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ABSTRACT A Virtual Power Plant (VPP) balances the load on a power grid by allocating power generated
by various interconnected units during periods of peak demand. In addition, demand-side energy devices
such as Electric Vehicles (EVs) and mobile robots can also balance energy supply and demand when
effectively deployed. However, the fluctuation of energy generated by renewable resources makes balancing
energy supply a challenging goal. This paper proposes a semi-decentralized robust network of electric
vehicles (NoEV) integration system for power management in a smart grid platform. The proposed approach
integrates an aggregator with EV fleets into a blockchain framework. The EVs execute a multi-stage
algorithm to predict the power consumption based on a novel federated learning algorithm named Federated
Learning for Qualified LocalModel Selection (FL-QLMS). From the evaluation results, the proposed system
requires 35% fewer transactions in short intervals and propagation delays than the previous approaches and
achieves better network efficiency while maintaining a high level of security. Moreover, NoEV achieves
a 5.7% lower root mean square error (RMSE) than the conventional approach for power consumption
prediction, which is a significant improvement. In addition, the FL-QLMS approach outperforms state-
of-the-art methods in terms of robustness to client-side attacks. The evaluation results also show that the
performance of FL-QLMS is not affected when 10% to 40% percent of the models are manipulated.

INDEX TERMS AI-enabled, blockchain-based, robust, power-management, EVs, smart grid.

I. INTRODUCTION
The utilization of renewable energy resources has increased
significantly over the last decade. By the end of 2020,
global renewable energy generation capacity reached
2799 gigawatts [1].Meanwhile, European emission standards
limit carbon dioxide emissions from regular cars to less
than 95 g/km by 2020 [2]. Recently, a growing number of
electric vehicles (EVs) are being integrated into smart grids
to solve the problem of fluctuating renewable energy feed-in
and shifting peak loads. To achieve efficient distribution and
utilization of renewable energy, the concept of a virtual power
plant (VPP) has been proposed as an intermediary between
distributed energy resources, the power grid, controllable
loads, and EVs [3]. When investigating the information
exchange between an EV fleet and the VPP center, critical
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factors such as robustness and cost-efficiency of data storage,
fast response to demand, and good scalability deserve much
attention [4], [5].

A. BACKGROUND AND MOTIVATION
Nowadays, modern EVs are equipped with devices for sens-
ing, computation, communication, and data storage, provid-
ing a solution to offload cloud data centers [6]. Various
efforts have been made to outsource edge computing tasks
in vehicles [7], [8]. And a few studies have investigated
the framework of vehicle edge computing for the VPP sce-
nario [9]–[11]. For a complicated smart-vision task in a driv-
ing environment, vehicles must be equipped with high-speed
systems that process a large amount of sensor data (about
1 Gb/s) [12]. However, one of the bottlenecks of today’s local
devices is still limited computing power. For example, the
Renesas Xtreme, the most recent automotive microcontroller
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FIGURE 1. Virtual Power Plant (VPP): (a) conventional VPP aggregator, (b) AEBIS, (c) NoEV. In the conventional VPP architecture, the EV fleet is generally
considered as a type of end consumers. A VPP aggregator monitors activity on the vehicular network. In AEBIS, where each EV participates in FL by
sharing local models via the blockchain, the EV fleets form a blockchain network and the VPP aggregator is thus replaced. Compared to AEBIS, NoEV
introduces a combination of VPP aggregator and EVs. The aggregator first merges the local models from EVs and then uploads the global models to the
blockchain. In the proposed system, a substantial number of local models are not stored in the blockchain, which ensures a more efficient environment
for collaborative learning. The colored models denote local models, and the models in black denote global models. Modified from Wang et al. [31].

family, includes devices with limited memory ranging from
32K flash/4K RAM to 8 flash/512K RAM [13].

Security and privacy are other concerns in vehicular edge
computing (VEC), which has great significance in avoiding
traffic collisions, improving road efficiency, and reducing
environmental impact [14]. As a concrete example, protecting
the functionality of range anxiety is critical for EV drivers.
In addition, a cyberattack on EV or charging stations can
result in a large-scale charging outage that can have a signif-
icant impact on the vehicle and the power grid. Secure data
sharing and management [15]–[17] have been investigated,
and various federated learning-based framework have been
proposed for vehicular networks [18], [19]. Other privacy
protection frameworks such as differential privacy attempt
to deal with aggregation issues, however, with a challenge
of achieving optimal trade-off between data utility and data
leakage [20].

As a decentralized and secure framework, blockchain is a
popular solution to replace the traditional approach in edge
computing. It benefits federated learning in secure energy
trading, management, and protection of EVs and drivers’ data
privacy. Secure bidirectional energy trading (charging and
discharging) [21]–[24] for EVs has been investigated using
a blockchain scheme. Research in [21], [25] studied both
blockchain-based energy trading and data sharing in vehicle-
to-grid (V2G) networks. The works in [26]–[28] proposed
blockchain-based models for information authentication and
trust management in a vehicular network. Other works pro-
posed a variety of incentive-compatible schemes to encourage

EV nodes to participate in demand response [29], [30]. While
the above works addressed secure blockchain-based decen-
tralized energy trading, EV participation, and data manage-
ment issues in V2G, they did not concretely investigate secure
data communication between the smart grid and the vehicular
network. Moreover, the overall load on the network remains
a significant challenge as the number of EVs continues to
increase.

