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ABSTRACT This paper builds upon the theoretical foundations of the Accountable eXplainable Artificial
Intelligence (AXAI) capability framework presented in part one of this paper. We demonstrate incorporation
of the AXAI capability in the real time Affective State Assessment Module (ASAM) of a robotic system.
We show that adhering to the eXtreme Programming (XP) practices would help in understanding user behav-
ior and systematic incorporation of the AXAI capability in Machine Learning (ML) systems. We further
show that a collaborative software design and development process (SDDP) would facilitate identification of
ethical, technical, functional, and domain-specific system requirements. Meeting these requirements would
increase user confidence inML and AI systems. Our results show that the ASAM can synthesize discrete and
continuous models of affective state expressions for classifying them in real-time. The ASAM continuously
shares important inputs, processed data and the output information with users via a graphical user interface
(GUI). Thus, the GUI presents reasons behind system decisions and disseminates information about local
reasoning, data handling and decision-making. Through this demonstrated work, we expect to move toward
enhancing AI systems’ acceptability, utility and establishing a chain of responsibility if a system fails.
We hope this work will initiate further investigations on developing the AXAI capability and use of a suitable
SDDP for incorporating them in AI systems.

INDEX TERMS Artificial intelligence, explainable artificial intelligence, affective computing, system
design, classifier design, interactive graphical user interface, human–computer interface.

I. INTRODUCTION
Several researchers have reported that Artificial Intelligence
(AI) experts and software engineers lead the artificial intel-
ligence (AI) system design processes [1]–[3]. Practitioners,
usually less involved in the process, find the existing eXplain-
able Artificial Intelligence (XAI) frameworks as algorithm-
driven, lacking domain-specific considerations and offering
frail explanations [4]. Recent works [5]–[7] report several
gaps in the prevailing XAI capabilities and practitioners’
needs. Such gaps can be filled by embedding explainability
and transparency in Machine Learning (ML) and AI systems.
Presenting statistical and probabilistic data alone can not help
practitioners in understanding how domain-specific require-
ments were met [4], [5]. Particularly, the limited amount of
explanations given by AI and ML systems do not suffice
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and comply with regulatory and industrial standards [8], [9].
Furthermore, an agreed and proven method of determining
non-explainability of AI systems is not yet available to let
practitioners assess XAI capabilities [10].

It is proposed that four system features: the quality of
inputs and interactions between them, the method of com-
bining the input information, the quality of the training data
and, trustworthiness of the system decisions would suffice
incorporating the XAI in ML and AI systems [11]. How-
ever, real-life use of these features in incorporating XAI is
not common. Our proposed AXAI capability framework
extends the generic XAI capability to enable ML and AI
systems share their decisions and adequately explain the
underlying reasoning processes. The existing XAI methods
would neither separate nor quantify measures of compre-
hensibility, accuracy and accountability. Thus, incorporating
and assessing explainability in AI systems remain difficult.
The AXAI framework facilitates explaining reasons behind
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system decisions using elements of comprehensibility, pre-
dictive accuracy and system accountability. It measures com-
prehensibility as the readiness of a human to apply the
acquired knowledge. The system accuracy is measured in
terms of the ratio of the test and training data, training
data size and the observed number of false-positive infer-
ences. Finally, the AXAI framework measures accountabil-
ity in terms of the inspectability of the input cues, the
processed data and the output information, for addressing
any legal and ethical issues. As such, the AXAI frame-
work facilitates separation, measurement and delineation
of elements embedded in each; comprehensibility, predic-
tive accuracy and accountability, in a three-dimensional
space.

In order to move toward building Accountable eXplainable
Artificial Intelligence (AXAI) capable AI systems, we intro-
duced the theoretical foundations of the AXAI capabil-
ity framework in an accompanying paper entitled ‘‘Toward
Accountable and Explainable Artificial Intelligence Part one:
Theory and Examples.’’ The proposed AXAI framework pro-
vides a systematic approach of delineating AI systems in
a three-dimensional (3D) space consisting of three mutu-
ally perpendicular axes viz., accuracy, comprehensibility and
accountability.

This paper demonstrates incorporation of the AXAI capa-
bility in the real time Affective State Assessment Mod-
ule (ASAM) of a robotic system. We explain how eXtreme
Programming (XP) practices align with the process of
incorporating the AXAI capability in AI systems. While
developing an AXAI-capable AI system, each stage of
the software design process was laterally aligned with
elements of the design process (analysis, design, imple-
mentation and testing). We show iterative development of
various modules for adding the desired AXAI elements
into the ASAM [12]. As evident in the following sec-
tions, this work makes several important contributions given
below:

1) It demonstrates selection and use of an appropriate
Software Design and Development Process (SDDP) for
adding the AXAI capability in an AI system.

2) It shows how agile software design practices could
be exploited for embedding AXAI capability in an
AI system.

3) It also shows how the main features of extreme pro-
gramming methods would help in ascertaining user
requirements and incorporating user feedback.

4) It presents a novel approach for collaboratively
soliciting user input for developing appropriate use
cases.

5) It introduces the architectural and functional details of
a portable, real-time affective state assessment module
that can be attached to a robotic system.

6) It demonstrates how displaying visual and vocal cues
would facilitate dissemination of explainability infor-
mation in terms of system’s predictive accuracy, trans-
parency, and accountability.

7) It presents the process of systematic, localized and
iterative development of an affective computing
system.

8) It presents a representative set of conceptual models
and use cases for progressive enhancement of an affec-
tive state assessment system.

9) Finally, it demonstrates a process of determining user
motivation, user behavior and user-perceived value of
the system features.

