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ABSTRACT The increasing penetration of photovoltaic (PV) generators has led to a shift of the operational
policy of the distribution system operator (DSO) from passive to active intervention in distribution networks
(DNs), where a centralized controller governs the operation of voltage regulation devices. However, the PV
output uncertainty hinders the verification of the impact of PVs onDNs. Therefore, the hosting capacity (HC)
analysis framework for PV penetration should reflect both the operational benefit of the DSO and the PV
output uncertainty. Thus, in this study, a two-stage optimization-based framework is proposed to analyze the
probabilistic HC for PV under active network management (ANM) of DNs. In the first stage, the optimal PV
base capacity (PVBC) tomaximize the sum of the HC for PVs is determined based on a heuristic optimization
method; in the second stage, using the predefined load and PV output profile, the maximum available power
generation curve for PVBC is calculated, and the maximumHC for PV is derived by the calibration of PVBC
through a comparison with the actual PV generation profile curve. The proposed method considers the time-
series-based load flow results, reflecting the time-scheduling strategy by the DSO. Moreover, the uncertain
characteristics of PV output are stochastically considered using a Monte Carlo simulation-based repetitive
calculation approach. Case studies were implemented using the modified IEEE-123 test system, and the
simulation results provided a quantitative comparison of the effect of the probabilistic HC improvement on
the utilization of controllable resources and the centralized ANM by the DSO.

INDEX TERMS Active network management, distribution system, hosting capacity, optimization, photo-
voltaic system, probabilistic analysis, smart inverter, soft open point, voltage regulation.

I. INTRODUCTION
The global tendencies to achieve net-zero emissions have led
to a significant transition of the energy generation portfolio.
In this regard, the integration of photovoltaic (PV) generators
in distribution networks (DNs) has been accelerated [1].
However, the high penetration of PV in DNs has various
negative impacts on the reliability and stability of grid oper-
ation involving voltage rise and fluctuations, load unbal-
ance, loss increase, etc. [2]. In particular, the intermittent
characteristics of PV generators cause significant uncertainty
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in DNs. Hence, there is a demand for distribution network
operators (DSOs) to know the maximum hosting capacity
(HC) of PV for making economic decisions in network
planning [3]. The maximum HC is defined as the capacity
of distributed generators (DGs) that can be installed as much
as possible without upgrading the power system while sat-
isfying various constraints including network reliability [4].
Currently, in most countries, system operators determine the
maximum HC for distributed generators (DGs) with a certain
ratio of substation capacity [4]. However, in practice, the
maximum HC can be determined by various constraints such
as overvoltage, thermal capacity of the cable, and voltage
unbalance limit. Therefore, a procedure for determining
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the HC should simultaneously include all of these
constraints [5].

To alleviate voltage-related issues in the presence of PV,
several solutions for DN have been proposed. The most
classical method is to maintain the voltage at the secondary
side of the transformer using an on-load tap changer (OLTC)
or a step voltage regulator [6]. In addition, the application
of D-STATCOM, dynamic voltage regulators, and smart PV
inverters are based on continuous reactive power support [7].
Recently, the application of voltage source converters (VSCs)
in DNs, called soft open points (SOPs), has been studied
to enable continuous power flow control between adjacent
feeders in DNs [8]. From the perspective of the DSO, the
local operation of these controllable resources without coor-
dination is inefficient because it cannot address other negative
impacts, such as frequent tap changes, interactions between
control units, and increasing losses under the excessive cir-
culation of reactive power in DNs [9]. Hence, optimally
coordinated management of control devices from the central
controller is generally more attractive [10], [11]. In [12], [13],
a practical cooperative control between smart PV inverter
and OLTC was proposed in consideration of the reactive
power capability of the smart inverter in the low voltage DN.
An aggregative energy management strategy was proposed in
[14] to reflect the grid service of electric vehicles under the
PV output uncertainty.

