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ABSTRACT This article considers the minimum variance state estimation of linear dynamic systems with
linear state equality constraints. The proposed method uses singular value decomposition to divide the
constrained system states into deterministic and stochastic parts. The deterministic part can be independently
determined through the constraint equations. The stochastic part consists of random variables which have
to be determined through a filtering process. The measurement and dynamic equations of the system are
also divided into stochastic and deterministic parts. In order to update the mean and covariance of the state
vector’s stochastic part, the measurement updating phase of the unconstrained Kalman Filter is used. Then,
the deterministic part of the dynamic equation is used as a noisy measurement for the proposed method.
Finally, the stochastic part of the dynamic equation is used to predict themean and covariance of state vector’s
stochastic part. Simulations show that the proposedmethod provides superior performance compared to other
methods in the literature especially for estimating the constrained unobservable states.

INDEX TERMS Constrained estimation, Kalman filters, optimal estimation, system decomposition.

I. INTRODUCTION
The well-known Kalman Filter (KF) has been used for
decades as an optimal state estimator from noisy measure-
ments [1]. When the state evolution and measurement equa-
tions are linear and all probability density functions of noises
and errors are Gaussian, the KF is the optimal minimum
variance estimator [1]. However, there are some cases in
which the states of the system are subjected to some linear
or nonlinear constraints due to conservation of a physical
quantity or imposition of a mathematical property in the mod-
eling of the system [2]–[4]. Sometimes developing dynamic
equations with constraints has some benefits. For example,
in attitude determination problems when the attitude dynamic
equations are parametrized with Euler angles, the problem
is nonlinear. However, when it is parameterized with quater-
nion, the dynamic equation will be linear with a nonlinear
constraint [5].
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Although constrained state estimation is a widespread
problem, there are a few studies about this problem [4].
The idea behind constrained filters comes from using the
constraint information to reduce the errors of estimation.
In other words, there is information in constraint equations
which could lead to reduce the covariance of the estimation
error [4].

One of the simplest methods to overcome with the con-
strained estimation is considering the constraint equations
as pseudo-measurement equations [6]–[8]. This method is
referred to as perfect measurements method, and will lead to
a singular covariance matrix in the KF. A singular covariance
matrix, however, may cause numerical problems in the imple-
mentation of the KF [9], [10].

Another well-known constrained estimation method is
based on the reduction of system states and then using the
unconstrained KF (uncKF) to solve the problem [11], [12].
One of the advantages of this method is that it can be easily
implemented. However, the physical meaning of the states are
lost due to the structural change in the states of the system,
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and then this will cause some difficulties in the interpretation
of the original problem [13].

Another approach is to project the estimations of the
uncKF onto the constraint space [12], [14], [15]. This
approach is called the estimate projection KF (epKF)
[12], [16]. Providing the state estimation using the uncKF,
a weighted least squares problem is solved to project the esti-
mation onto the constraint space. When the weights are the
inverse of the covariance matrix of the estimation error, the
maximum probability solution subjected to the constraints is
obtained [12]. When the weighting matrix is equal to the unit
matrix, the least squares solution subjected to the constraints
is conducted [12].

The generalization of epKF is presented in [17] which is
called the equality constrained KF (ecKF) [12], [16]. This
method adds error of constraints to the uncKF cost function
using of Lagrange multipliers [17]. The last method that we
consider is the system projection KF (spKF) which projects
the system onto the null space of the constraints and discussed
in [10], [12], [16]. The method projects not only the pre-
diction estimation but also the updated estimation onto the
constraints’ null space.

The methods mentioned above use a linear model for the
process and do not take into account any uncertainty in the
model. In real applications, the performance of the filter
will be reduced due to uncertainties in the system’s model
and drift in noise parameters. Newly an alternative method
based on trajectory function of time (T-FoT) is introduced in
[18], [19]. The method includes state equality and inequality
constraints and models target motion by curves to avoid the
difficulty of process noise modeling [18].