In previous work, we proposed an AI-Enabled Blockchain-
based Electric Vehicle Integration System (AEBIS) for power
management in smart grid platforms [31], [32]. AEBIS
is a fully decentralized blockchain-based architecture for
EV fleet model learning integrated with the VPP platform,
as shown in Fig. 1(b). The system employs EV fleets as
consumers and suppliers of electrical energy within a VPP
platform [31]. Amechanism for charging the batteries of elec-
tric vehicles is proposed based on predicting the power con-
sumption of the batteries using an artificial neural network.
The neural network model is trained in a federated learn-
ing scheme and mapped into a reconfigurable AI chip [31].
Besides, by introducing blockchain technology into the sys-
tem, secure and transparent service is achieved at the cost
of storage and latency. In Fig. 1, the solid lines indicate
the communication on the blockchain, and the dashed lines
indicate the other communication activities. The overall
decentralized architecture, EV charging mechanism, neural
network configuration, and AI-chip integration were intro-
duced in [31]. However, the earlier approach has the fol-
lowing shortcomings: (1) the constant proliferation choice
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of new models for the blockchain solution leads to a heavy
load on the network. The efficiency of the blockchain suffers
greatly from this problem, making it challenging to apply
in real-world scenarios, (2) the system is only designed for
power consumption prediction for a local area, along with
weather information at the start time. In a practical scenario
where an EV travels to another city, the trained model cannot
handle such a complicated case because the geographical and
weather information changes during the journey, (3) the state-
of-the-art federated learning approaches pay little attention
to attack scenarios. The assumption that a malicious model
can be uploaded in any training round leads to significant
degradation of model accuracy. To the best of our knowl-
edge, none of the previous approaches, including our work
in [31], [32], have simultaneously considered system effi-
ciency in blockchain-based vehicular network, EV participa-
tion with power consumption prediction, edge computation
robustness for local devices.

B. CONTRIBUTION
This paper proposes a semi-decentralized Robust Network
of Electric Vehicles (NoEV) integration system for power
management in a smart grid platform. The proposed approach
integrates an aggregator with EV fleets into a blockchain
framework. Each EV in NoEV executes a multi-stage algo-
rithm to predict its power consumption based on a novel
federated learning algorithm named federated learning for
qualified local model selection (FL-QLMS). The main con-
tributions of this work are summarized as follows:
• A semi-decentralized robust network of electric vehi-
cles (NoEV) integration system for power manage-
ment in smart grid platform. The system maintains a
high-security level while significantly increasing the
efficiency of the blockchain network.

• A multi-stage power consumption prediction method
which ensures the accurate prediction performance for
intra and inter-district travel.

• A novel algorithm for robust federated learning,
named federated learning for qualified local model
selection (FL-QLMS).

The rest of this paper is organized as follows. In Section II,
we discuss related work on the integration of blockchain and
FL in edge computing, EV power consumption prediction,
and client selection for federated learning. In Section III,
we present a semi-decentralized blockchain-based platform,
which is based on a multi-stage algorithm for power con-
sumption prediction and a novel FL model selection mech-
anism. Section IV provides the performance evaluation of
the proposed system. Section V provides discussion, and
Section VI presents the conclusion and future work. The
nomenclature used in this paper is given in Table 1 and 2.

II. RELATED WORK
In this section, we survey related works on 1) integration of
blockchain and FL in the edge, 2) EV power consumption
prediction, and 3) client selection in federated learning.

A. INTEGRATION OF BLOCKCHAIN AND FL IN THE EDGE
The work in [33] discussed the communication costs,
resource allocation, incentive learning, and security and pri-
vacy issues. Weng et al. [34] proposed DeepChain, a frame-
work with a value-based incentive mechanism based on
blockchain for secure collaborative training. Wang et al. [35]
studied two types of Byzantine attacks in a blockchain-
empowered decentralized, secure multi-party learning
system. Pokhrel et al. [19] proposed a local on-vehicle
machine learning (oVML) method in an autonomous
blockchain-based FL design. Bao et al. [36] proposed a
decentralized FL system that provides incentives and disin-
centives for collaborative modeling. To analyze the latency
performance and robustness of the blockchain system,
decentralized architectures named BlockFL and FL-Block,
were introduced in [37] and [38] respectively. Despite
considering communication, computation costs, and incen-
tive mechanisms, the increasing number of parties in the
blockchain-based FL network poses a considerable challenge
to the efficiency and applicability of the systems described in
the works above.

B. EV POWER CONSUMPTION PREDICTION
Vatanparvar et al. [39] proposed a novel context-aware
methodology to estimate driving behavior concerning future
vehicle speeds for up to 30 seconds. In [40], a speed opti-
mization framework is modeled for both battery life and
power consumption of intelligent EVs during acceleration.
Since these works focused only on the acceleration process,
they are not suitable for long-trip scenarios. Ferro et al. [41]
presented a detailed energy consumption model considering
all aspects affecting the vehicle dynamics. Baek et al. [42]
introduced a general methodology that allows predicting
and optimizing the operation range of EVs. Zhao et al. [43]
proposed a combined machine learning model for predicting
the remaining range of EVs based on real driving data. One
shortcoming of these methods is the complexity of their
models. That is, the prediction for a single route requires a
large amount of vehicle, routes, and battery data. Moreover,
careful and elaborate route-planning for a terrestrial EV
involves high time and data storage costs. Features, such as
weather conditions and geography, were not investigated.