In the process to estimate the HC for PVs, the impact of this
active network management (ANM) should be closely con-
sidered. Furthermore, the quantitative impact onHC enhance-
ment, which is different depending on the coordination of
control devices, should be assessed.

In [15], the robust operation of the OLTC and static var
compensator (SVC) to address the uncertainty of DGs was
considered in the process of determining the maximum HC.
Moreover, the impact on HC improvement using smart PV
inverters or network reconfiguration was assessed in [16]
and [17], respectively. Worst case-based analytical approach
was applied to determine HC in [14]. However, in the above
methodologies, the voltage unbalance of the DN was not
considered. Furthermore, the worst case-based deterministic
approaches with regard to HC could be conservative because
the volatility of DGs was not considered, which leads to
underestimation of HC.

Therefore, stochastic approaches for determining HC have
been studied in [18]–[23]. The methodologies differ depend-
ing on which factors are the sources of randomness. The
authors in [18] proposed a framework to calculate HC in a
probabilistic manner from randomized locations and array
size of PVs in general DNs, and they developed the idea
in [19] to consider the sensitivity of the HC regarding the
combination of control schemes in ANM. In [20] and [21],
a method to estimate the impacts on HC enhancement was
proposed under the local control of voltage regulators or
centralized ANM schemes, respectively.

However, the studies in [18]–[21] are based on the source
of randomness from the network topology, such as location,

penetration ratio, and array size of PV, whereas the PV
uncertainty and load output over time are not considered.
Regarding the yearly wind speed prediction, the stochas-
tic assessment of HC in ANM was studied in [22], but
focused only on wind turbine (WT)-based DGs. In [23],
the uncertainty of PV and WT-based DGs was considered
in the proposed risk assessment tool for estimating the
probabilistic HC, but the process is based on the method
of checking for constraint violations, not on the optimized
framework.

Besides, recent studies focused on obtaining additional
benefits by operating the DN for other purposes rather
than simply maximizing HC [24], [25]. In [24], the author
proposed the optimal allocation of battery energy storage
systems (BESSs) considering the power unbalance and volt-
age rise, achieving additional effects on maximizing the HC
for PVs. Considering the optimal operation of the DN to
minimize ohmic losses and voltage deviation, a fast calcu-
lation method to determine the HC was proposed based on
multiparametric programming in [25]. However, since these
studies did not consider a single objective of maximizing
HC, there can be trade-off between enhancing HC and other
objectives.

Hence, in this study, a framework to estimate the maximum
HC for PVs in unbalanced networks is proposed, considering
coordinated optimal control of voltage regulation devices,
including smart inverters (SIs), OLTCs, SVCs, and SOPs.
In addition to these controllable devices, DSO can operate
the DN in coordination with BESSs to improve the HC for
PVs [24], [26], [27]. However, the application of BESSs is
beyond the scope of the current study. The constraints consid-
ered involve over-voltages, voltage unbalance limits, thermal
capacity of lines, and substation capacity. The framework is
divided into two optimization problems. In the first stage,
based on the predefined daily load profile and specified PV
locations, the optimal base capacity combination of PVs to
maximize the total installed capacity was calculated for each
time step. Consequently, the representative base capacity of
each PV was determined. In the next stage, using the daily
PV generation profile and base capacity determined in the
previous step, the maximum HC for each PV was calculated.
It is worth noting that, in the time-series-based load flow
analysis of the proposed process, the optimal dispatch of
voltage regulation devices was considered to maximize the
total HC for PVs.

The proposed framework can be extended to probabilistic
analysis through the random parameterization of the daily
profile of PV and load. The main potential contributions of
this study are threefold:
• A framework to calculate the maximum HC for PV
under the optimal cooperation of ANM, including a tap
changer, reactive power compensator and power flow
controller, is proposed by solving two-step optimization
problems. In addition, the impact of enhancing the HC
for PV through ANMwas verified through a comparison
with the existing local control scheme;
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FIGURE 1. Proposed two-stage optimization framework for probabilistic HC assessment.