This paper is organized as follows. After introducing rea-
sons for integrating AXAI capabilities into AI systems in
this section, we discuss limitations of the existing automated
Affective State Assessment (ASA) systems in Section II.
We then introduce the alignment between XP practices and
the process of embedding the AXAI capability in Section III.
The iterative analysis and assessment of user requirements
is shown in Section IV. Section V provides an overview of
the ASAM, discussing hardware and software elements and
how it is considered an AXAI-capable AI system. Section VI
discusses and summarizes the findings from this work before
the conclusion in Section VII, where we discuss future work
and the importance of integrating AXAI-capable systems
moving forward.

II. BACKGROUND
Expressing affective states is an integral part of human life.
Social robots therefore need to understand and express affec-
tive states. To interact with humans, robotic systems are
now equipped with peripheral devices necessary for auto-
mated affective state assessment (ASA) [13]–[15]. Humans
express internal thoughts, feelings, and emotions through an
array of voluntary and involuntary cues. These cues also
help humans in observing and synthesizing others’ expres-
sions and assessing affective experiences [16]. To imitate
the human model of ASA, algorithm-based learning and
classification approaches rely on one or more of visual,
vocal, psychophysiological and neural cues [13], [17]–[19].
Emerging sophisticated ASA systems use different combi-
nations of affective state models, learning techniques and
classification methods [20]–[22] as their capabilities and
accuracies progressively improve [23]–[26]. Modern ASA
capabilities include the dynamic assessment of affect-arousal
and, multimodal and contextual assessment of affective
states [18], [26]–[28]. Since ASA systems rely on algorithm-
based analysis, they inherit algorithmic biases while making
inferences. Like other AI systems, ASA systems lack the abil-
ity to explain, are usually opaque, and do not help in establish-
ing a chain of responsibility when system accountability is of
concern. A typical model of implementing algorithm-based
ASA is shown in Fig. 1 depicting how biases and errors travel
through the decision-making process, while ASA systems
progressively filter affect-expressing cues down the pyra-
mid and reach a level of reduced transparency. Figure 1
uses a normalized measure of affective state strength [29]
as −1 ≤ EA ≤ 1 where EA represents the expression
of an affective state that ranges from -1 to +1, showing
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FIGURE 1. The Algorithmic implementation of a typical affective state
assessment (ASA) system showing the relationship between errors,
biases and system transparency. The pyramid in this figure represents the
overall system and provides insight into the interrelations between
algorithmic biases, transparency and decision errors in ASA systems.

how expressions and affective states change from ‘negatively
strong’ to ‘positively strong’. As obvious in Fig. 1, ASA
systems offer either no or very little explainability to users
and do not provide quantifiable measures of accuracy and
accountability.

As shown in Fig. 2, a typical AI system would simply
present results or inferences to users. As elements of com-
prehensibility, predictive accuracy and accountability are not
available to users, the system behaves as a black box. The
AXAI capability framework proposed and detailed in part
one of this paper was designed to overcome these limita-
tions. In order to open up the black box, the AXAI frame-
work ensures that elements of comprehensibility, predictive
accuracy and accountability are presented to users through
a user-centred interface. As shown in Fig. 2, the black box
of a typical AI system is transformed into a user-friendly
graphical user interface showing elements of predictive accu-
racy, comprehensibility and accountability. Thus providing
the AXAI-relevant information and explaining local ASA
reasoning at each stage would eliminate the black box. Incor-
porating such a capability brings other advantages as well.
For example, designers of an AXAI capable system, while
adhering to XP practices, would readily notice any algorith-
mic biases and would have an opportunity to devise a suitable
solution. The major benefits XP offers include an ease of
software revision and update, ease of responding to changing
requirements, inclusion of system users in the SDDP, and
a formal ongoing mechanism for receiving feedback [30].
If designers fail to notice the problem during the initial design
stages, users would discover them while inspecting the quan-
tifiable measures provided by adding the AXAI capability in
an ASA system. An illustrated comparison of the conven-
tional ASA system with an AXAI-capable system in Fig. 2
shows how the two systems differ. The following sections
describe the process of incorporating AXAI capabilities and
shows how quantifiable measures of explainability, accuracy,
and accountability can be added to an ASA system.

III. THE ASAM DESIGN PROCESS FOR INCORPORATING
THE AXAI CAPABILITY
User requirements keep changing during various stages of
the SDDP viz., requirement analysis, design, implementation,
and testing [31]. Faced with challenges pertaining to chang-
ing requirements, software developers in the mid 1990’s
started proposing ideas that later emerged as agile software
design approaches. One of these approaches, XP, serves as an
effective SDDP method [12]. Focusing on shorter processes
and iterative progress, XP practices result in a flexible yet
formal approach for dealing with a high rate of change in soft-
ware requirements [30], [31]. This agile method emphasizes
on the following four key points that brought fundamental
changes to the software design and development process [31]:

1) Value individuals and interactions over processes and
tools;

2) Value working software over comprehensive documen-
tation;

3) Value customer collaboration over contract negotia-
tion; and

4) Value responding to changes over following a plan.
We elaborate on the utility and suitability of these key points
in the context of incorporating the AXAI capability in the
ASAM and other AI systems’ design and development.

1) Valuing individuals and interactions over processes
and tools frees up AI system developers from such
formal structures that ignore human engagement and
rely on the built-in safeguards. This facilitates AXAI
incorporationwhile avoiding an algorithm-centric view
that would rely on ‘developers’ intuition of what con-
stitutes a good explanation [7]. This results in more
palatable, realistic explanations, by focusing on users
who lack technical understanding of AI systems and
engaging both users and AI system developers through-
out the SDDP. Consequently, users are able to provide
and developers are able to incorporate useful, domain-
specific explanations. Continued interactions between
users and system developers would help in embedding
practitioner-oriented AXAI capabilities in AI systems.