The main idea of the proposed method comes from using
the system’s dynamic equation more efficiently. The pro-
posed method is based on the separation of system state vari-
ables into deterministic and stochastic parts. The null space
of the constraint matrix is utilized to separate the system
variables. In addition, the system’s dynamic equation is used
more efficiently to reduce the effect of the system’s noise.
For the implementation of the proposed method, the original
states are projected onto both the null space and its com-
plementary space. Then, the system’s new states are divided
into two types, one with deterministic behavior and the other
with stochastic behavior. Deterministic part of the new state
is solved by linear constraint equations, and stochastic part is
first estimated by themeasurement equation. In the prediction
phase the system equations are divided into two parts again.
The first part predicts the stochastic part of the state and the
second part acts as a new noisy measurement equation.

A two-dimensional navigation problem with linear state
equality constraints is considered in order to compare the
estimation performance of the proposed method with of the
others in the literature developed for constrained systems.
When the system is fully observable all compared methods
have almost the same performances. However, when the sys-
tem is partially observable (some states are unobservable)
the performances of the compared methods are different.

The simulations show that the proposed method outperforms
uncKF, epKF, spKF and ecKF methods especially for esti-
mating the constrained unobservable states.

II. UNCONSTRAINED KALMAN FILTER
Consider a linear discrete-time time-varying system as
follows

xk+1 = Fkxk + Bkuk + Gkwk
zk = Hkxk + Dkuk + vk (1)

Here, k is the time index, Fk εRn×n, Bk εRn×r , Gk εRn×q,
Hk εRm×n and Dk εRm×r are system, deterministic input,
stochastic input, measurement, and input-output matrices
while xk εRn, uk εRr , wk εRq, zk εRm and vk εRm are
state, deterministic input, system noise, measurement, and
measurement noise vectors, respectively. We suppose that the
system noise and measurement noise vectors are Gaussian
random vectors with zero mean and with covariances Qk and
Rk , respectively. The initial condition of the state vector at
time zero is a random vector with known mean and variance
given by

E [x0] = x̂0|0, P0|0 = E
[(
x0 − x̂0|0

) (
x0 − x̂0|0

)T ] (2)

Here x̂0|0 and P0|0 are estimated initial values of the state
vector and its covariance, respectively. The operator E stands
for the expectation operator. Suppose x̂k|k−1 (prior estima-
tion) and x̂k|k (posterior estimation) are estimated state for
time tk by mesurements up to time tk−1 and tk , and their
covariances are Pk|k−1 and Pk|k , respectively. To find the
optimal estimation of the state vector at time tk , Problem I
which is an unconstrained optimization problem is defined
as
Problem I:

Minimize Jk

=
1
2

[ (
xk − x̂k|k−1

)T P−1k|k−1 (xk − x̂k|k−1)
+ (zk − Dkuk − Hkxk)T R

−1
k (zk − Dkuk − Hkxk)

]
(3)

Here prior estimation x̂k|k−1 and measurement vector zk are
known vectors and the weightingmatricesP−1k|k−1 andR

−1
k are

the inverse of covariance matrices of prior estimation error
and measurement noise, respectively.
Solution: To determine the optimal estimation of the state

vector, shown by x̂k|k , we need to calculate the derivative of
the performance index Jk with respect to xk , and setting it to
zero [1]

dJk
dxTk
=

[
P−1k|k−1

(
xk−x̂k|k−1

)
−HT

k R
−1
k (zk−Dkuk−Hkxk)

]
= 0 (4)

Then, the solution of (4) is

x̂k|k = x̂k|k−1 + Kk
(
zk − Dkuk − Hk x̂k|k−1

)
Kk = Pk|k−1HT

k

(
HkPk|k−1HT

k + Rk
)−1

(5)
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Here Kk is the Kalman gain. The error of posterior estimation
is computed as

êk|k = x̂k|k − xk = êk|k−1 + Kk
(
−H k êk|k−1 + vk

)
(6)

Here êk|k−1 is the error of prior estimation of xk and its
covariance is

Pk|k = (I − KkHk)Pk|k−1 (7)

The covariance of estimation error after measurement update
is lower than the prior covariance [1].
When probability density functions of all random vec-

tors are Gaussian, and measurement and system noises are
white and uncorrelated, the uncKF is the optimal unbiased
minimum variance estimator [1]. The uncKF has predictor-
corrector structure. It means that in the first phase, the filter
updates the mean and covariance of the state at time tk using
the measurement equation. In the second phase, it predicts
mean and covariance of state vector at the time tk+1 by using
the system equation. Each time the covariance decreases
in update phase and increases in prediction phase [1]. The
uncKF algorithm is summarized in Algorithm 1 [1], [20].