• Compared with previous studies, in which the location,
array size, and number of PVs were considered as ran-
dom variables, the uncertainty in PV and load output
over time was considered to be random based on his-
torical data. The DSO can calculate the HC information
for the desired location of the PVs;

• The proposed process can be applied to both three-phase
balanced and unbalanced DNs. Constraints limiting the
maximum HC include overvoltage, voltage imbalance,
and thermal capacity of lines and substations.

The remainder of this paper is organized as follows.
Section II describes the entire two-stage optimization-based
framework to determine the stochastic HC for the PV.
Section III presents the simulation environments and dis-
cussion of the results of the case studies. Finally, the dis-
cussions and conclusions of this study are summarized in
Section IV and V, respectively.

II. TWO-STAGE OPTIMIZATION FRAMEWORK
The graphical procedure and flow chart of the proposed
method are presented in Fig. 1. The proposed framework
for estimating the maximum HC for PVs under the ANM
scheme is divided into two stages. By formulating an

optimization problem to maximize the total capacity of
PVs with constraints in network reliability and operation
of voltage regulation devices, the optimal base capacity of
each PV is determined in the 1st stage. However, the max-
imum HC for PVs can differ depending on the shape of
the daily PV generation profile curve. Therefore, in the
2nd stage, the maximum HC for a specific PV genera-
tion profile is determined through a comparison between
the maximum available power generation profile and the
actual PV generation profile. Further details are covered in
Section II-C and D.

A. CO-SIMULATION ENVIRONMENT
To solve the proposed optimization problems, a co-simulation
environment is suggested using MATLAB with the open-
source power flow tool, OpenDSS [28]. A network model
with voltage regulation device operation (e.g., smart PV
inverter, tap changer, SVC, and SOP) was implemented, and
time-series-based load flow calculation was performed in
OpenDSS. The proposed optimization problems were formu-
lated in MATLAB to obtain the global solution. In this study,
since the proposed objective function and logic-based con-
straints evaluated through OpenDSS are nonlinear and in the
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form of black-box optimization, the genetic algorithm (GA)
was used as a solver. GA is suitable for solving near-global
optimization and is useful when performing co-simulation-
based black-box optimization using two types of software.
Other meta-heuristic optimization algorithms such as particle
swarm or grey wolf optimization could be utilized according
to the user’s choice.

B. PROBLEM FORMULATION
To implement the proposed optimization framework, the
problems of the objective functions and constraints are for-
mulated as follows:

1) LOAD FLOW CONSTRAINTS
All node voltages and branch currents in the entire network
are expressed using a nodal admittance matrix derived from
Kirchhoff’s current law as follows:

Ibus = Y system × Vbus (1)

where Y system is the branch admittance matrix of the entire
network and has a matrix size of 3N × 3N for three-phase
modeling, in which N is the number of buses in the DN.
Ibus and Vbus are matrices of the branch current and nodal
voltage, respectively. Finally, the power balance equations are
generally derived as follows:

Pi.p =
∑

j∈�node.i

∣∣∣V i.p
∣∣∣ ∣∣∣V j.p

∣∣∣ {Gij.p cos (θ ij.p)
+Bij.p sin

(
θ ij.p

)
, ∀i ∈ �node, ∀p ∈ a, b, c (2)

Qi.p =
∑

j∈�node.i

∣∣∣V i.p
∣∣∣ ∣∣∣V j.p

∣∣∣ {Gij.p sin (θ ij.p)
−Bij.p cos

(
θ ij.p

)
, ∀i ∈ �node, ∀p ∈ a, b, c (3)

where Pi.p andQi.p are active/reactive power injections at i-th
node in phase p, respectively. V i.p is single-phase complex
voltage at i-th node in phase p. Gij.p and Bij.p represent the
branch conductance and susceptance between i-th and j-th
nodes in phase p, respectively. θ ij.p is voltage angle difference
between i-th and j-th nodes in phase p.�node.i mean the set of
nodes connected to the i-th node. �node is the total node set
in the network.