2) Relying on working software ahead of comprehen-
sive documentation would help in iteratively analysing,
building and testing AI systems. A ‘release-iteration’
cycle would help in providing immediate feedback
and insight into the accuracy, comprehensibility and
accountability aspects of the system and would reveal
its ultimate strengths and weaknesses. This key point,
combined with the first key point would let developers
and users realize the domain-relevant utility and appli-
cability of AI systems.

3) Valuing collaboration with customers over contract
negotiations can help in avoiding unrealistic assump-
tions. This would assist in avoiding project changes
that require ongoing adjustments and modifications
throughout the SDDP. The ASAM SDDP benefitted
from the collaborative work to iteratively build, test and
improve the AXAI capabilities of the system.
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FIGURE 2. Top – General Graphical description of the black-box nature of machine learning systems. Information on decisions and reasons behind
inferences is not available to users. Bottom left – An AXAI-capable ASA system transforms the black-box into a graphical user interface and shows
elements of accountability, comprehensibility and predictive accuracy. Bottom right – Gallois-Lattices structure summarizing the AXAI-capability elements
of the AXAI framework.

FIGURE 3. Mapping of the conventional AI system design and development process to the extreme programming practices. Each block of yellow, green,
blue and red boxes represents a set of two release-iterations [12].

4) A logical implication of these key points was to respond
to changes rather than follow a pre-planned scheme
without abandoning the overall plan. Collaboratively
and iteratively aligning a high-level plan with con-
tinuously emerging short-term strategies enabled the
inclusion of changes that resulted from some new real-
izations that occurred between iterations.

Figure 3 explains how traditional AI system design
processes could be laterally aligned to XP practices for

incorporating AXAI capabilities in the ASAM. The conven-
tional SDDP shown on the left-hand side of Fig. 3, illustrates
the top-down iterative SDDP. This type of iterative process
exposes built-in problems inherent in AI system develop-
ment. Any flaws in system specifications would be noticed
only during either the system implementation or the design
verification stages. In order to overcome such problems,
XP practices were adopted so that analysis, design, imple-
mentation and testing of the partially completed system could
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be performed at each stage. Analysis, design, implementation
and testing tasks are respectively shown in yellow, green, blue
and red colours in Fig. 3. Each set of blocks represents four
colours (two release-iterations). The duration of each block
was approximately forty-eight person-hours.

The twenty-four sets, each having the four colour
‘release-iterations’ blocks indicate the total person-hours
(24 × 48 = 1152 hours or twenty-nine forty-hour weeks)
invested in completing the ASAM. As shown on the right
hand side of Fig. 3, each of the user requirement analysis
and specification development stages needed four iterations
to complete. The architectural design stage took six release-
iterations. The AI framework incorporation stage required
ten release-iterations and the AXAI capability assessment
stage required eight release-iterations. Having iterated at
each stage, the development and maintenance stage required
four iterations.

The term ‘release’ includes a continuously prioritized set
of AXAI capability and domain-related requirements that
must be included in the AI system as it evolves from one
partially completed stage to the next [33]. The term ‘analysis’
in this discussion includes stories consisting of use cases suit-
able at each stage and for each ‘release-iteration’ block [12].
As users would not be able to perceive all use cases at once,
multiple release-iteration blocks at each stage allow them to
progressively discover all important use cases.

Overall, employing XP practices resulted in a parsimo-
nious and faster SDDP. The partially completed systemweak-
nesses became readily visible at each stage. Problem recti-
fication was therefore local, immediate and relevant to the
SDDP stage. All major technical problems in implementing
the system and any lack of domain-specific communication
of explanations were locally discovered at each stage. Using
the adopted SDDP, user perspective became visible from
the developers’ eye-level and developers’ thoughts became
clear to users. Each ‘release-iteration’ block provided an
opportunity to combine developer and user ideas, resulting
in shared and mutually agreed goals. Extreme programming
practices also allowed adhering to the aforementioned four
key points and provided a structured approach for collabora-
tively working on the ASAM.

IV. ITERATIVE ANALYSIS AND ASSESSMENT OF USER
REQUIREMENTS
Some domain-specific user requirement analyses methods
for AI systems were reported in the recent literature. For
example, [34] examines user requirements in the context of
data warehouse design, [35] attempts to determine require-
ments for interface design of a mobile location-based fair
guide and [36] presents software requirement analysis and
specification development processes for an intelligent sys-
tem capable of monitoring and controlling smart phone
user addiction. However, methods for ASA system-specific
requirement analyses are not available in the literature.
Hence, typical ASA systems use some ad hoc approach of
dealing with user behaviour, expectations, and requirements.

We used both formal and user-driven requirement analysis
approaches for incorporating AXAI capabilities into the
ASAM. Formal approaches like those proposed in [37] were
used to analyse the system level requirements. The domain-
specific requirement analyses for the ASAM were based
on user-driven methods such as the one proposed in [38].
We carried out the dynamic requirement analyses throughout
the collaborative SDDP. Based on the two approaches, efforts
were made to understand and model the user behaviour,
system-user interaction requirements and application-
specific implications of incorporating AXAI, as suggested
in [38]–[40]. The modular structure of the ASAM, functional
descriptions of various modules, and elements of the AXAI
capability framework are visualised in Fig. 4.