Algorithm 1 Unconstrained KF Algorithm
Initialization:

E [x0] = x̂0, cov
(
x̂0
)
= P0

Measurement Update:

Kk = Pk|k−1HT
k

(
HkPk|k−1HT

k + Rk
)−1

x̂k|k = x̂k|k−1 + Kk
(
zk − Dkuk − Hk x̂k|k−1

)
Pk|k = (I − KkHk )Pk|k−1

Prediction:

x̂k+1|k = Fk−1x̂k|k + Bk−1uk−1
Pk+1|k = FkPk|kFTk + GkQkG

T
k

III. PROPOSED CONSTRAINED KALMAN FILTER
In this section, a new method for implementing a KF algo-
rithm for systems with linear time-varying state equality
constraints is introduced. The proposed method has two steps
like the uncKF – update and prediction. In the following two
subsections, the update and prediction phases of the uncKF
will be expanded to cover the state equality constraints by the
separating state variables approach.

A. CONSTRAINED UPDATE PHASE
Now suppose that the system states satisfy some equality
constraints as

Ckxk = dk , k = 0, 1, 2, . . . (8)

where dk εRp is a known vector and Ck εRp×n is a known
and full row rank matrix. We assume that the number of

constraints is lower than the number of states, i.e., p < n and
all constraints are independent. When p = n, and constraint
matrix has full rank, then the system does not need any
estimator and one can calculate the state vector using (8)
without any error.

We are considering a factorization for the constraint matrix
Ck as

Ck =
[
Sk 0p×(n−p)

]
Vk (9)

where Sk is a full rankmatrix with the dimension of p× p, 0 is
zeromatrix, andVk is an orthonormal matrix with dimensions
of n × n. The above matrix factorization can be done by
well-known QR or Singular Value Decomposition (SVD)
methods [20]. Here we are defining a new state vector yk as

yk =
[
ξk
ηk

]
= Vkxk =

[
Uk

Vk

]
xk =

[
Ukxk
Vkxk

]
(10)

where ξk and ηk are two parts of the new state vector yk with
dimensions p and n − p, Uk and Vk are two parts of trans-
formation matrix Vk with dimensions p × n and (n− p) ×
n, respectively. We assume that the mean and covariance of
prior estimation of the state vector are available.

The relation between mean and covariance of the original
and new state vector of prior estimation is

ŷk|k−1 = Vk x̂k|k−1
Pk|k−1 = VkPk|k−1V T

k (11)

Here ŷk|k−1 and Pk|k−1 are mean and covariance of prior
estimation of the new state vector. Substituting (10) and (9)
into (8) gives

Skξk = dk (12)

Then using (12), the first part of new state ξk is calculated as

ξk = S−1k dk (13)

Here ξk is a deterministic vector due to the errorless solution
in (13) via the known parameters Sk and dk . As a result, its
covariance is zero (i.e., ξ̂k|k−1 = ξ̂k|k = ξk ). Then, the first
part of the new state vector yk has a deterministic behavior,
but its second part has a random behavior. After updating the
constraint equation and using (10) and (11)

η̂k|k−1 = Vk x̂k|k−1
Pk|k−1 = VkPk|k−1VTk (14)

are obtained. Here, η̂k|k−1 and Pk|k−1 are prior estimation of
the second part of the new state vector and its covariance.
Lets Lk and Lk be the two parts of transformed measurement
matrix with appropriate dimensions as

HkV T
k =

[
Lk Lk

]
(15)

Here thematricesLk andLk are knownmatrices with suitable
dimensions. Then using (15), the measurement in (1), can be
written as

