wD,k+2 · · · wD,k+N

]T (13)

Kp =
[
CFD CADFD · · · CA

Np−1
D FD

]T
(14)

For the computation of the optimal control inputs, the cost
function shown in (15) was defined with weighting matrix
Wx ∈ RnNp×nNp and constant Wu ∈ R for state and control
input.

J = Y Tp W
T
x WxYp +WuUT

p D
TDUp (15)

where matrix D is a difference matrix consisting of positive
and negative 1’s. In this study, weighting matrix Wx was
designed using the weighting function for weighted predic-
tion. The designed weighting matrix in (15) is given as fol-
lows.

Wx =


Qw,1 0 · · · 0

0 Qw,2
. . .

...
...

. . .
. . . 0

0 · · · 0 Qw,Np

 (16)

As shown in (16), matrix Wx is a square diagonal matrix,
and its diagonal elementsQw,i(i = 1, · · · ,Np) were designed
based on the change rate of disturbance for adjusting the
control performance effectiveness of the future states in the
cost function. Detailed explanations are given in the follow-
ing sub-sections. Based on the defined cost function in (15)
with weighting values and the computed predicted output,
the quadratic programming method was used to find the
optimal control input withmultiple constraints, such as equal-
ity, inequality, and boundary constraints. In this study, the
inequality constraint and boundary constraint were applied
as physical constraints for consideration of change rate limit
and magnitude limit of control inputs. The following equa-
tions describe the applied inequality constraint and boundary
constraint:

AinUp ≤ Bin (17)

Up,upper =
[
umax umax · · · umax

]T
Up,lower =

[
umin umin · · · umin

]T (18)

where umax and umin are maximum and minimum control
inputs that a physical actuator can produce in the real world.
Matrices Ain and Bin represent inequality constraints and
contain the current and future control inputs, respectively.
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The following equations describe Ain and Bin.

Ain,1 =


Im −Im 0 0 · · ·

0 Im −Im 0 · · ·

0 0 Im −Im · · ·

0 0 0 Im · · ·

...
...

...
...

. . .

 (19)

Ain,2 = −Ain,1

Bin,1 =
[
uk +1umax 1umax · · · 1umax

]T
Bin,1 =

[
−uk +1umax 1umax · · · 1umax

]T (20)

Ain =
[
Ain,1 Ain,2

]T
,Bin =

[
Bin,1 Bin,2

]T (21)

where 1umax represents the maximum input difference that
an actual control actuator can make, and it takes strictly
positive values, and m is the number of control inputs of the
system. The MATLAB function for quadratic programming
was used, and constraints were also applied to the quadratic
programming function using matrices Ain, Bin, Up,upper , and
Up,lower designed inMATLAB. For the design of the adaptive
and weighted MPC algorithm, the disturbance was estimated
based on a sliding mode observer, and adaptation algorithms
were developed for adjusting the prediction horizon Np and
weighting values w. The three algorithms mentioned above
are described and explained in the following sub-sections.
The next sub-section explains the sliding mode observer
design under finite stability conditions for disturbance esti-
mation.

B. SLIDING MODE OBSERVER-BASED DISTURBANCE
ESTIMATION
In this study, the sliding mode observer was adopted for
disturbance estimation under finite stability conditions. The
following equations describe the observer dynamics based
on (3), the linear transformation matrix for observer design,
and observer output yo, respectively.

˙̂e = Aê− Bu+ Gnv (22)

T =
[
null(Co) Co

]T (23)

yo = Coe (24)

where v and Gn represent the injection term and its distri-
bution matrix, respectively. ê and Co are the estimated error
and output matrix for the sliding mode observer, respectively.
The output matrix and distributionmatrix are defined asCo =[
1 1

]
andGn =

[
L −I

]T . L is the design parameter for
observer stability. Based on linear transformation of the error
state and observer output, partitioned error equations of error
ẽ between current error and estimated error can be derived as
follows.

˙̃es = A11ẽs + A12ẽy + Lv (25)
˙̃ey = A21ẽs + A22ẽy − v (26)

where ẽs and ẽy represent estimation errors for transformed
error by the transformation matrix and output error, respec-
tively. v is the injection term designed so that the errors

converge to zero. To ensure the stability of errors defined
in (25) and (26), we first used the Lyapunov direct method
to stabilize the output error under finite stability conditions.
The cost function for the Lyapunov method was defined with
two conditions as follows.