During the process of SDDP, system developers and
domain experts can progressively update and exchange infor-
mation using a ‘‘hub-and-spoke’’ model. The ‘‘hub-and-
spoke’’ model facilitates integration of loosely connected sys-
tem requirements in a dynamic and ever changing SDDP [40].
We initially developed a high-level functional description
of the ASAM that helped in performing user requirement
analyses and developing specifications for each sub-module
of the ASAM. The ‘‘hub-and-spoke’’ model was used to
discover the link structure for determining the user require-
ments. For assessing the ASAM’s functional behaviour vis-
à-vis complying with XP practices, we developed use cases
and tested various scenarios as elicited by agile design
methodologies [39]. Use cases help in iteratively attaining
the desired level of precision and refinement at each stage
of system development. Figure 5 shows the two ‘‘Hub-and-
spoke’’ models used for analysing system-level requirements
and dynamic user interactions.

The following six examples show our SDDP, related ana-
lytical methods and demonstrate how use cases were envis-
aged and used during the developmental stages of the ASAM.

The internal management of affective state models, com-
paring the input data with the affective state models and
labelling input data as one of the stored models are important
functions of an ASA system. The system needs to maintain
a list of all available affective state models that would be
compared with an unknown incoming data sample before
labelling it. During the process of comparing and matching,
each affective state model, found different from the incoming
data sample is removed from the list of available (match-
able) models. Through this process, all differing models are
removed from the list and an appropriately matching model
is discovered. Through this process, an incoming data sample
is assigned an expression label. Once a label is assigned, the
list of available models is updated and all internally stored
models are added to the list of matchable models before a
new sample is received, compared, and labelled. A formal
description of the ‘compare-match-label’ process requires the
following use cases:

1) The system should be able to maintain a list of affective
state models. It must be able to remove and add the
required number of models from the list.
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FIGURE 4. Functional modules and their interconnections within the ASAM. Notice how elements of accuracy, comprehensibility and accountability are
embedded into the graphical user interface. This representation is expanded upon through Fig. 13.

FIGURE 5. Parts of the ASAM’s Hub-and Spoke model [34]. Left: System-level requirements.
Right: The AXAI-specific requirements. Dots between spokes show additional spokes not
shown in this figure. Use cases were used to describe the ASAM’s functional features under
varying conditions and stakeholders’ requirements.

2) The system should be able to attach and record the label
of a model that closely matches the incoming sample.

3) Once the ‘compare-match-label’ process is complete,
the system should be able to repeat the process.

The above listed use cases were analysed to produce a
conceptual diagram for supporting the collaborative efforts
and iteratively improving the system. A use case named
MatchModel is shown in Fig. 6. It explains how an incoming
sample i is assigned to an existing model M if a match m
is found for labelling it as an expression e. For the ASAM
to work effectively, models Mj, Mk , . . ., Mn should not be
available for matching with the sample i if the model Mi
matches the sample i. The bounded rationality phenomenon is
widely used in combination with concepts borrowed from the
fields of artificial intelligence and game theory [41]. Using
the bounded rationality would help in framing all interactions
between human users and the AI system as it would make
the system navigation and human-system interactions extend-
able [41]. In the ASAM, interactions were planned such that
each GUI field at level zero would provide the underlying
construct either for comprehensibility, accountability, accu-
racy or a combination of these three feature vectors (see part
one of this paper for more details). Each expandable field
would attract more interaction to let users reach a deeper
level of the GUI while seeking more information on expla-
nations, accountability or accuracy [41]. Implementing this
approach would require adequate descriptions for the use
cases. We present a use case in Fig. 7 to elaborate on our
implementation of the GUI.

An important aspect of the proposed AXAI capability
was to let users explore partial functionality of the ASA
system. This would allow users to inspect a particular

FIGURE 6. Left – Formal description of the MatchModel use case using
the standard set notation. Right – Conceptual model of the MatchModel
use case.

FIGURE 7. Formal description of the GUI display use case based on the
standard set notation.

(or selected) input cue, relevant processed data and the infer-
ence/decision made by the ASAM. This would require shar-
ing the input, processed and output data with users [11].
In some cases, users may also like to assess and ascertain
AXAI capabilities on the basis of partial information and
part-functionality. The use case illustrated in Fig. 8, shows
how the facial expression data alone could be used for iter-
ative assessment of part-functionality of the ASAM during
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FIGURE 8. Formal description of the partial information use case.

FIGURE 9. Formal Description of the comprehensibility use case.

the collaborative SDDP. A similar assessment was performed
using speech data.

The use case presented in Fig. 9 illustrates how comprehen-
sibility was incorporated in the ASAM’s AXAI capabilities.
This use case ensures that important aspects of comprehen-
sibility are included in the system. In order to achieve the
desired AXAI capabilities, comprehensibility was iteratively
assessed and improved. Similar use cases were employed for
incorporating accountability and accuracy in the ASAM. The
use case presented in Fig. 10 illustrates how the elements
of accountability would be incorporated in the ASAM while
developing the system and assessing its AXAI capability. The
use case presented in Fig. 11 illustrates how the predictive
accuracy of the ASAM would be embedded for assessing
ASAM’s AXAI capability.

In order to iteratively and collaboratively assess system
performance at each stage, we used a table for recording user

FIGURE 10. Formal Description of the accountability use case.

FIGURE 11. Formal Description of the predictive accuracy use case.

motivation, user behaviour and user perceived value of the
ASAM features. The table was based on the Gallois-Lattices
structure [42] shown in Fig. 12. In our scheme, user motiva-
tion comprised of three elements: need, desire, and expecta-
tions. User perceived value also comprised of three elements:
good, complicated and revise. Finally, user behavior had a
set of three elements: use, revise and reject. All elements
are measurable on a scale of 0 → 1. Each of the three
main features (user motivation, user behaviour and user per-
ceived value of the ASAM features) would help in determin-
ing and understanding user requirements. The main benefit
of this scheme was that it provided a qualitatively separa-
ble, globally applicable, and easily quantifiable method of
user requirement assessment. Furthermore, such an approach
allows for faster, iterative and progressive refinement of each
sub-system and its features.