Zk = zk − Dkuk − Lkξk = Lkηk + vk (16)
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Here Zk is a new known vector with dimension of m. The
equivalent problem for the estimation of ηk is defined by
Problem II as follows
Problem II:

Minimize Jk =
1
2

[ (
ηk − η̂k|k−1

)T P−1k|k−1
(
ηk − η̂k|k−1

)
+ (Zk − Lkηk)

T R−1k (Zk − Lkηk)

]
(17)

Similar to Problem I, the solution of Problem II can be
obtained as

η̂k|k = η̂k|k−1 +Kk
(
Zk − η̂k|k−1

)
Kk = Pk|k−1LT

k

(
LkPk|k−1LT

k + Rk
)−1

Pk|k = (I −KkLkPk|k−1) (18)

Here Kk is the Kalman gain, η̂k|k is posterior estimation of
ηk and Pk|k is its covariance.
Then the posterior estimation of yk and its covariance are

ŷk|k =
[
S−1k dk
η̂k|k

]
, Pk|k =

[
0 0T

0 Pk|k

]
(19)

It should be mentioned that, as shown is (19), the cross-
covariance of two parts of the new state vector and the first
part of the state vector are set to be zero. Now, using the
transformation described by (14), the mean and covariance
of the original state can be calculated as

x̂k|k = V T
k ŷk|k , Pk|k = V T

k Pk|kVk (20)

Then substituting (10) and (19) into (20) results in

x̂k|k = UT
k ξk + VTk η̂k|k , Pk|k = VTk Pk|kVk (21)

Thus, the estimated state is the summation of two vectors. The
first one is a deterministic vector with zero covariance and the
second one is a random vector with known covariance.

B. CONSTRAINED PREDICTION PHASE
In the prediction stage, the moments of xk+1 will be predicted
using the first two statistical moments of xk via the first
equation of (1). Here again, it is supposed that the constraints
in (8) are valid for the time tk+1, hence

Ck+1xk+1 = dk+1 (22)

The constraint matrix Ck+1 is factorized as

Ck+1 =
[
Sk+1 0p×(n−p)

]
Vk+1 (23)

We are considering a transformation as

yk+1 =
[
ξk+1
ηk+1

]
= Vk+1xk+1 =

[
Uk+1

Vk+1

]
xk+1 (24)

Then, using the transformationmatrixVk+1, the first equation
of (1) can be written as

yk+1 = F̄kyk + B̄kuk + Ḡkwk (25)

where F̄k , B̄k and Ḡk are system, input and noise input of the
transformed system matrices and they are defined as

F̄k = Vk+1FkV T
k+1, B̄k=Vk+1Bk , Ḡk=Vk+1Gk (26)

Then, (25) can be separated in two equations as

ξk+1 = F̄11,kξk + F̄12,kηk + B̄1,kuk + Ḡ1,kwk
ηk+1 = F̄21,kξk + F̄22,kηk + B̄2,kuk + Ḡ2,kwk (27)

Here F̄11,k , F̄12,k , F̄21,k and F̄22,k are partitions of F̄k , B̄1,k
and B̄2,k are partitions of B̄k , Ḡ1,k and Ḡ2,k are partitions of
Ḡk with appropriate dimensions. Using (22), (23) and (24),
the deterministic part of the transformed state can be obtained
as

ξk+1 = S−1k+1dk+1 (28)

Due to the deterministic behavior of ξk+1, its covariance is
zero. Besides, the correlation between ξk+1 and ηk+1 is zero.
Using the first equation of (27), we can update the estimation
of ηk and using the second equation of (27), we can predict
the random vector ηk+1. The first equation of (27) can be
rewritten as

Zk = ξk+1 − F̄11,kξk − B̄1,kuk = F̄12,kηk + Ḡ1,kwk (29)

Here Zk is the new known measurement vector. Then, using
information η̂k|k and Pk|k , we can re-update the estimation of
ηk . A new optimization problem can be defined as
Problem III:

Minimize Jk=
1
2

[(
ηk − η̂k|k

)T P−1k|k
(
ηk − η̂k|k

)
+
(
Zk − F̄12,kηk

)T Q̄−1k (
Zk−F̄12,kηk

)]
(30)

Here, we suppose that the covariance of the new defined
measurement is Q̄k = Ḡ1,kQk Ḡ

T
1,k and it is a full rank matrix.