Jo =
1
2
ẽ2y (27)

Condition-1 : lim
|ẽy|→∞

Jo = ∞

Condition-2 : J̇o ≤ −αJ1/2o (28)

Condition-1 is the basic condition such that the cost value
becomes infinite if the observer output error approaches
infinity. Condition-2 represents the finite stability conditions.
The time-derivative of the cost function was derived, and
the injection term was designed using the sign value of the
output error. The following equation is used to obtain the
time-derivative of the cost function.

J̇o = ẽy ˙̃ey = ẽy
(
A21ẽs + A22ẽy − v

)
(29)

With the assumption that the observer disturbance A21ẽx+
A22ẽy on the right side of (29) is bounded by upper limit Lb,
i.e.,

∣∣A21ẽx + A22ẽy∣∣ ≤ Lb and the injection term is defined
by v = −ρsign(ẽy), (29) can be rewritten as follows.

J̇o = ẽy ˙̃ey ≤ −
∣∣ẽy∣∣ (ρ − Lb) (30)

As it can be seen in (30), the magnitude of the injection
term ρ should be greater than or equal to the disturbance
boundary Lb for asymptotic stability of the output error.
To ensure the finite stability of the output error, we applied
the second condition described in (28). The second condition
can be rewritten based on the separation of variables and the
cost function as follows.

J̇o ≤ −
α
√
2

∣∣ẽy∣∣ (31)

The two inequality conditions for the time-derivatives of
the cost value in (30) and (31) should be satisfied for observer
stability. The magnitude of the injection term ρ can be deter-
mined by setting the right-side terms of (30) and (31) as equal.
As a result, the injection value v for output error stability can
be derived according to (33) using the determined ρ value and
the sign of observer output error.

ρ = Lb +
α
√
2

(32)

v = −
(
Lb +

α
√
2

)
sign

(
ẽy
)

(33)

Because the injection term can stabilize the observer output
error in finite time based on the design process and con-
ditions, the observer output error can converge to zero in
finite time.With the assumption that the observer output error
converges to zero, the equivalent injection term veq can be
derived based on (25) and (26), which can be rewritten as
follows.

veq = A21ẽs (34)
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FIGURE 2. Concept of prediction horizon adaptation for MPC algorithm.

˙̃es = (A11 + LA21) ẽs (35)

To stabilize the transformed error state ẽs in (35), the design
parameter L was designed so that the eigenvalue of the differ-
ential equation is negative definite. After convergence of the
observer output and transformed state errors, the disturbance
term De in (3) can be estimated based on the equivalent
injection value and its distribution matrix as follows.

D̂e = ẋt − Axt − Fw = Gnveq (36)

The estimated disturbance D̂e was used for determination
of the length of prediction horizon Np and weighting values
Qw for future states for adaptation of theMPC algorithm. The
next sub-section describes the prediction horizon adaptation
method of the proposed algorithm.

C. PREDICTION HORIZON ADAPTATION ALGORITHM
In this study, the adaptation algorithm for the length of pre-
diction horizon in MPC was designed using the estimated
disturbance from the grey prediction method and the thresh-
old approach. Fig. 2 illustrates the concept of the prediction
horizon adaptation algorithm designed in this study, where
De,th represents the disturbance threshold for determination
of the length of prediction horizon as a design parameter.

As shown in Fig. 2, the adapted prediction number Np was
designed such that the predicted disturbance is greater than
the defined disturbance threshold. For disturbance prediction,
the grey prediction method was used with the estimated
and saved past Npast disturbances. The first-order differential
equation for disturbance prediction is

ẇDe + awDe = b (37)

where a and b are the coefficients of the differential equation.
The coefficients were estimated for disturbance prediction
using the least squaresmethod. After the discretization of (37)
using the same discretization time1t , matricesMDe and NDe
based on the linear equation of least squares can be derived
as follows.

MDe
[
a b

]T
= NDe (38)

MDe =

[
D̂e,k · · · D̂e,k−Npast+1
−1 · · · −1

]T
(39)

FIGURE 3. Concept of weighting value adaptation algorithm.