Gomez-Quiles et al. [44] proposed a novel ensemble
method for predicting EV power consumption by examining
the non-stationary time series of consumption. Although the
algorithm is used for predictions for the next month or two,
it is not unsuitable for specific driving activities.

C. CLIENT SELECTION IN FEDERATED LEARNING
The original FedAvg algorithm in [45] randomly selects a
group of clients in each training round, which means that
the communication quality and delay are difficult to evaluate.
Authors in [46] researched performance degradation due to
non-independently and identically distributed (non-IID) data
in the FL protocol. The approach focuses on the resource
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TABLE 1. Abbreviations.

TABLE 2. Symbols.

constraints of clients, including data heterogeneity, compu-
tation limitation, and communication capability. In [47], the
authors proposed a multicriteria-based approach for client
selection in FL, which aims to group many clients in each
round to reduce the communication rounds. However, none
of these works considered the importance of local data that
affects learning performance.

He et al. [48] proposed another scheme for data selec-
tion and resource allocation based on the importance of
data in the FL system to improve the learning efficiency.

Authors in [49] identified a fundamental property of FL,
namely the temporal pattern and varying significance of dif-
ferent learning rounds. They formulated a long-term client
selection and bandwidth allocation problem under finite
energy constraints and proposed a new Lyapunov-based
online optimization algorithm to guarantee long-term perfor-
mance. Cho et al. [50] presented a convergence analysis of
FL with limited client selection and demonstrates how local
loss affects convergence speed. Zhang et al. [51] proposed
a weight-based client selection mechanism to recognize the
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FIGURE 2. Overview of the proposed secure semi-decentralized FL-based framework. The black solid lines means that the
local models are uploaded from clients to the aggregator. This communication is not conducted in the blockchain. Activities
in the blockchain network are denoted by blue dashed lines. A VPP aggregator, EV fleets and a group of miners are
integrated into the blockchain network. The workflow is briefly divided into five steps: 1) Each EV node trains a local model.
From the second training round, each EV node updates the local model until convergence. 2) Each EV node uploads the
local model to the aggregator. 3) We apply the FL-QLMS algorithm to select the qualified models for aggregation, resulting
in a global model. 4) The aggregator creates and broadcasts a transaction (containing the global model) in the blockchain.
After validation and mining, a distributed ledger is produced. 5) Each client downloads the global model from the
distributed ledger for model update.

non-IID degrees of local data. However, the strategies men-
tioned above were adopted only when the clients’ reputa-
tions remained unchanged. Considering that an edge node
is prone to attacks in any training round, the quality of the
model decreases due to tampering. Therefore, a long-term
client selection mechanism is required to achieve a robust
FL model.

III. ROBUST NETWORK OF ELECTRIC VEHICLES (NoEV)
INTEGRATION SYSTEM
The proposed NoEV system integrates an aggregator with
EV fleets into a blockchain framework. The EVs execute
a multi-stage algorithm to predict the power consumption
based on a novel federated learning algorithm named feder-
ated learning for qualified local model selection (FL-QLMS).

A. SECURE SEMI-DECENTRALIZED FL-BASED
FRAMEWORK
As we explained in the previous section, the proposed
system is based on a semi-decentralized architecture.
As shown in Fig. 2, the solid lines in black means that the
local models are uploaded from clients to the aggregator.
This communication is not conducted in the blockchain.
Other activities, which are denoted by dashed lines in

blue, belong to the blockchain network. A VPP aggregator,
EV fleets and a group of miners are integrated into the
blockchain network. In the proposed architecture, the miners
are vehicles itself, while we display EVs and miners sep-
arately in Fig. 2 for the sake of explanation. The overall
workflow for each training round is described as follows:

1) In the first training round, each EV node initializes and
trains a local model Mlocal . From the second training
round, each EV node updates the local model until
convergence.

2) Each EV node uploads the local model Mlocal to the
aggregator.

3) After collecting local models, we apply the FL-QLMS
algorithm to the model selection process. Then, the
qualified models are selected for aggregation, resulting
in a global modelMglobal .

4) a) At first, the global model is recorded as metadata
in a new transaction TX0. The aggregator feeds the
transaction into a hash function H and generates
a hash value H (TX0).

b) The aggregator feeds H (TX0) to a signature algo-
rithm with aggregator’s private key, whereby an
encrypted message is produced.
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TABLE 3. Comparison between decentralized and semi-decentralized (proposed) FL-based system.

c) The aggregator then creates a transaction TX
that contains the original transaction TX0, the
encrypted message and a public key.

d) The transaction will be sent from the aggregator
to one of the nodes and then broadcasted to all
miners.

e) Each miner can start performing validation. One
will use the same hash function H and generate
the hash value of TX0. We denote the hash value
by H1. Since the same hash function always pro-
duces the same output, H1 should be identical to
H (TX0). Besides, the encryptedmessage will then
be decrypted using the public key. If the resulted
value matches H1, the digital signature is proven
to be valid. Therefore, TX is considered valid and
added to each node’s transaction pool. Once TX is
confirmed by the blockchain network, it is added
to the block.

f) A block header contains a 32-Byte previous block
hash, 32-Byte Merkle root, 4-Byte timestamp,
4-Byte difficulty target, and 4-Byte nonce.
A nonce is a 32-bit target that is guessed byminers
by solving the following equation:

H (nonce) = 0 . . . 0︸ ︷︷ ︸
n bits

xn+1 . . . x256 (1)

where, n is a pre-determined value controlling the
mining difficulty.

g) Once the nonce is found, themined block is added
to the distributed ledger.