In this paper, load flow calculations in (1)–(3) are solved
using an external tool (OpenDSS). Since OpenDSS is used
in various studies related to power flow analysis and HC
assessment [20], [29]–[31], the reliability of the power flow
calculation results can be guaranteed.

2) SMART PV INVERTER OPERATION
SIs connected with DGs have advanced control functions to
offer ancillary services to the grid, such as voltage or fre-
quency support [11], [12], [32], [33]. In this study, the impact
of reactive power compensation capability in a PV-connected
SI is considered in the process of determining the HC. Fig. 2
represents the volt-var droop curve of SIs, which can be

FIGURE 2. Volt-var curve of the smart PV inverter.

FIGURE 3. Power capability of the smart PV inverter.

generally formulated as in (4)–(8).

QkPV
(
V k
PCC

)

=



QkInv.max , if V k
PCC ≤ VPCC .min (4)

QkInv.ini, if V k
db.min ≤ V

k
PCC ≤ V

k
db.max (5)

QkInv.min, if V k
PCC ≥ VPCC .max (6)(

QkInv.max − Q
k
Inv.ini

VPCC .min − V k
db.min

)(
V k
PCC − V

k
db.min

)
+ QkInv.ini,

if VPCC .min < V k
PCC < V k

db.min (7)(
QkInv.min − Q

k
Inv.ini

VPCC .max − V k
db.max

)(
V k
PCC − V

k
db.max

)
+ QkInv.ini,

if V k
db.max < V k

PCC < VPCC .max (8)

Qi.pPV .min ≤ Q
i.p
PV .t ≤ Q

i.p
PV .max (9)

where QkInv.max , Q
k
Inv.min, and Q

k
Inv.ini are the max/min bound

and the initial reactive power outputs of the k-th SI, respec-
tively. V k

PCC is the voltage magnitude at the connection point
between the SI and the grid. The max/min value in the dead-
band range is defined using V k

db.max and V k
db.min. VPCC .max

and VPCC .min refer to the allowed upper/lower limits of the
voltage at the connection point. This logic-based reactive
power compensation can be simulated via OpenDSS [28].

The operating range of the SI with the PV is shown in
Fig. 3, based on the IEEE Std. 1547-2018 [32]. According
to [32], the curve parameters in Fig. 3 are defined by dividing
them into two categories A and B regarding the penetration
level of RESs in the power system. In this study, category B
(high level of RES penetration) was applied. The reactive
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power output limit in (9) is proportional to the apparent capac-
ity of PVs, where Qi.pPV .t represents the reactive power output
of the smart PV inverter at time t connected to the i-th node
in phase p; the max/min reactive power capacities are defined
as Qi.pPV .max and Qi.pPV .min, respectively. If the owner of the
PV generator uses an oversized inverter than the maximum
power that can be transmitted through the PV panel, the
reactive power output capability can be changed, however,
these special cases were not considered in this paper. The
parameters in the volt-var curve (i.e., slope or deadband of
the curve) directly affect the HC for PVs [34]. In this study,
the same parameters of the volt-var curve were applied to
all PVs.

3) TAP CHANGER OPERATION
In the ANM framework, the tap position of the tap changing
voltage regulator is directly dispatched from the DSO. If a
transformer with a tap changer is installed between nodes i
and j in phase p, the operation with tap limit constraints is
modeled as (10)–(12).

V i.p
tap.t = k ij.ptap.tV

j.p
tap.t (10)

k ij.ptap.t = k ij.ptap.0 + a
ij.p
tapN

ij.p
tap.t (11)

N ij.p
tap.min ≤ N ij.p

tap.t ≤ N
ij.p
tap.max (12)

where k ij.ptap.t represents the tap ratio of the transformer at time
t , and the initial ratio is k ij.ptap.0. The voltage adjustment ratio

per tap step is defined as aij.ptap . N
ij.p
tap.t is the tap position at time

t with the lower and upper bounds of N ij.p
tap.min and N ij.p

tap.max ,
respectively.