When the matrix Q̄k is a singular matrix then we can have
another constraint and it will increase the accuracy of the
estimation.

Similar to Problem I, the solution of Problem III can be
obtained as

η̌k|k = η̂k|k +Kk
(
Zk − F̄12,k η̂k|k

)
Kk = Pk|k F̄T12,k

(
F̄12,kPk|k−1F̄T12,k + Q̄k

)−1
P̌k|k = (I −Kk F̄12,kPk|k ) (31)

Here η̌k|k is the new updated estimation of η̂k , P̌k|k is its
covariance, and Kk is the new Kalman gain. The prediction
of the mean of the new state’s second part is done by using
(27) and (31)

η̂k+1|k = F̄22,k η̌k|k + F̄21,kξk + B̄2,kuk (32)

The errors of η̌k|k and η̂k|k are represented by ěk|k and êk|k ,
respectively. Then, the error of the estimation is calculated
using the second equation of (27) and (31) as follows

ěk|k = êk|k +Kk
(
ξk+1 − F̄11,kξk − B̄1,kuk − F̄12,k η̂k|k

)
(33)
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Substituting ξk+1 from the first equation of (27) into (32)
results in

ěk|k = (I −Kk F̄12,k )êk|k +Kk Ḡ1,kwk (34)

Since the system noise wk does not affect the estimation
at time tk , cross-covariance between êk|k and wk is zero.
However, it will affect the estimation ěk|k , then

E
[
ěk|kwTk

]
= Kk Ḡ1,kE

[
wkwTk

]
= Kk Ḡ1,kQk (35)

Using (27) and (31), one can write

êk+1|k = F̄22,k ěk|k + Ḡ2,kwk k (36)

Then, the covariance of êk+1|k is

Pk+1|k
= F̄22,k P̌k|k F̄T22,k + Ḡ2,kQk ḠT2,k + F̄22,kKk Ḡ1,kQk ḠT2,k
+ Ḡ2,kQk ḠT2,kK

T
k F̄

T
22,k (37)

Now, using (27) and (31), the mean of the predicted trans-
formed state and its covariance can be obtained as

ŷk+1|k =
[
S−1k+1dk+1
η̂k+1|k

]
, Pk+1|k =

[
0 0T

0 Pk+1|k

]
(38)

Moreover, the mean and covariance of the original state can
be predicted as

x̂k+1|k = V T
k+1ŷk+1|k

Pk+1|k = V T
k+1Pk+1|kVk+1 (39)

Substituting (24) and (37) into (38) gives

x̂k+1|k = UT
k+1ξk+1 + VTk+1η̂k+1|k

Pk+1|k = VTk+1Pk+1|kVk+1 (40)

For the implementation of the proposed method, steps in
Algorithm 2 can be followed.

IV. SIMULATIONS
A simple two-dimensional navigation problem as shown in
Fig. 1 will be used to evaluate the performance of the pro-
posed method. A rover restricted to moving on an elliptical
path will be considered. The position of the rover with respect
to the inertial frame i is represented by (x, y). Suppose that a
gyroscopic stable platform keeps the body frame parallel to
the inertial frame. Two accelerometers measure the acceler-
ations in the body frame. The major and minor axes of the
ellipse are a and b, respectively. We can parameterize the
equations of the elliptic motion as

r =
[
rx
ry

]
=

[
a sin(t)
b cos(t)

]
(41)

Then, the velocity of the rover is

v =
[
vx
vy

]
=

[
a cos(t)
−b sin(t)

]
(42)

and the acceleration of the system is

f =
[
fx
fy

]
=

[
−a sin(t)
−b cos(t)

]
(43)

The system given above can be represented in discrete-time
state-space form as follows

xk = Fxk−1 + Buk−1 + Gwk−1
zk = Hxk + υk (44)