5) Each client downloads the global model from the dis-
tributed ledger for model update.

The local model is transmitted and merged without
blockchain support. To ensure the robustness of the model
aggregation, we present a novel algorithm named Federated
Learning for Qualified Local Model Selection (FL-QLMS).
Thus, the fake models are out and therefore do not affect the
model aggregation. Besides, a multi-stage power consump-
tion prediction method is proposed to improve the accuracy
of the models, which will be introduced in section III-B.
We will present the FL-QLMS algorithm in section III-C.
The proposed semi-decentralized FL-based platform dras-
tically reduces blockchain congestion while maintaining a
high level of system security. A functionality comparison

between the decentralized (i.e., AEBIS) and the proposed
semi-decentralized (i.e., NoEV) systems is given in Table 3.

B. MULTI-STAGE POWER CONSUMPTION PREDICTION
To present the multi-stage power consumption prediction,
we consider a single trip from a start city to a destination,
as shown in Fig. 3(a). The start city is located in Area 1 and
is denoted by Citys. The destination is located in Area N
and is denoted by Cityd . Each city is associated with lat-
itude and longitude, e.g., Citys is associated with latitude
Lats and longitude Longs. The duration of driving is abbre-
viated as DoD. We assume that DoD takes only integers
and ranges from 1 to 12 hours to simplify the problem.
The start time is denoted by ts. We also assume that the
EV moves at a constant speed in a straight line. Therefore,
we can calculate the position of the EV at each time t ,
t ∈ {ts, ts + 1, . . . , ts + DoD− 1}. Each calculated position
Cityc is called an ‘‘equal point’’ because the distance between
two adjacent points is the same. The equal points are marked
by green dots, as shown in Fig. 3(a). These equal points divide
the entire path into multiple sections. We then predict the
power consumption for each section and sum up the results.
For each section, we need the following features: 1) start
time t , 2) weather information at time t , 3) geographic infor-
mation (latitude and longitude), 4) user information, and
5) duration of driving. For each equal point, we use the
weather data from the nearest weather station, which is high-
lighted in yellow in Fig. 3(a). Algorithm 1 describes the
proposed approach to predict power consumption in detail.

For ease of understanding, we split the entire algorithm
into the following four stages: 1) Initialization (Line 1–4),
2) Intermediate Position Calculation (Line 5–8), 3) Practi-
cal Position Calculation (Line 9–23), and 4) AI Prediction
(Line 24–33).

First, a start city Citys (Lats, Longs), a destination Cityd
(Latd , Longd ), DoD, and start time ts are given. Latitude and
longitude of all cities are stored in {Latk}k∈K and {Longk}k∈K ,
respectively, whereK denotes the set of city IDs. The weather
information is presented by

{
Weatherk,t

}
k∈K ,t∈T , including

temperature, rainfall, humidity, and wind speed, where T
is the time period of the weather data and is given by
each hour. User_Info contains information about the driver’s
gender and age. Ntotal denotes the total number of cities,
and M is the neural network model for power consumption
prediction.
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FIGURE 3. Illustration of the optimized power consumption prediction.

In Stage 1, the empty arrays Latc, Longc are initialized for
recording equal points. Latp, Longp, and City_ID are used
to record nearest cities to each equal point. As shown in
Line 6 and 7, we find coordinates of point that divide the
line segment,CitysCityd , intomultiple equal parts. The length
of each array is set to DoD. The temporary variables ED
and EDmin are initialized for calculating and storing distance
information. An empty sample S is prepared as input for
model prediction. In Stage 2, the latitude and longitude of
each equal point are calculated, given Lats, Longs, Latc,
Longc and DoD. In Stage 3, for each equal point, we traverse
all practical cities and find the nearest one by Euclidean
distance. In Stage 4, we prepare samples with respect to each
section and perform prediction. We extract the hour and day
of the week from time ts+i−1, i ∈ [0,DoD). We extract gen-
der and age from User_Info. Given the weather data at time
ts + i− 1 and a city with City_ID[i], we obtain temperature,
rainfall, humidity, and wind speed.We also obtain the latitude
Latp and the longitude Longp. Finally, we input the sample S

Algorithm 1Multi-Stage Power Consumption Prediction
Require: Lats, Latd , Longs, Longd , DoD, ts, {Latk }k∈K ,
{Longk }k∈K ,

{
Weatherk,t

}
k∈K ,t∈T , User_Info, Ntotal , M

Ensure: Predicted Power Consumption PCpred
1: Initialize empty arrays Latc, Longc, Latp and Longp
2: Initialize City_ID
3: Initialize temporary variables ED and EDmin
4: Initialize sample S of size 11, which will be fed into model M
5: for each i ∈ [0,DoD) do
6: Latc[i] = Lats +