4) STATIC VAR COMPENSATOR OPERATION
The reactive power output of SVCs is also regarded as a con-
trol variable in the ANM framework, in which the constraints
are expressed as: ∣∣∣Qi.pSVC .t ∣∣∣ ≤ S i.pSVC .rated (13)

where Qi.pSVC .t is the reactive power output of the SVC at time
t in phase p, and S i.pSVC .rated is the rated capacity of the SVC.

5) SOFT OPEN-POINT OPERATION
SOP is a set of two VSCs connected back-to-back to control
the power flow. The active and reactive power outputs of
SOPs can be independently regulated, and operating setpoints
are considered as control variables in the ANM framework
[8], as shown in (14)–(16).∑nsop

i=1

∑c

p=a
Pi.pSOP.t + P

i.p
loss.t = 0 (14)

Pi.ploss.t = C i.p
loss

√(
Pi.pSOP.t

)2
+

(
Qi.pSOP.t

)2
(15)√(

Pi.pSOP.t
)2
+

(
Qi.pSOP.t

)2
≤ S i.pSOP (16)

where Pi.pSOP.t , Q
i.p
SOP.t , and S

i.p
SOP.t refer to the active and reac-

tive power outputs and rated capacity of the SOP, respectively.
nsop is the number of VSCs consisting of the SOP. C i.p

loss is the
device loss coefficient, for which a typical value of 0.02 is
used [8]. Constraints (14) and (15) represent the power bal-
ance considering the device losses. The maximum capacity
constraint is given by (16).

6) NETWORK RELIABILITY LIMITS
The node voltage magnitude limit is shown in (17):

Vmin ≤ V i.p
n.t ≤ Vmax , ∀i ∈ �node, ∀p ∈ {a, b, c} (17)

where V i.p
n.t =

[
V i.a
n.t ,V

i.b
n.t ,V

i.c
n.t
]T represents the matrix of the

node voltage at time t .
The node voltage unbalance limit is expressed as (18)–(20).

V i
avg.t =

1
3
(V i.a

n.t + V
i.b
n.t + V

i.c
n.t ) (18)

V i.p
ub.t =

∣∣∣∣∣V
i.p
n.t − V

i
avg.t

V i
avg.t

∣∣∣∣∣ (19)

V i.p
ub.t ≤ Vub.max , ∀i ∈ �node, ∀p ∈ {a, b, c} (20)

where V i.p
ub.t =

[
V i.a
ub.t ,V

i.b
ub.t ,V

i.c
ub.t

]T
means the voltage unbal-

ance rate per phase p. ANSI C84.1 standard [35] suggests that
the maximum deviation from the average voltage between the
three phases should be less than 3%. Equations (21) and (22)
represent the maximum capacity constraints of the power
flow in the cable and substation, respectively:

Sj.pbr .t ≤ SThrbr .max , ∀j ∈ �br , ∀p ∈ {a, b, c (21)

Sktr .t ≤ SThrtr .max , ∀k ∈ �tr (22)

where Sj.pbr .t =
[
S j.abr .t , S

j.b
br .t , S

j.c
br .t

]T
is the apparent power of

the j-th branch at time t . Sktr .t is the apparent power across
the k-th substation transformer at time t . �br and �tr are the
total set of branches and substation transformers in the entire
network, respectively.

C. OPTIMAL PV BASE CAPACITY ESTIMATION
In the proposed framework, two sequential optimization
problems were formulated to determine the total HC for
the PV. In the first optimization problem, considering the
ANM operation and network reliability constraints which are
modeled in the previous chapter, the optimal combination of
each PV capacity at which the total sum of installed capacity
of PVs is maximized is calculated every hour. The decision
variables in the first optimization problem,which is expressed
as (23), include the capacity of each PV at the predetermined
location, tap position of the transformer, reactive power out-
put of SVCs, and active/reactive power output of SOPs.

max
∑npv

i=1

∑c

p=a
S i.pPV .t , ∀t ∈ nt

s.t. (1)− (22) (23)

where SPV .t =
[
S1.aPV .t , S

1.b
PV .t , S

1.c
PV .t , · · · , S

npv.c
PV .t

]T
is the

matrix of the PV capacity at time t in phase p. npv is the total
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number of PVs. nt represents the entire time horizon of the
proposed methodology.