Here k is the time index, xk =
[
rTk vTk

]T is the state vector
of the system, uk−1 = fk−1 is the input vector, wk−1 is the
accelerometers’ noise, zk and υk are the measurement vector
and its white noise, respectively. We suppose that wk−1 and
υk are independent Gaussian random vectors with zero mean
and have covariances Q and R, respectively. In addition, the
matrices F , B, G, and H are,

F =


1 0 1t 0
0 1 0 1t
0 0 1 0
0 0 0 1

 (45)

B = G =


1t2/2 0

0 1t2/2
1t 0
0 1t

 (46)

H =
[
1 0 0 0
0 1 0 0

]
(47)

The simulation parameters are given in Table 1. We will
consider two types of measurement noise with standard devi-
ation values of 5m as high noise and 0.1m as low noise
measurements.

The simulated nominal position, velocity, and acceleration
of the rover are shown in Fig. 2. It is known that the tangential
velocity vt and normal velocity vn are

vt =
√
a2cos2 (t)+ b2sin2 (t)

vn = 0 (48)

In the defined problem, the velocity at time tk is

vk =
[

a cos(tk )
−b sin(tk )

]
(49)

Then, one can define the following time-varying constraint

Ckxk = dk
Ck =

[
0 0 b sin (tk) a cos (tk)

]
dk = 0 (50)

We can see from (50) that the velocity related elements of the
constraint matrix Ck oscillate and are sometimes zero. Thus,
at the time of a velocity related element be zero, the constraint
cannot improve the estimation of the corresponding state.

In the simulations, we are examining five filters which
are the unconstrained KF (uncKF), proposed constrained
KF (proKF), estimation projection KF (epKF), system pro-
jection KF (spKF), and equality constrained KF (ecKF).
In simulations, the performances of compared methods will
be evaluated for two different cases: Estimating observable
and unobservable states. In all simulations, the errors in the
x-direction are not considered since velocity and position
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Algorithm 2 Proposed Constrained KF Algorithm
Initialization:

E [x0] = x̂0, cov
(
x̂0
)
= P0

Measurement Update:
- Factorize thematrixCk and extract thematrices Sk and
Vk using (9).

- Partition matrix Vk as Uk and Vk using (10).
- Estimate the deterministic part of the new state (ξk )
using (13).

- Use (14) to calculate the mean and covariance of the
stochastic part of the new state.

- Use (16) to calculate the new measurement vector
(Zk ).

- Use (18) to update the mean and covariance of the
deterministic part of the new state (η̂k|k ,Pk|k ).

- Use (19) to estimate the new state’s mean and covari-
ance (ŷk|k ,Pk|k ).

- Use (21) to estimate the original state (x̂k|k ,Pk|k ).
Prediction:
- Factorize the matrix Ck+1 and extract the matrices
Sk+1 and Vk+1 using (22).

- Partition matrix Vk+1 as Uk+1 and Vk+1 using (24).
- Estimate the deterministic part of the new state (ξk+1)
using (28).

- Using (26) and (27) extract the following matrices
F̄11,k , F̄12,k , F̄21,k , F̄22,k , B̄1,k , B̄2,k , Ḡ1,k , Ḡ2,k

- Calculate the new measurement vector (Zk ) in (29).
- Update the mean and covariance of the stochastic part
of the new state vector (η̌k|k , P̌k|k ) using (31).

- Predict the mean and covariance of the stochastic part
of the new state (η̂k+1|k ,Pk+1|k ) by (32) and (37).

- Calculate the prediction of the new state
(ŷk+1|k ,Pk+1|k ) using (38).

- Calculate the mean and covariance of the original state
vector (x̂k+1|k ,Pk+1|k ) using (40).

- Go to the measurement update phase.

FIGURE 1. Inertial navigation with a reference path.

errors in x-direction are stable and remain small. In all fig-
ures, there are five subplots which are the errors of the uncKF,
proKF, epKF, spKF, and ecKF, respectively. The error initial
condition of the navigation system will have zero mean and
a covariance P0 as

P0 = diag(
[
4 4 0.01 0.01

]
) (51)

TABLE 1. Simulation parameters.