Latd−Lats
DoD i

7: Longc[i] = Longs +
Longd−Longs

DoD i
8: end for
9: for each i ∈ [0,DoD) do

10: EDmin =
√
(Latc[i]− Lat0)2 + (Longc[i]− Long0)2

11: Latp[i] = Lat0
12: Longp[i] = Long0
13: City_ID[i] = 0
14: for each j ∈ [1,Ntotal ) do

15: ED =
√(

Latc[i]− Latj
)2
+
(
Longc[i]− Longj

)2
16: if ED < EDmin then
17: EDmin = ED
18: Latp[i] = Latj
19: Longp[i] = Longj
20: City_ID[i] = j
21: end if
22: end for
23: end for
24: PCpred = 0
25: for each i ∈ [0,DoD) do
26: S[0], S[1]← hour, weekday from ts + i− 1
27: S[2], S[3], S[4], S[5] ← temperature, rainfall, humidity,

and wind speed from WeatherCity_ID[i],ts+i−1
28: S[6] = Latp[i], S[7] = Longp[i]
29: S[8], S[9]← gender, age from User_Info
30: S[10] = DoD
31: PCpred = PCpred +M (S)
32: end for
33: return PCpred

into the modelM . When the prediction is completed for each
driving section, we obtain the final result PCpred .

C. FL-QLMS ALGORITHM
As we explained in section II-C, the conventional approaches
(i.e., work in [45]) randomly select a group of clients in each
training round, which means that the communication quality
and delay are challenging to evaluate.Moreover, the approach
makes the model vulnerable to client attacks, which eventu-
ally leads to severe degradation of the prediction performance
(e.g., accuracy in classification or root mean squared error
in linear regression). Therefore, to ensure a robust learning
environment, it is necessary to always select the ‘‘qualified’’
local models for aggregation, where qualified models are
considered not polluted and contribute to the performance of
the global model.

In the proposed FL-QLMS algorithm, we focus on select-
ing a group of ‘‘qualified’’ local models for model aggrega-
tion. In general, if the distribution of the data is similar, the
convergence trend of a local model should also be similar
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to the centralized model [53]. Thus, if the parameters of a
local model are similar to those of the centralized model, that
is, if the parameter diversity between the two models is low,
the local model is considered to contribute to model aggre-
gation. On the other hand, if a local model is contaminated
by a malicious attack, the diversity between the contaminated
model and the centralizedmodel should be high. The diversity
between two models can be expressed as follows:

DIa,b = ‖Pa − Pb‖ (2)

where DIa,b denotes the diversity between model
parameters Pa and Pb.
Consider a FL process with N clients, each training round

consists of the following six steps:
1) First, each client trains its local model using the

collected local data set. In each local model, the gra-
dient ∇gL is calculated using adaptive moment estima-
tion (Adam) optimizer [54], as shown by the following
formula:

∇gL =
δE(W )
δW

(3)

where W denotes a set of weights, and E(W ) denotes
the loss function with respect to W . E(W ) is used
for measuring the model error and finding an optimal
solution. Also, δ indicates partial derivatives.

2) Each client uploads the local modelM i
local to the aggre-

gator. Besides, the aggregator is informed of the local
data size

∣∣Dilocal ∣∣ from each client, whereDilocal denotes
the local data set of the client i, i ∈ N .

3) The aggregator selects a group of uploaded models
based on the FL-QLMS algorithm. The number of
selected models is determined by the parameter α, i.e.,
α% of all models used for aggregation. Given a total
set of N models, the number of selected models is
Nselected = dα% · Ne. The list of selected models is
denoted byMselected .

4) Before aggregating the models, we need to calculate
the contribution of each selected model concerning the
corresponding data size [45]:

wilocal =

∣∣Dilocal ∣∣∑Nselected
m

∣∣Dmlocal ∣∣ , i,m ∈ Nselected (4)

where
∑Nselected

m

∣∣Dmlocal ∣∣ is the total data size with
respect to the selected models.

5) The selected models are aggregated, resulting in a
global model with gradient ∇gL [45]:

∇gG =
Nselected∑
i=1

wilocal∇g
i
L (5)

6) Once the edge nodes receive the global model from the
server-side, they update the parameters as follows [54]:

W r+1
= W r

− η∇gG (6)

br+1 = br − η∇gG (7)

Algorithm 2 FL-QLMS With Auxiliary Model

Require: Auxiliary model Maux , local models
{
M i
local

}
i∈N ,

the total number of clients N , and parameter α
Ensure: List of selected models for aggregation
1: Initialize an empty list Mselected , which is used to store

the selected local models
2: Store all parameters ofMaux as a one-dimensional array,

denoted by Paux
3: Store all parameters of eachM i

local as a one-dimensional
array, denoted by Pilocal

4: for each i ∈ N do
5: Calculate the diversity between Paux and Pilocal using

the Manhattan distance, denoted by DIaux,i
6: end for
7: Select dα% · Ne models with lowest DIaux,i and store

them to the listMselected
8: returnMselected

where W r and br denote the weights and biases in the
r-th training round, respectively. η denotes the learning
rate.