As shown previously in Fig. 3 two collaborative iterations
of user requirement analysis and assessment were sufficient
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FIGURE 12. Gallois-Lattices structure modelling how system
performances are assessed on the basis of user motivation, behaviour,
and perceived value. These elements are monitored throughout the SDDP
of an AI system including the ASAM discussed in this work.

for providing the needed insight into the desired features of
the ASAM. It should be noted that users belonging to this
assessment scheme need to be fully aware of the requirements
and cognizant of the domain-specific details and system
application scenarios.

V. AN OVERVIEW OF THE ASAM
The ASAM treats affective states as dynamic representations
of signals and uses an evolutionary approach for character-
izing affective states in terms of human response tenden-
cies. The ASAM deploys a novel mapping functionality that
exploits continuous and discrete affective state expression
models. Specifically, The ASAM exploits the continuous
nature of the Plutchik spectrum [43] and the discrete nature
of Ekman’s discrete state theory [44]. Through the mapping
functionality, the ASAM provides higher-level categoriza-
tion followed by lower-level, discrete classification systems.
As evident in Fig. 13, ‘‘Categorization’’ and ‘‘Classification’’
sub-modules facilitate this mapping functionality. The cat-
egorization sub-module draws from the position of discrete
states within the continuous Plutchik spectrum [43]. Cate-
gorization in this case is based on a ternary classification
scheme, which determines the high-level state that subse-
quently leads to the appropriate discrete state classifier i.e.,
the classification sub-module. These discrete affective state
models draw on Ekman’s discrete emotion theory arguing six
basic emotions: happiness, sadness, anger, fear, disgust, and
surprise [44]. The neutral state is often added in ASA systems
to provide a benchmark for monitoring fluctuations from the
norm. The Plutchik-Ekman mapping architecture visualized
in Fig. 13 employs a two-tier Bayesian Classifier ensemble
and is applied for both facial expression and paralinguistic
speech signals. It can be modelled using the Bayesian for-
malism as:

P(A|B) =
P(B|A)P(A)

P(B)
(1)

where P(A) and P(B) describe the prior and posterior proba-
bilities for the categorization and classification sub-modules.

The classifier ensemble transforms a septenary
classification schema into an ensemble of ternary and binary
classifiers, making the system more explainable vis-à-vis
reducing the ASAM’s complexity and improving its predic-
tive accuracy. The decision to transform the systemwas made
through latter stages of the ‘architectural design’ stage of the
SDDP, leading into the ‘‘AXAI framework incorporation’’
stage. Furthermore, as shown in Fig. 13, the same function-
ality was not applied to linguistic signals. This was decided
after realizing how linguistic signals could be classified using
a similarity approach instead of a dedicated classification
machine.

Being a traditional embedded system, the ASAM was
divided at the highest level into hardware and software com-
ponents as visualized in Fig. 13. The hardware could be
divided into monitoring devices, operational devices and sen-
sory devices, with the latter usually contained in existing
robotic systems. Likewise, monitoring devices such as dis-
plays/keyboards are ever-present across all industries in the
modern age. Therefore, at its core, the ASAM would easily
work with existing infrastructures, having a development
board (with an on-board operating system), WIFI/Ethernet
communication capabilities and a large-storage micro-SD
card. The simplicity of the design allows for a cost-effective
solution that would turn an existing robotic system into an
AXAI-capable ASA system. In order to enable deployment
of the ASAM into existing robotic systems, two develop-
ment boards: 4G/64GB LattePanda and the NVIDIA Jet-
son Nano [43], [44] were tested during the deployment and
maintenance stage of the SDDP, as shown earlier in Fig. 13.
This decision was based on the idea that the ASAM should
not be limited to support only personal computers. Rather,
easily porting the ASAM to a modular device was required
under the assumption that portable devices would have equal
(or even greater) processing power than a personal computer.
Throughout prototyping, a USB-powered web-camera was
used to model the sensory device integration. An HDMI-
connected external monitor and USB-connected mouse and
keyboard were attached for monitoring capabilities and effec-
tive operation of the GUI. Wireless intra- and inter-machine
communication allowed for detection of smart devices on
the same network vis-à-vis allowing for cloud storage of
observed data.

The sensory devices were carefully considered for achiev-
ing the desired overall functionality of the system. Once the
ASAM is equipped with the required peripheral devices and
these devices are detected, the ASAM would extract the nec-
essary features from the input cues. Specifically, the sensory
devices would detect facial expressions and speech inputs,
the latter would be quickly divided into paralinguistic and
linguistic cues. Classification of affective state expressions
using all input cues would involve pre-processing and fea-
ture extraction. Regarding the split of speech, paralinguistics
would describe ‘‘how’’ speech sounds based on fluctuations

36098 VOLUME 10, 2022



J. Vice, M. M. Khan: Toward Accountable and Explainable Artificial Intelligence Part Two: Framework Implementation

FIGURE 13. ASAM’s high-level embedded hardware and functional layout showing its intuitive integration into existing robotic
frameworks. Operational, sensory, and monitoring devices are integrated to ensure ASAM’s full functionality. (BOTTOM) Internal software
architecture of the ASAM showing how input and output signals are manipulated through the system and relayed to the user via the
Graphical User Interface. The Bayesian classifier ensemble is also shown through ‘‘Categorization’’ and ‘‘Classification’’ sub-modules.
Outputs to the GUI windows (1-5) exhibit the AXAI capabilities of the system highlighting how information is disseminated to the users at
various stages of the ASA process.

in acoustic features [45], [46]. The use of linguistics in the
ASAM focuses on describing the content of ‘‘what was said,’’
and represents the structure of words in an utterance. The
conscious and subconscious manipulation of linguistic and
paralinguistic features augment each other, such that humans
can manipulate the way we express ourselves through speech.
The ASAM deploys a speech-to-text function to separate the
linguistic features from the raw speech input used for the
paralinguistic assessment of affective states.