A. OBSERVABLE CONSTRAINED STATE ESTIMATION
Physically, we know that all navigation parameters are
observable when position measurements in x and y- direc-
tions are available. Observability matrix is a full rank matrix
and then all states are observable. After 1000 times Monte
Carlo simulations the root mean square of velocity and posi-
tion errors in y-direction as a function of time for compared
methods are shown in Fig. 3 and Fig. 4.

Fig.3 shows that uncKF has steady error close to
0.03m/sec, while other filters have oscillatory errors at steady
condition. Maximum errors for constrained filters at the
steady condition are 0.0089, 0.0107, 0.1092 and 0.0107m/sec
for proKF, epKF, spKF and ecKF, respectively.

Fig. 4 shows that the position error in y-direction is stable
but oscillating for all filters. The error peaks after 14 seconds
for the different filters are 0.1751, 0.0267, 0.0467, 0.1536,
and 0.0467m for uncKF, proKF, epKF, spKF and ecKF,
respectively. The computational loads for the 20-second sim-
ulations are 0.0240, 0.1430, 0.0386, 0.065, and 0.0381sec for
uncKF, proKF, epKF, spKF and ecKF, respectively.

Fig. 3 and Fig. 4 show that when the system is observable,
the performances of all filters are almost the same, but the
computational burden of proKF is greater than of the others
and uncKF has the minimum computational load.

In the second simulation for the observable case, we are
reducing the measurement noise to be R = 0.12I2×2. Thus,
the input noise is very high but measurement noise is very
low for this condition, and the results of the simulation are
depicted in Fig. 5 and Fig. 6.

Fig. 5 shows that again uncKF has steady root mean square
error about 0.005m/sec and the errors of other filters are
oscillatory with maximum magnitudes of 0.004, 2.0, 2.9,
and 2m/sec for proKF, epKF, spKF and ecKF, respectively.
The computational loads are almost the same with the ones
obtained in the previous simulation.

Fig. 6 shows that the position error of uncKF in the steady
condition has stationary with 0.0005m error while maximum
errors of constrained filters are 0.0004, 2.1, 2.3, and 2.15m
for proKF, epKF, spKF, and ecKF, respectively. Although the
measurement noise is reduced from 52I2×2 to 0.12I2×2, the
errors increase in constrained filters except proKF, and the
performance of proKF is better than of uncKF.

B. UNOBSERVABLE CONSTRAINED STATE ESTIMATION
Now suppose that only the measurement in x-direction
is available. In this case, only the position and velocity
in x-direction are observable. The velocity in y-direction
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FIGURE 2. Nominal navigation parameters and reference path.

FIGURE 3. Root mean square of vy error when measurements of position
in x and y-directions are available and the covariance of measurement
noise is R = 52I2×2.

FIGURE 4. Root mean square of ry error when measurements of position
in x and y-directions are available and the covariance of measurement
noise is R = 52I2×2.

remains unobservable for the uncKF. However, the con-
strained KF methods take the advantage of using the con-
straint equation to stabilize the velocity error and then to
reduce the position error in y-direction.

FIGURE 5. Root mean square of vy error when measurements of position
in x and y-directions are available and the covariance of measurement
noise is R = 0.12I2×2.

FIGURE 6. Root mean square of ry error when measurements of position
in x and y-directions are available and the covariance of measurement
noise is R = 0.12I2×2.

FIGURE 7. Root mean square of vy error when measurements of position
in x and y-directions are available and the covariance of measurement
noise is R = 52.

In the first simulation of the unobservable case, the mea-
surement matrix and the covariance of the measurement noise
are chosen as H =

[
1 0 0 0

]
and R = 52. The obtained
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FIGURE 8. Root mean square of ry error when measurements of position
in x and y-directions are available and the covariance of measurement
noise is R = 52.

FIGURE 9. Root mean square of vy error when measurements of position
in x-direction are available and the covariance of measurement noise is
R = 0.12.