We present the FL-QLMS algorithm with and without aux-
iliary model. Algorithm 2 describes how FL-QLMS works
when an auxiliary data set is available. There are two ways to
obtain a reliable auxiliary data set. One option is to pay the EV
clients for the data set and get the data set on the spot. Another
possibility is that the aggregator uses a group of EVs to collect
data. Both methods collect the data without online data trans-
mission, thus avoiding data leakage. The auxiliary data set
is prepared on the aggregator’s side. We denote the auxiliary
model as Maux . First, we store all parameters (weights and
biases) ofMaux as a one-dimensional vector, denoted by Paux .
We treat each local modelM i

local in the same way and obtain
the flattened vector Pi. Paux and Pi have the same size, i.e.,
|Paux | = |Pi|. Then, for eachmodel, we calculate the diversity
between Paux and Pi using the Manhattan distance:

DIaux,i =
|Paux |∑
j

∣∣∣pjaux − pji∣∣∣ (8)

where pjaux is a parameter of Paux , and p
j
i is a parameter of Pi.

Then, dα · Nemodels with the lowest DIaux,i are selected for
aggregation.

Algorithm 3 describes how FL-QLMS works when an
auxiliary data set is not available. For each local model
M i
local , we store all parameters (weights and biases) as a one-

dimensional vector, denoted by Pilocal . We then calculate the
diversity DIi,j between Pilocal and each Pjlocal , where j ∈ N
and j 6= i. Therefore, the average diversity of M i

local can be
computed as follows:

D̄Ii =
1

N − 1

N∑
j=1,j6=i

DIi,j (9)
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Algorithm 3 FL-QLMS Without Auxiliary Model

Require: Local models
{
M i
local

}
i∈N , the total number of

clients N , parameter α
Ensure: List of selected models for aggregation
1: Initialize an empty listMselected used to store the selected

local models
2: Store all parameters of eachM i

local as a one-dimensional
array, denoted by Pilocal

3: for each i ∈ N do
4: for each j ∈ N and j 6= i do
5: Calculate the diversity between Pi and Pj using

the Manhattan distance, denoted by DIi,j
6: end for
7: D̄Ii = 1

N−1

∑N
j=1,j6=iDIi,j /* Calculate the average

diversity between Pi and
{
Pjlocal

}
j∈N ,j6=i

8: end for
9: Select dα% · Ne models with lowest DIi and store them

to the listMselected
10: returnMselected

Amodel with a lower average diversity is considered more
representative. In other words, the data set associated with the
model is considered to have a similar distribution to the entire
data set. For this purpose, dα · Nemodels with the lowest D̄Ii
are selected for aggregation.

IV. EVALUATION
A. EVALUATION METHODOLOGY
To show the advantage of our proposed system in terms of
cost-efficiency, we studied the network load in a blockchain
system and compared the proposed NoEV with AEBIS,
oVML and DeepChain. We mainly focused on the number of
blocks and transactions generated in a given period. We used
an extensible simulation tool BlockSim for blockchain sys-
tems introduced in [55]. The configurations are summarized
in Table 4. We simulated 63 nodes for AEBIS, oVML, and
DeepChain and 63 + 1 nodes (1 additional node for the
aggregator) for NoEV. We implemented ten runs for each
simulation, with each run lasting 6000 seconds.

As discussed previously, the data set for the power con-
sumption prediction includes weather, geography, and user
information. We collected weather data from December 2019
to November 2020 in 63 cities in Japan [56]. The start time
of vehicle reservation was set from 0:00 to 23:00 and the
duration of driving from 1 to 12 hours. We considered the age
of drivers ranging from 21 to 69 years old. The daily power
consumption was measured considering the input character-
istics and the measurement model [31]. We summarize the
detailed information of the data set in Table 5. The data set
contains a total of 66000 samples.We compared the proposed
multi-stage power consumption prediction with the original
power consumption prediction (PCP). We investigated the
performance of the twomethods under different driving activ-
ities — (a) short-distance journey, (b) mid-distance journey,

and (c) long-distance journey. We summarize our definition
of the above three activities in Table 6.

We considered a set of N = 63 clients in the federated
learning environment. The data set contains 63000 training
samples and 3000 test samples. First, we studied the effects
of the model initialization methods — a) global initialization
and b) local initialization. We considered an independent and
identically distributed (IID) setting and employed the FedAvg
(Federated Average) algorithm [45]. Then we considered a
scenario where the local data is non-IID. Finally, going a
step further, we compared the robustness of different FL
algorithms against client attacks. For each algorithm, the
simulation was repeated 20 times. Each simulation included
50 iterations. We used the root mean square error (RMSE) to
measure the model’s performance.