In actual DNs, because the load profile over time is dif-
ferent for each type of load (e.g., residential, commercial,
or industrial), the combination of each PV capacity to max-
imize the total HC can be different over time. Hence, the
optimal PV base capacity (PVBC) is defined in (24) as the
maximum PV capacity over time, which is calculated by
solving the following optimization problem:

SmaxPV .t = argmax(
∑npv

i=1

∑c

p=a
S i.pPV .t ) (24)

where SmaxPV .t =

[
Smax.1.aPV .t , Smax.1.bPV .t , · · · , S

max.npv.c
PV .t

]T
is the

matrix of the PVBC at time t in phase p. Therefore, the HC
with PVBC over time can be defined as:

HCPV .t =
∑npv

i=1

∑c

p=a
Smax.i.pPV .t (25)

As the next step, the representative PVBC is defined as the
PVBC at the maximum HC during the day, as shown in (26).

SrepPV =
{
SmaxPV .t |HCPV .t = max{HCPV .1, · · · ,HCPV .nt }

}
(26)

where SrepPV =
[
Srep.1.aPV , Srep.1.bPV , · · · , S

rep.npv.c
PV

]T
is the matrix

of the representative PVBC capacity in phase p.
Based on the representative PVBC, a generation profile

variable σ rept is defined as an index to calculate the amount
of power generation possible for each time step during the
entire time horizon. The second optimization problem is
then formulated as (27) to estimate the maximum generation
profile as in (28). The decision variables in (27) are the gen-
eration profile and operation state of the voltage regulators
(i.e., operation setpoints of the tap changer, SVCs, and SOPs).

max
∑npv

i=1

∑c

p=a
σ
rep
t Srep.i.pPV , ∀t ∈ nt

s.t. (1)− (22) (27)

σ rep.max = argmax(
∑nPV

i=1

∑c

p=a
σ
rep
t Srep.i.pPV ) (28)

where σ rep.max =
[
σ
rep.max
1 , σ

rep.max
2 , · · · , σ

rep.max
nt

]T is the
matrix of maximum generation profile of the representative
PVBC.

Among the solutions of (27), the optimal generation pro-
file, which is expressed in (28), is the maximum available
power generation ratio of the representative PVBC for each
time step. Hence, if the representative PVBC is applied to
a predetermined location, the maximum HC for PVs can be
calculated through a comparison with the maximum genera-
tion profile during the entire time horizon with the actual PV
profile curve. Note that there is one maximum HC for PVs
per actual PV profile curve.

D. EXPANSION TO PROBABILISTIC ANALYSIS
Through the process described in Section II-C, the
representative PVBC is calculated for each load profile. The

FIGURE 4. PV generation profile curve comparison.

maximum available generation profile is then defined as
the generation profile of a representative PVBC that can be
maximized within a value between 0% and 100% without
violating network reliability constraints.

As shown in Fig. 4, when the representative PVBC actually
produces electricity according to the PV generation profile
for one day, the actual PV generation profile (σPV .t ) can
be greater than the maximum available generation profile
(σ rep.maxt ) at a specific time. This means that in sections
where the actual PV profile exceeded the maximum available
generation profile, the network reliability constraints can be
violated. Therefore, we proposed the correction variable (τs)
to adjust the scale of the actual PV profile curve by mul-
tiplying this until there was no cross section between the
two curves. In contrast, no contact between the two curves
indicates that PVs can generate more than the actual profile.
Hence, the scale of the actual PV profile was maximized
using the correction variable.

Finally, the maximum HC based on the representative
PVBC can be calculated as shown in (29) by comparing
the actual PV profile curve with the maximum available
generation profile.