FIGURE 10. Root mean square of ry error when measurements of
position in the x-direction are available and the covariance of
measurement noise is R = 0.12.

velocity and position errors in y-direction for the com-
pared filters are shown in Fig. 7 and Fig. 8, respectively.
Fig. 7 shows that the velocity error is unstable for uncKF due

to the unobservability in y-direction. However, it is oscilla-
tory and stable for all constrained filters. Maximum velocity
errors in y-direction for constrained filters are 0.007, 0.008,
0.125, and 0.008m/sec for proKF, epKF, spKP and ecKF,
respectively. Computational loads for all compared filters are
0.0116, 0.0868, 0.0186, 0.0409 and 0.0186sec for uncKF,
proKF, epKF, spKP and ecKF, respectively. We can see that
the lowest computational burden belongs to uncKF and the
highest one belongs to proKF.

Fig. 8 shows that the position error in y-direction is again
unstable for uncKF. For the constrained filters, maximum
position errors in y-direction are 4.25, 4.257, 4.38, and
4.257m for proKF, epKF, spKP and ecKF, respectively. It can
be seen that proKF has the lowest error.

Again, for better evaluating the performance of filters
in different condition we are considering another simula-
tion. In that simulation, the measurement matrix and the
covariance of the measurement noise are chosen as H =[
1 0 0 0

]
and R = 0.12. The obtained velocity and posi-

tion errors in y-direction for the compared filters are shown
in Fig. 9 and Fig. 10, respectively.

As we can see from Fig. 9 and Fig. 10, the velocity and
position errors in y-direction have oscillatory behaviors for
all constrained filters while uncKF has an unstable errors due
to the unobservability of velocity and position in y-direction.
Fig. 9 shows that the maximum velocity errors of constrained
filters in steady state condition are 0.0056, 1.6, 4.5 and
1.6 m/sec for proKF, epKF, spKP and ecKF, respectively.

Fig. 10 shows that the maximum position errors in
y-direction are 3.545m, 6.58m, 10.45m, 6.58m for proKF,
epKF, spKF and ecKF, respectively.

Simulations show that the proposed filter performs better
than other filters for estimating unobservable constrained
states since the method uses the deterministic part of the
dynamic equation as an extra measurement to reduce the
prediction position error in y-direction.

V. CONCLUSION
In this paper, a new method based on the separation of the
state vector into two parts is proposed. The method uses
the deterministic part of the dynamic equation as an extra
measurement to reduce the effects of system noise in the
constraint direction. The proposed method is successfully
implemented and compared with four other filters from the
literature. Independent Monte Carlo simulations are done
1000 times and the results of these simulations are presented
by figures.

The simulations show that the uncKF error is stable for
all cases where the system is observable, but when the sys-
tem loses its observability in y-direction, the position and
velocity errors in that direction have unlimited growth. Unlike
uncKF, all constrained Kalman filters contain limited errors
for velocity in y-direction even if they lose their observability.
Limited velocity error in y-direction for constrained filters
comes from the constrained equation which has information
related to components of velocity.
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If the standard deviation of the measurement noise in the
Kalman filter is reduced, the estimation error will normally
be reduced. In an unconstrained Kalman filer we can see
this behavior by comparing the Fig. 3 and Fig. 5. Regarding
the constrained filters, when the measurement noise is high
all constrained filters have almost the same performances.
Due to the oscillatory behavior of constraint matrix elements,
velocity error in y-direction has oscillatory behavior for all
filters. In all simulations, the magnitude of velocity error in
y-direction for the proposed filter is lower than the other
filters. When we are reducing the measurement’s standard
deviation, the velocity errors of other constrained filters
are increasing due to numerical degeneracy. It is amplified
for unobservable cases, but in all simulations the proposed
method has less error than the others.

The position error in y-direction is due to the velocity
error in y-direction, and the position error is large for those
with large velocity error. Therefore, the position error of the
proposed filter was lower than the other filters due to having
a lower velocity error.

It can be concluded that the proposed filter works very
well and has good accuracy, while the other filters have low
performances, especially in estimating unobservable states
of the system. Whenever there is a deterministic constraint,
we can decompose the constraint matrix and then the state
separation is always present. Thus, the proposed method is
applicable for all linear systems when the constrained equa-
tion is deterministic and linear. However, the computational
load becomes higher.
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