The Facial Action Coding System (FACS) and the Emo-
tional Facial Action Coding System (EM-FACS) [47], [48]
are widely used in facial expression recognition and ASA.
They allow determining what facial muscles are activated
using ‘‘Action Units’’ which are combined with discrete
expressions of affective states. This approach has been
used for developing several facial affective state expres-
sion datasets such as the Extended Cohn-Kanade (CK+)

dataset [51] used in this work for training and initial
validation of the facial expression classification models. Fea-
ture extraction was performed using variations of the Incep-
tionV3 Convolutional Neural Network (CNN) architecture
described by [52]. The construction of the ASAM’s cate-
gorization and classification models w.r.t facial expression
assessment are outlined in Table 1. Paralinguistic expres-
sions of affective states within the ASAM are fluctuations
in acoustic features. Modelling these feature fluctuations
was necessary for developing suitable supervised models of
affective expressions. Outlining these features was meant to
assists users in understanding how the ASAM would detect
an affective state in speech by realizing ‘‘how’’ something
was said. There are many combinations of features and clas-
sifiers used for detecting emotion in speech as discussed
by [47] and [53]. After collaborative and progressive review
during the SDDP and through iterations in the ‘‘AI system
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TABLE 1. Facial expression Bayesian classifier ensemble parameters used for training the ASAM with the CK+ dataset (using Python and
Keras/TensorFlow packages).

TABLE 2. Paralinguistic Bayesian classifier ensemble parameters used for training the ASAM with the TESS dataset (executed through Python and
SKLearn packages).

TABLE 3. ASAM statistical performance metrics when validated on the RAVDESS dataset for facial expression and paralinguistic classifiers (using model
parameters discussed prior).

Implementation’’ stage, we decided on the following par-
alinguistic features for extraction: (i) Acoustic Power, (ii)
Root Mean Square Energy, (iii) Vocal stress – represented
through Teager-Energy Operator (TEO) coefficients, (iv)
Mean Spectral Centroid Frequency and (v) Mel-Frequency
Cepstral Coefficients (MFCC). These features have been
used in several speech recognition systems, though not as
optimal sets of voice parameters for discriminating between
emotive states. However, our use of spectral factors was
based on the fact that valuable paralinguistic information
could be derived from prodosic and spectral features [47].
The aforementioned paralinguistic features resulted in a
24-dimensional feature array, with categorization and classi-
fication sub-modules using Support-Vector Machine (SVM)
models. The Toronto Emotional Speech Set (TESS) [54] was
used for training and initial validation of the paralinguistic
speech models. The specifications of the classifier ensemble
are discussed in Table 2, showing Gamma and Cost-function
parameters assisting in construction of the SVM hyperplane
boundaries.

Linguistic expressions of affective states were determined
using the structure of ‘‘what was spoken’’ in an utterance.
Therefore, the text string provided by the speech-to-text tran-
scription process laid the foundations for feature extraction

and classification in this subsystem. The two affective state
expression and classification theories that were applicable
within the context of the ASAM (Ekman’s discrete state
theory and Plutchik’s continuous spectrum-based state the-
ory) were exploited in this work [41], [42]. Another exam-
ple of a continuous model is Russell and Mehrabian’s
Three-Factor Theory of Emotions [55] model, which rep-
resents states in a 3-dimensional pleasure/valence, arousal,
and dominance (VAD) space. Researchers have developed
‘‘Emotional Lexicons’’ which represent words across vari-
ous languages including English through normalized VAD
values, which allows for the modelling and classification of
linguistic speech features as evident in the ASAM.

The ASAM employs the Canadian National Research
Council (NRC) Lexicon [56] and a similarity approach to
determine speakers’ affective states in real-time using the
VAD parameters of the input transcription and mapping the
parameter values to the VADvalues for each discrete affective
state as per the NRC Lexicon. Mapping the 3D Euclidean
distance (obtained from the input transcription) to each affec-
tive state allowed determining which affective state is close
to the input linguistic signal for classification. The algorith-
mic implementation of the linguistic classifier is summarized
hereunder:
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FIGURE 14. Graphical User Interface window – GUI(1), which is shown to users upon execution of the ASAM software. The placeholder
image used for the live video feed is extracted from the RAVDESS dataset [57]. The Transcription box contains the string ‘‘this is a test
purely for the purposes of paper’’ with the highlighted words being {test, purely, paper}.

1) Transcribe the input audio signal in real-time.
2) Scan the transcription for matched words as per the

NRC Lexicon and store the VAD values for each
matched word.

3) For ‘N ’ matched words in a transcription, calculate the
mean VAD values, i.e., Vave,Aave,Dave:

Xave =

∑N
n=1 Xn
N

, (2)

4) For each affective state class ‘c’, determine the 3D
Euclidean distance 1ABc between the input utterance
and c, modelled by:

1ABc=
√
(Vc−Vave)2+(Ac−Aave)2+(Dc−Dave)2

(3)

5) Determine the closest affective state based on the
relative position of the transcribed input utterance
within the VAD space, i.e.: the distance-based similar-
ity ‘DBS’ for each state ‘c’:

DBSc =
1

1+1ABc
(4)

The ASAM was further validated on the Ryerson
AudioVisual Database of Emotional Speech and Song
(RAVDESS) [57], a multimodal dataset that was used for
validating the systemwith foreign, ‘wild’ data unknown at the
time of training. The facial expression classifiers, described
above, were validated using twenty thousand (20000) active
frames of data corresponding to approximately thirteen (13)
minutes of speech data. Due to the construction of the lin-
guistic classifier and the nature of the RAVDESS dataset (all
utterances were not emotionally charged), a similar validation
could not be performed for this work.