NDe =


(
De,k−1 − De,k

)
/1t

...(
De,k−Npast+1 − De,k−Npast+2

)
/1t


(40)

Using matrices MDe and NDe , we can estimate the coeffi-
cients a and b as follows.[

a b
]T
=

(
MT
DeMDe

)−1
MT
DeNDe (41)

Based on the estimated coefficients and discretized equa-
tion of the differential equation, the future disturbances can be
predicted by considering the changing tendency of the saved
past disturbances. Based on the adapted prediction horizon
with the threshold approach using the predicted disturbances,
the length of prediction horizon in theMPC for predicted out-
put derivation can be determined adaptively in real time. It is
designed such that the weighting factor Wu for future input
difference minimization is tuned according to the adapted
prediction horizonN for determining a proper weighting ratio
in the cost value. The tuning rule was designed such that the
weighting factor decreased as the prediction horizon length
decreased. The weighting factors for tuning were determined
empirically. The development of a weighting factor adapta-
tion algorithm is considered as a topic of future work for
improving control performance. Through the implementation
of the adapted prediction horizon with the designed thresh-
old approach, negative effects on control performance from
disturbances can be reduced. The next sub-section describes
the proposed weighting value adaptation algorithm using the
estimated disturbance.

D. WEIGHTING VALUE ADAPTATION ALGORITHM
In this study, the weighting value Qw adaptation algorithm
was designed for adjusting the impact of predicted states
in the cost function on the control performance using the
estimated disturbance. Fig. 3 illustrates the concept of the
proposed weighting value adaptation algorithm, where Qw,k
is the current weighting value determined as an initial param-
eter for the control algorithm. It is designed such that the
predicted weighting values Qw,k+1, · · · ,Qw,k+Np decrease
exponentially if the magnitude of the estimated disturbance
is greater than zero, based on the function representing the
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FIGURE 4. Relationship between time constant and magnitude of
disturbance change rate.

relationship between time constant τ and the magnitude of
the estimated disturbance

∣∣∣ ˙̂De∣∣∣.
The following equation is the weighting function based on

the time constant:

Qw,i =
√
CQe−

1
τ (1t×i),

(
i = 1, 2, · · · ,Np

)
(42)

where CQ is the proportional gain for determination of the
initial magnitude of the weighting value. The weighting
value varies with the time constant in the range of (0, 1].
In this study, it was designed that the time constant is deter-
mined using the estimated disturbance to reduce its negative
impact on the control performance. The time constant value
decreases to reduce the weighting value if the magnitude of
the disturbance change rate is increased as the prediction hori-
zon length increases. Fig. 4 shows the relationship between
the time constant and magnitude of the disturbance change
rate, where τmin, τmax, and

∣∣∣ ˙̂De,max

∣∣∣ represent the minimum
and maximum time constants and maximum magnitude of
the disturbance change rate as design parameters for the time
constant function design, respectively.

The mathematical expression of the relationship function
described in Fig. 4 is as follows:

τk =
τmin − τmax∣∣∣ ˙̂De,max

∣∣∣
∣∣∣ ˙̂De,k ∣∣∣+ τmax (43)

if
∣∣∣ ˙̂De,k ∣∣∣ = 0→ τk = τmax (44)

if
∣∣∣ ˙̂De,k ∣∣∣ ≥ ∣∣∣ ˙̂De,max

∣∣∣→ τk = τmin (45)

The computed time constant is used to compute the weight-
ing value based on (42). The number of computed weighting
values is equal to Np. Consequently, the computed weighting
value Qw is used as an element of Wx in the cost func-
tion (15) that can be transformed into the quadratic form to
solve an optimization problem. The following equation is the
quadratic form of the cost function.

J =
1
2
UT
p AUp + BUp (46)

Equation (46) should be strictly convex to successfully
solve the optimization problem with constraints [28]. The

TABLE 1. Specifications of the vehicle used for evaluation.

FIGURE 5. Model schematic of the control algorithm used for
performance evaluation.

matrices A and B in Eq. (46) include weighting matrices
and matrices for the predicted output Yp. All the eigenvalues
of the matrix A should be positive for the strictly convex
condition. To achieve this, weighting values were designed
to vary in the positive region. The robust analysis is planned
for future work because the weighting value adaptation may
influence the control performance. The next section describes
the performance evaluation results of the designed adaptive
MPC algorithm using the CarMaker software.