B. EVALUATION RESULTS
1) BLOCKCHAIN EFFICIENCY ANALYSIS
The block size was set to 1 megabyte (MB). We considered
different combinations of TI and Bdelay, which represent the
average time to generate a new block and the propagation
delay of a block, respectively. In [55], the transaction size
Tsize is 572.5 bytes by default. In our experiment, Tsize is
larger because each transaction must additionally store a
portion of a model. The total number of parameters for our
fully connected network (11-8-8-1) is 157. Each parameter
in floating-point format occupies 4 bytes; thus, if we extract
the parameters from the model, the total size is 157 × 4 =
628 bytes. In general, the return operator (OP_RETURN),
which is part of the Bitcoin script language, is used to allow
storing metadata on the blockchain with a maximum storage
limit of 83 bytes according to release 0.12.0 [57]. There-
fore, at least eight transactions are required for each model.
The updated transaction size Tsize is 572.5 bytes + 628/8
bytes = 650 bytes. We implemented 63 nodes (N0 to N62)
for AEBIS, oVML, and DeepChain simulation with respect
to a total of 63 EV clients. For simplicity, we consider a
simple scenario that each miner has the same hash power.
Therefore, given 63 nodes and the total hash power of 1, each
of them will have a hash power of approximately 1.587%.
For the NoEV simulation, the aggregator is introduced as an
additional node N63. Since N63 is not assigned any mining
task, its hash power is set to 0%. We assume that the number
of transactions (Tn) created per second is eight in NoEV.
Accordingly, Tn = 8 × 63 = 504 in AEBIS since 63 nodes
are considered.

Table 7 summarizes the results of AEBIS, NoEV, oVML,
and DeepChain on the BlockSim simulator. When the aver-
age block interval increases, the total number of blocks
decreases accordingly. Moreover, as the block propagation
delay increases, the number of blocks included in the main
chain decreases, while the number of stale blocks increases.
The stale blocks have been successfully mined but are not
included in the current best chain. Therefore, the overall
rate of stale blocks increases. When comparing with other
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TABLE 4. Configuration for BlockSim simulation.

TABLE 5. Data set for vehicle energy consumption.

TABLE 6. Driving activities.

methods, it is observed that NoEV generally requires the
fewest transactions, especially for short TI . For example, for
a short block interval (TI = 30) and short block propa-
gation delay (Bdelay = 1), NoEV requires an average of
25166 transactions, which is 38%, 37%, and 35% less com-
pared to AEBIS, oVML, and DeepChain respectively. The
significant decrease in NoEV can be explained by the fewer
number of transactions, because the NoEV requires only
global model transmission on the block, while the other meth-
ods require frequent local model transmission. DeepChain
averaged the model updates every 10 to 20 iterations rather
than at each iteration to increase communication efficiency,
as in AEBIS and oVML. However, DeepChain and oVML
still require the exchange of local models over the blockchain
network.

2) MULTI-STAGE POWER CONSUMPTION PREDICTION
A comparison between PCP and the proposed multi-stage
PCP is illustrated in Fig. 4. The overall prediction results
are shown in Fig. 4(a), where the multi-stage PCP achieves
5.7% lower RMSE compared to PCP. We observed that
the multi-stage PCP performs better in scenarios with the
short-distance journey. This result is surprising because the
original PCP mainly focuses on local driving activities and
has achieved decent performance. Our most compelling case
is long-distance driving. As illustrated in Fig. 4(d), the
multi-stage PCP still achieves better results by completing
14.3% lower RMSE. Besides, we analyzed the performance
variance of the two methods in each case. For medium and
long distances, the variance of RMSE of the multi-stage PCP
ismore significant than that of PCP. Themulti-stage approach
can explain the reason. The multi-stage PCP first divides the
journey into multiple sections for a long trip and then runs
the prediction model for each section. When the prediction
results are summed up, the errors caused by each prediction
are also accumulated. Therefore, the multi-stage PCP leads
to higher variability. On the other hand, for a short trip, e.g.,
one or two hours, the multi-stage approach has little effect,
and therefore the variance of the multi-stage PCP is lower.

3) FEDERATED LEARNING FOR QUALIFIED LOCAL MODEL
SELECTION (FL-QLMS)
We considered a set of N = 63 clients for the FL sched-
ule. We split the whole data set D into the training set
Dtrain of 63000 samples and test set Dtest of 3000 samples.
First, we evaluated two approaches of model initialization:
a) global initialization and b) local initialization. Global ini-
tialization means that the aggregator creates an initial model
and distributes it to all clients. On the other hand, local
initialization involves each client creating its initial model and
performing the training task. FedAvg is used for model aggre-
gation. The number of local updates is set to one before each
global aggregation. We randomly assigned 1000 samples to
each client. Thus, each subset Diiid follows independent and
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TABLE 7. The blockchain simulation results of AEBIS, NoEV, oVML, and DeepChain for different combinations of parameters.

identical distribution (IID), whereDtrain = D1
iid ∪D

2
iid ∪· · ·∪

DNiid . Fig. 5 illustrates the impact of two model initialization
options on training performance. The red and blue shaded
regions denote local and global initialization performance
fluctuation, respectively. While local initialization leads to
slower convergence in the first 20 iterations, it achieves a
lower average RMSE of 7.77 than global initialization at
the end of training. This shows that it makes more sense to
build the initial models on the client-side rather than on the
server-side. Therefore, we implement local initialization in
the following FL simulations.