Table 3 summarizes each classifier’s performance when
validated on the RAVDESS dataset. Using this information

and understanding the ASAM, we could determine the pre-
dictive accuracy PA of the ASAM for estimating the AXAI
capability of the ASAM as discussed in part one of this paper.
To summarize, we concluded that the normalized scores for
the PA components were as follows: rtst−trn = 1.0, dtrn =
0.811 and Ofp = 0.8559, resulting in a predictive accuracy
score of: PA = 1.546 (see more details in Section 5 of
Part one of this paper). Details pertaining to predictive accu-
racy within the context of the ASAM were given in use
case 6 (Fig. 11).

Assessing affective states through the three independent
channels - individually, discounts the multimodal nature of
human affective state expression patterns and fails to pro-
vide a holistic representation of human intent and affective
experience. Recent works [56], [57] also suggest so in the
context of ASA systems, reckoning benefits of multimodal
models over their unimodal counterparts. The ASAM is a
multimodal assessment system, as shown in Fig. 13. The
input signals are combined in a final classifier ensemble – a
weighted-sum rule-fusion system, which is derived after [60].
Each sub-classifier output (facial expression, paralinguistic,
linguistic) combines as having weights as such (for each
discrete state):

PFinal = W1PFACE +W2PPARA +W3DBS (5)

where ‘PFinal’ is the final prediction accuracy, ‘PFACE ’ is
the facial expression prediction accuracy, ‘PPARA’ is the par-
alinguistic prediction accuracy and ‘DBS’ is the linguistic
distance-based similarity output. Wn defines the hard-coded
weight applied to the nth signal. In the ASAM, these weights
are based on theoretical foundations proposed by [61] stating
that through conversation, facial expressions and body lan-
guage constitute for 55% (W1 = 0.55) of the total expression,
paralinguistics constitute 38% (W2 = 0.38) and linguistics
constitute the final 7% (W3 = 0.07), thus resulting in the
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system being modelled as:

PFinal = 0.55PFACE + 0.38PPARA + 0.07DBS (6)

The transparency of the classifier weights is output to the
user to ensure that accountability capabilities ‘SA’ adhere to
the AXAI capability framework guidelines, one of the three
components that are used to determine the explainability of an
AI system (discussed in Part one of this paper). Transparency
is also achieved through the display of classifier ‘confidence’
and ‘dominance’ values, with the former describing how
‘‘confident’’ the classifier is about a particular state being
expressed and the latter describing how long a particular
affective experience is expressed within a particular period of
time. Hence, Dominance =

nPi
NT
× 100%, where ‘nPi ’ refers

to the number of predictions made for the ith state and NT
is the total number of predictions made during a period of
time ‘T ’.

The ASAM’s integrated GUI enables simultaneous mon-
itoring of all input data feeds and the fifty-six (56)
unique and corresponding outputs. The ASAM becomes
AXAI-capable by transparently sharing the classification and
decision-making processes (thus improving accountability)
and optimized display of the GUI elements for incorporating
system comprehensibility. These elements were designed,
tested, improved and implemented through various itera-
tions during the SDDP for ensuring the AXAI capabilities
in the ASAM. The iterative and collaborative SDDP also
helped in exploiting the best of the SDDP team abilities.
The ASAM GUI consists of five unique windows each con-
tributing towards different areas of system accountability
and comprehensibility. The orange output blocks in Fig. 13
define the flow of information from the back-end to the
front-end. Figures 14 and 15 highlight these GUI windows
in greater details. Figure 14 (GUI window (1)) is important
when considering the inspectability of input signals ‘Iin’
given that all inputs are visible to the user upon execution
of the program. As expressed previously, the transparency of
classifier weights is also important for system accountability
specifically in regard to the inspectability of the processed
data ‘Ipro’. Furthermore, given the ASAM is a multimodal
system, GUI windows (2-4) assist this aspect giving the
processed data accounts for the final weighted-sum rule-
fusion output. However, as expressed in Part one of this paper,
users suggested that this could be improved by introducing
more information about how each individual signal was pro-
cessed – specifically when considering that sometimes a user
may only be concerned with one signal and not the multi-
modal output. Finally, the inspectability of output cues ‘Iout ’
is evident across all output GUI windows (2-5). This was
achieved through the graphical and tabular representations
of data and enabling users to focus on any affective state
that would be necessary for a particular application. This
was a design decision that was made in the ‘AXAI capability
assessment’ stage of the SDDP. It was observed that an over-
abundance of information would not benefit the AI system
design in becoming more transparent and explainable [62].

More information pertaining to the accountability within the
context of the ASAM was given in use case 5, visualized
in Fig. 10.

Regarding comprehensibility components, the predicate
naming time ‘Tpn’ is improved by displaying predicted class
labels as affective state names rather than outputting back-end
class indices {0, 1, 2, 3, 4, 5, 6}. Showing a gradient from
white-to-green in the tabular output highlights how confident
the system is of a particular state being expressed. This fea-
ture attracted user attention to the predicted output as affective
states are everchanging, effecting the predicate recognition
time ‘Tpr ’. The predicate inspection time ‘Ti’ was enhanced
by separating classifiers into four different windows, allow-
ing users to isolate and inspect the information that was
of concern to them without being burdened by information
which theymay have deemed ‘‘not useful.’’More information
pertaining to comprehensibility within the context of the
ASAMwas also introduced in use-case 4, visualized in Fig. 9.