IV. PERFORMANCE EVALUATION
To evaluate the performance of the adaptive and weighted
MPC algorithm, a lane change scenariowith constant-velocity
driving and a car-following scenario were considered.
The adaptive MPC algorithm was designed in the MAT-
LAB/Simulink environment, and the CarMaker software
was used together with MATLAB/Simulink for performance
evaluation. Table 1 presents the specifications of the vehicle
used for evaluation.

Figure 5 shows a model schematic for performance evalu-
ation of the control algorithm.

Based on the designed adaptive and weighted MPC algo-
rithm, the control inputs, such as desired acceleration and
steering angle, were computed adaptively for path and veloc-
ity tracking of the vehicle. To compute the control inputs,
we derived the longitudinal and lateral error dynamic mod-
els and used them for the MPC design based on the kine-
matic relationship vehicle state and target state, respectively.
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FIGURE 6. Car-following scenario for performance evaluation.

FIGURE 7. Results: velocity [preceding vehicle and subject vehicle].

The following sections describe the performance evaluation
results of the longitudinal and lateral autonomous driving.

A. CAR-FOLLOWING SCENARIO
The car-following scenario used for performance evaluation
was designed such that the subject vehicle tracked the preced-
ing vehicle velocity and the desired clearance was achieved.
In the design, the desired clearance was computed by mul-
tiplying the subject vehicle velocity and time headway. The
error dynamics used for the MPC formulation were based on
a kinematic model that represents the kinematic relationship
between positions of the subject and preceding vehicles [28].
Fig. 6 and (47) show the considered car-following scenario
and kinematic model-based error dynamics used for evalua-
tion.[

ė1,L
ė2,L

]
=

[
0 1
0 0

] [
e1,L
e2,L

]
+

[
0
−1

]
as +

[
0
1

]
ap (47)

where e1,L and e2,L represent the clearance error and relative
velocity, respectively. as and ap are longitudinal accelerations
of the subject vehicle and preceding vehicle, respectively.
In this study, the preceding vehicle acceleration was consid-
ered as a disturbance in the kinematic model of (47) and was
estimated using the designed sliding mode observer. Table 2
lists the parameters used for performance evaluation of the
car-following scenario. As a main tuning parameter in the
table, the threshold, computation period, physical constraints,
and output matrix can influence control performance.

Figs. 7–17 show the performance evaluation results of
the proposed adaptive and weighted MPC algorithm. The
legend ‘‘w/o adaptation’’ represents the results when the fixed
weighting factor and prediction horizon were applied for the
adaptive MPC algorithm.

As shown in Fig. 7, the subject vehicle was able to track the
preceding vehicle’s velocity using adaptive control both with

TABLE 2. Control parameters used for performance evaluation
[Car-following scenario].

FIGURE 8. Results: clearance [w/o and w/ adaptation].

FIGURE 9. Results: velocity error [w/o and w/ adaptation].

and without adaptation with similar tracking performance.
Furthermore, there is a difference in tracking error perfor-
mance after deceleration begins after 30 s. Fig. 8 shows the
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FIGURE 10. Results: clearance error [w/o and w/ adaptation].

FIGURE 11. Results: cost value [w/o and w/ adaptation].

FIGURE 12. Results: preceding vehicle acceleration [current and
estimated values].

FIGURE 13. Results: subject vehicle acceleration [w/o and w/ adaptation].

clearance between the preceding vehicle and subject vehi-
cle. Figs. 9 and 10 show the control errors of velocity and
clearance. The magnitude of control errors with adaptation
was less than that without adaptation around 35 s because

FIGURE 14. Results: adaptive prediction horizon [w/o and w/ adaptation].

FIGURE 15. Results: predicted disturbances [w/ adaptation].

FIGURE 16. Results: calculated time constant [w/o and w/ adaptation].