We then considered a scenario where all local data is non-
IID. We refer to this scenario as Scenario-I. We distributed
the entire dataset across N = 63 clients, each of which is
associated with 1 to 5 start cities. Besides, each local data set
Dinon−iid contains different reservation times, i.e., morning,
afternoon, or evening. For each Dinon−iid , i ∈ N , the data size
ranges from 200 to 2000. Similar to IID scenario, we have
Dtrain = D1

non−iid∪D
2
non−iid∪· · ·∪D

N
non−iid .We compared the

performance of FedAvg, FCS, and the proposed FL-QLMS
with or without auxiliary model Maux . As shown in Fig. 6,
the FL-QLMS with an additional model has a similar
performance as FedAvg, while both algorithms cannot keep

up with FedCS with an average RMSE of 7.28. The reason
for this is the robustness of FedAvg and FedCS against the
Non-I.I.D setting to some extent. Also, compared to FedCS
and FL-QLMS, FedCS allows two times as many clients in
each training round.We then found that the average RMSE of
FL-QLMSwithout an auxiliary model is higher than the other
methods, reflecting the importance of an additional model
during training.

We further investigated the impact of hacked clients on var-
ious FL algorithms. We refer to this scenario as Scenario-II.
We assume that k% of all clients are hacked in each training
round. Each hacked client uploads a malicious model where
all parameters range from -1 to 1 randomly. Compared to
Scenario-I, we used the same setting for data distribution
and training simulation. From Fig. 7 we can see how each
method performs against model attacks of varying severity.
FL-QLMS (with Maux) is shown to be robust when 10%
to 40% of clients are hacked, holding average performance
constant. In contrast, FedAvg and FedCS are highly sen-
sitive to attacks, as the training process hardly converges
when the number of faked models increases. For FL-QLMS
(without Maux), it always leads to convergence, but with
slightly worse performance than FL-QLMS (withMaux).
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FIGURE 4. Comparison between PCP and the multi-stage PCP (this work) in different scenarios.

FIGURE 5. Comparison between two model initialization methods in
federated learning. Shaded regions denote the fluctuation of the
performance. The meaning of iteration is the number of times that the
models were aggregated.

V. DISCUSSION
A semi-decentralized FL-based architecture is proposed to
integrate both an aggregator and edge nodes into a blockchain

FIGURE 6. Comparison among FedAvg, FedCS [46], and the proposed
FL-QLMS (w/o the auxiliary model). In this experiment, a Non-IID setting
is considered. An average RMSE is shown beside each boxplot.

platform. Although the blockchain does not secure the trans-
mission of local models from the client to the server side, the
aggregator could perform a robust model selection strategy
to remedy potential model attacks during or before dispatch.
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FIGURE 7. Comparison among FedAvg, FedCS, and the proposed FL-QLMS (w/o the auxiliary model) under client attacks. Different severity of the
attack is considered. Shaded regions denote the fluctuation of the performance.

In this way, we significantly reduce the communication load
on the blockchain and still maintain a robust and secure
network. Using a simple AI model to predict battery power
consumption for a long-distance trip is inappropriate for
accurate prediction. Since a long journey can be divided into
multiple small sections, a multi-stage algorithm helps reduce
the prediction error. A shortcoming of our strategy lies in
the assumption that the driving activity is a uniform linear
motion, which is ideal in practice. To transform the process
into a real scenario, we prefer to create an optimal route based
on the global positioning system. Moreover, the efficient
division of the whole trip into several sections remains a
problem to be optimized. Besides, a qualified local model
selection is essential to ensure the robustness of federated
learning. The FL-QLMS algorithm demonstrates robustness
against model attacks during the federated process. However,
the performance of the current FL-QLMS algorithm is highly
dependent on a prepared auxiliary data set, which raises two
critical issues. First, the supplemental data should ideally
have the same distribution as the entire data is not guaranteed.

In addition, since the client-side data is updated daily, the
ancillary information is unreliable for the local model selec-
tion. Second, due to privacy and security awareness, edge
nodes may not share raw data to the server.

VI. CONCLUSION
This work presented a semi-decentralized Robust Network of
Electric Vehicles (NoEV) integration system for power man-
agement in smart grid platform. NoEV integrates an aggre-
gator with EV fleets into a blockchain framework, where
EVs execute a multi-stage algorithm to predict EV power
consumption using a novel FL-QLMS algorithm. In addition,
we evaluated the proposed semi-decentralized system regard-
ing storage and communication efficiency in the blockchain
network. Compared to the previous approaches, NoEV
requires 35% fewer transactions in short intervals and propa-
gation delays. The comparison results show that the proposed
system achieves better network efficiency while maintaining
the system’s security level. Moreover, the system achieves
a 5.7% lower root mean square error (RMSE) than the
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conventional PCP approach, significantly improving power
consumption prediction. In addition, FL-QLMS approach
outperforms state-of-the-art methods in terms of robustness
to client-side attacks. The evaluation results demonstrate that
the performance of FL-QLMS is not affected when 10% to
40% percent of the models are manipulated.

Nevertheless, the proposed system still has room to
improve. First, the robustness of the system relies on the
high stability of the aggregator. The aggregator collects local
updates and broadcasts the global model to the blockchain.
However, once the aggregator is not working, a backup server
is needed to maintain the system. Second, in our blockchain
proposal, EV clients are deployed to act as miners. If the
local training needs a more powerful edge device, then the
computing device on the EV may not be enough. Therefore,
other miners need to be associated with EVs, and the system
architecture needs to be redesigned.

In our future work, we plan to investigate the mining
reward mechanism by extending our work to both public
car-sharing and private car services. In addition, we will also
study the security issue in more complicated attack scenarios.
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