Overall, this section has highlighted the AXAI capabili-
ties of the ASAM and how these elements were added to
the system in an iterative manner during the SDDP of the
ASAM. Furthermore, through elements of the GUI windows
and the system architecture we have highlighted how the
ASAM would adhere to XP principles. Overall, we have
demonstrated the iterative SDDP through several cases and
application of the AXAI theory.

VI. DISCUSSION
Most AI and ML systems behave like black boxes as they
fail to explain their decisions [11]. Incorporation of XAI in
AI and ML systems requires attention to four system fea-
tures: (i) the quality of inputs and interactions between them,
(ii) method of combining the input information, (iii) the
quality of the training data and, (iv) levels of trust users put in
system decisions [11]. Incorporation of the proposed AXAI
capability framework also exploited and relied on these four
features. As discussed earlier, the ASAM’s GUI continually
presents the aforementioned features to users and lets them
develop confidence in the system’s AXAI capabilities.

The GUI provides information on the quality of input data
in real-time and continuously updates data fields vis-à-vis
displaying the currently dominant affective state. If multi-
ple affective states score high percentages (shown to users
through the dominance plots), users would be automati-
cally alarmed about inconsistencies in the input information.
The GUI is also able to show interactions between various
inputs through the real-time data display and regular updates
of visual, paralinguistic and linguistic data. Furthermore,
displays of explicit and implicit elements of accountabil-
ity, comprehensibility, and predictive accuracy help users in
establishing the corresponding level of trust in the ASAM.
This would also help in establishing a chain of responsibility.

An appropriate level of AXAI incorporation in the ASAM
suggests that XP practices support an iterative and collabo-
rative AI software design & development process (SSDP).
This work shows that an iterative and collaborative AI SDDP
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FIGURE 15. Overview of the multimodal ASA monitoring windows embedded in the ASAM. These windows are accessible through their
corresponding ‘‘Analyse Data’’ buttons as shown in Fig. 14. The Multimodal Analysis window – GUI (5) is opened in parallel to the GUI (1)
window shown in Fig. 14. Tetradic colour theory was chosen for GUI window design where: CYAN = Facial Expression Analysis, ORANGE =

Linguistic Analysis, PURPLE = Paralinguistic Analysis and LIME.

would allow developers to analyze and understand user
behavior when building a domain-specific AI application.
However, the proposed AXAI capability framework remains
largely domain-independent. The demonstrated AXAI imple-
mentation would hopefully initiate further investigations on
developing methods and norms for domain-agnostic and
application-independent AXAI capabilities.

As the proposed AXAI capability framework was built
upon previous works, this work should be considered as a step
forward in the direction of developing better ML and AI sys-
tems having accountability, comprehensibility, and accuracy
built into them.

VII. CONCLUSION
Researchers were able to realize the need for incorporating
explanations in AI and ML systems in the 1970’s. Nonethe-
less, a good number of recently published papers in domains
like medical diagnosis, cognition, psychiatric and psycho-
logical sciences, law and criminal investigations and image
understanding highlight that systems still lack explanations.
The literature also mentions significance of incorporating
AXAI capabilities in AI systems.

The part one of this paper introduced the AXAI capa-
bility framework. This paper detailed incorporation of the
AXAI capabilities in an affective state assessment system.
Hence, this work serves as a tutorial and provides specific
information on various functional modules and link struc-
tures required to connect users with use cases. Examples
of use cases that facilitated incorporating AXAI capabilities
in the system are also given. Though the domain of our
application was affective computing, this paper introduced a

domain-agnostic and portable methodology for incorporating
the AXAI capability in ML and AI systems.

So far, little work has been done on selecting an appropriate
SDDP for building AI systems. Consequently, current litera-
ture offers very little information on application of agile soft-
ware design practices in AI system design. Usually, ad hoc
practices are used for designing and implementing AI and
ML systems. This work provided insight into suitability of
agile software methods for AI system design and showed
how eXtreme Programming (XP) practices would help in
incorporating the AXAI capability. We demonstrated system-
atic, localized and iterative development of an AI system.
We showed that an appropriate SDDP would help in collab-
oratively discovering user requirements and understanding
user behaviour. We also exhibited that use of conceptual
models and use cases would augment progressive system
enhancement and allow identifying any shortcomings in func-
tional capabilities of an AI system.

During the ASAM design, user motivation was observed
in terms of need, desire and expectations. The user behaviour
was determined through either use, revision or rejection of
a function. The user-perceived value of features was estab-
lished as either good, complicated or revisable. These param-
eters of user motivation ware helpful in determining the
system requirements. As discussions on user motivation, user
behaviour and user perceived value of an AI system are not
common in the affective computing literature, it would be safe
to assume that we contributed to the prevailing knowledge
on affective system design. This work also demonstrated
that the user-developer engagement would make the SDDP
sensitive to ethical, functional, technical and domain-specific
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implications of a contemporary AI system. This demonstra-
tion is anticipated to promote the idea of engaging system
developers and users during the AI system design process.
However, the success of our proposed AXAI capability
framework and its implementation would depend on the qual-
ity of input data, level and nature of interactions between
input cues, mechanisms of combining the input and processed
data, and the magnitude and quality of the training data.
Without paying attention to these factors, building trust in
an AI system’s decisions would not be possible. In order
for users to understand the system inferences, design of a
suitable GUI and dynamic display of all pertinent data would
be necessary as well.

The proposed AXAI framework and its incorporation in
the ASAM are anticipated to initiate investigations on vari-
ous aspects of building, assessing and incorporating AXAI
capabilities in affective computing systems. We also expect
to motivate further investigations in social, ethical, legal and
cognitive implications of designing, assessing and incorpo-
rating AXAI capabilities.
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