FIGURE 17. Results: inverse time to collision [w/o and w/ adaptation].

the prediction horizon and weighting values were adapted by
the designed adaptation algorithms. Fig. 11 shows the cost
value as the sum of squared control errors. The maximum
cost value without adaptation was less than that with adap-
tation, with a difference of approximately 50 between the
results. The estimated disturbance and current disturbance
can be seen in Fig. 12, which shows that the disturbance
could be reasonably estimated by the designed sliding mode
observer with finite stability conditions. Longitudinal accel-
eration values are plotted in Fig. 13. The controller with
adaptation used a relatively higher acceleration value after
30 s than that without adaptation by using weighting factors
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FIGURE 18. Lane change scenario for performance evaluation.

and prediction horizon adaptation. Figs. 14 and 15 show the
adapted prediction horizon and predicted disturbance (k + 1,
· · · , k + Np), respectively. In Fig. 15, it is shown that the
predicted disturbances decrease and increase exponentially
around 30.2 s and 60.15 s, respectively based on the first-
order differential equation-based grey predictionmethod. The
length of prediction horizon began to decrease after 30 s and
60 s because the predicted disturbances exceeded the respec-
tive designed threshold values. The calculated time constant
to determine the weighting factor is shown in Fig. 16, where
the graph shape is similar to that of the acceleration graph in
Fig. 13. The computed time constant respectively decreased
after 30 s and 60 s as the estimated acceleration changed
significantly. As the length of prediction horizon decreased
and the increased change rate of the estimated disturbance
decreased the time constant, the designed weighting function
caused a decrease in the weighting values for future states.
Consequentially, a relatively large acceleration control input
can be derived from these adaptation results. In this study,
the inverse time to a collision was computed using the relative
velocity and clearance, and the results of the two cases shown
in Fig. 17 indicate that the absolute magnitude of the inverse
time to collision with adaptation was less than that without
adaptation. The next sub-section describes the performance
evaluation results under a lane change scenario with constant
velocity driving.

B. LANE CHANGE SCENARIO WITH CONSTANT VELOCITY
DRIVING
The lane change scenario was designedwith constant velocity
driving for performance evaluation of the control algorithm.
Reference paths were used for straight driving and lane
change. The error dynamics used for the lane change scenario
were based on the kinematic relationship between the mass
center position of the subject vehicle and the reference path
[29]. Fig. 18 and (48) describe the lane change scenarios and
error dynamics model used for the performance evaluation.[

ėy
ėψ

]
=

[
0 vx
0 0

] [
ey
eψ

]
+

[
0

vx/L

]
δ +

[
0
−1

]
ψ̇d (48)

where ey and eψ represent the lateral error and yaw angle
error, respectively. vx and L are the longitudinal velocity of
the subject vehicle and length between the front axle and
rear axle of the vehicle, respectively. δ and ψ̇d are the front
steering angle and desired yaw rate for path tracking, respec-

TABLE 3. Control parameters used for performance evaluation [Lane
change scenario].

FIGURE 19. Results: velocity [desired velocity and subject vehicle
velocity].

tively. Because the reference path is a straight line, the desired
yaw rate was assumed to be zero, and the disturbance (i.e.,
system model uncertainty of 48)) was estimated by applying
a sliding mode observer. Table 3 lists the parameters used for
performance evaluation of the lane change scenario.

Figs. 19–27 show the performance evaluation results of the
adaptive and weighted MPC algorithm proposed in this study
for the given scenario.

The left and right subfigures of Fig. 19 illustrate the veloc-
ity tracking performancewithout andwith adaptation, respec-
tively. As a consequence of applying the same longitudinal
controller for both cases (without and with adaptation) of
constant velocity tracking, as well as relatively small steering
inputs, similar tracking performance is observed and both
cases achieve reasonable tracking performance with steady-
state tracking after 30 s. There is also a relatively high
overshoot at near 10 s for both cases because a constant
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FIGURE 20. Results: lateral error [w/o and w/ adaptation].

FIGURE 21. Results: yaw angle error [w/o and w/ adaptation].

FIGURE 22. Results: lateral and yaw angle errors [zoom in].

FIGURE 23. Results: cost value [w/o and w/ adaptation].

desired velocity was applied continuously from beginning to
end during the performance evaluation (like a step reference
input). The lateral and yaw angle errors as a tracking control
error can be seen in Figs. 20 and 21, respectively. It can be
seen that the maximum magnitude values of lateral and yaw
angle errors with adaptation were less than without adap-
tation. There is a lateral error difference of approximately

FIGURE 24. Results: steering control input [w/o and w/ adaptation].

FIGURE 25. Results: adaptive prediction horizon [w/o and w/ adaptation].

FIGURE 26. Results: predicted disturbances [w/ adaptation].

FIGURE 27. Results: calculated time constant [w/o and w/ adaptation].

0.3 m and a yaw angle error difference of approximately
0.05 deg between the two cases. The cost value for quan-
titative analysis of control performance was computed by
summing the squared lateral and yaw angle errors, as shown
in Fig. 23. There is a cost value difference of approximately
0.2 between the two cases (i.e., with and without adaptation).
The overall steering control input as well as the zoomed-
in steering control input, showing a maximum difference of
approximately 1.5 degrees, are shown in Fig. 24. It can be
seen that the steering control inputs with adaptation were
relatively larger and faster than without adaptation, as the
weighting factor and prediction horizon were adjusted by the
designed algorithms. Also, the steering control inputs with
adaptation made the control errors converge to zero faster
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than without adaptation. Figs. 25 and 26 show the adapted
prediction horizon and predicted disturbances (k + 1, · · · ,
k + Np) by the first-order differential equation-based grey
prediction, respectively. The predicted disturbances in Fig
26 are shown to be decreasing exponentially around 50.1 s.
The length of prediction horizon began to decrease after 50 s
because the predicted disturbances exceeded the designed
threshold value. In this study, upper and lower limits of the
prediction horizon were not considered to guarantee theMPC
stability with respect to changing prediction horizons. Thus,
the derivation of upper and lower limits of prediction horizon
based on stability analysis [30], [31] is planned for future
work.

The calculated time constant for the weighting factor deter-
mination is shown in Fig. 27, which decreased after 50 s as
the change in estimated disturbance was significant. It can
be seen that the weighting value on future states decreased
by using the weighting function. This is due to the fact that
the length of prediction horizon decreased, and a reduction in
time constant was caused by a higher change rate of the esti-
mated disturbance. We can also see that by using a relatively
large steering control input, the maximum absolute values of
lateral and yaw angle errors with adaptation decreased more
than without adaptation.

V. CONCLUSION
This paper proposed an adaptive and weighted MPC algo-
rithm for autonomous vehicles based on disturbance estima-
tion with a sliding mode observer and the grey prediction
method. The sliding mode observer was designed under finite
stability conditions for disturbance estimation of the system,
and the estimated disturbance was predicted based on the
grey prediction model. The predicted disturbance was used
to determine the length of prediction horizon in the MPC,
with the threshold approach for prediction horizon adapta-
tion. Some limitations exist in determining a threshold value
for the adaptive prediction horizon in MPC and the size
of a window that contains past disturbances for disturbance
prediction using the grey prediction method. Therefore, the
development of an online self-tuning algorithm to determine
the threshold value and size will be considered as future
work so that the proposed control algorithm can respond to
various autonomous driving conditions. The change rate of
the estimated disturbance was also used for the determina-
tion of weighting values to reduce the negative impact of
unreasonable future disturbance predictions on the control
performance. The weighting values were computed using the
designed exponential weighting function. The performance
evaluation of the proposed adaptive and weighting MPC
algorithm was conducted using the CarMaker software under
longitudinal and lateral autonomous driving scenarios. The
evaluation results from the proposed adaptive and weighted
MPC algorithm show more reasonable control performance
in terms of control errors in transient response than the
conventional MPC algorithm without adaptation. However,
there are some limitations to the method for determining a

weighting value for the control input difference. Therefore,
the adaptation algorithm for the weighting value in the cost
function will be studied in the future, which can improve
the control performance by mitigating the negative impact of
unexpected disturbances on performance. The derivation of
upper and lower limits for adapted prediction horizons can be
also considered a future extension for ensuring MPC stability
when prediction horizons change in real time. Furthermore,
data-driven parameter adaptation methods without any rules
that rely on a recently developed artificial intelligence tech-
nology are feasible for future research. Finally, the proposed
algorithms will be experimentally validated with real-world
vehicles by incorporating the aforementioned approaches for
future studies.

As a result of demonstrating the successful performance
of our proposed adaptive and predictive control algorithm,
it is expected to be widely applied to various systems, such
as autonomous vehicles and robots.
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