HCmax
PV =

{
max {τsHC

rep
PV } | τsσPV .t ≤ σ

rep.max
t , ∀t ∈ nt

}
(29)

where HCrep
PV =

∑npv
i=1

∑c
p=a S

rep.i.p
PV is the total sum of the

representative PVBC. σPV .t is the actual generation rate of
PV over the entire time horizon. τs is the correction variable
used to adjust themismatch between the calculatedmaximum
available generation profile and the actual PV profile.

Through the proposed process, one maximum HC for the
PVs was calculated for each actual PV profile curve. In this
study, based on historical data, numerous PV generation
curves were generated during the analysis time horizon (one
day) following the probability distribution of actual irradi-
ance records. Then, the probabilistic HC for PVswas assessed
through the repetition of the proposed method, reflecting the
variability characteristic of PV. For example, if the HC distri-
bution is calculated considering 50 load profiles and 100 PV
generation profiles, the 50 maximum available generation
profiles and the 100 corresponding correction variables are
determined. The distribution for a total of 5, 000(= 50×100)
HCs is then calculated. Note that the proposed method can
consider the strategy of ANM in an unbalanced DN.
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FIGURE 5. Probabilistic distribution of PV and each load types: (a) PV,
(b) Residential load, (c) Commercial load, (d) Industrial load.

III. CASE STUDIES
A. UNCERTAINTY SCENARIO CONSTRUCTION
According to the proposed methodology, the source of the
probability distribution in the HC for PVs comes from the
variability of power output over time in PV and load demand.
Therefore, a scenario construction is necessary for PV and
load output over time, which can reflect their uncertainty.
However, in this study, we focused on analyzing the stochas-
tic HC for a given set of scenarios consisting of generation
and load profiles. Thus, scenario generation techniques for
modeling the uncertainty of PV or load are beyond the scope
of this study.

Therefore, in this study, a scenario set for several daily
generation and load profiles was constructed by utilizing
the results of previous studies [36]–[38]. The process for
determining the HC for PVs was repeatedly performed in a
proposed two-stage optimization by randomly selecting these
daily profiles in the scenario set based on a Monte Carlo
method. Further, to simulate actual load variability, the load
profiles are classified into three types: residential, industrial,
and commercial. Each load type has different stochastic char-
acteristics. Fig. 5 represents a box plot with 1-year historical
data for PV output in a specific region [36] and load data for
each type [37], [38].

B. UNBALANCED TEST SYSTEM
To verify the proposed scheme in the unbalanced distribution
system, a modified IEEE-123 test system was applied. The
load ratings were not changed compared with the original test
system [39]. The configuration of the modified test system is
shown in Fig. 6 and assumes that three SVCs are installed
in specific locations for cooperative voltage regulation with
tap changers and smart PV inverters. Twelve PVs will be
installed in specific locations. The classification of load
types by location in the modified test system was referred
to [40].

The specifications of the PVs, SVCs and SOPs in the test
system are listed in Table 1. The locations of the single and
three-phase PVs can be modified according to the intention
of the DSO.

FIGURE 6. Configuration of unbalanced test network.

TABLE 1. Specifications of the test system.

C. SIMULATION RESULTS
To verify the effectiveness of the proposed method, four
scenarios were adopted, as follows:
• Base Scenario: The DSO did not have a voltage control
scheme. No SVCs were installed, and no PVs were
connected to the smart inverter. There was no change in
the tap position of the tap changer;

• Scenario I: A local voltage control scheme was applied;
voltage regulation devices (SVC and tap changer) deter-
mined the operating point by themselves to adjust the
voltage at the connection point (i.e., secondary-side bus
in the case of tap changer) as a reference value (1.0 p.u);

• Scenario II: The cooperative voltage control strategy of
ANM was applied as represented in (23); SVC and tap
changer were controlled to maximize the total HC for
the PV;

• Scenario III: A power flow control device, defined as
SOP [8], was added to improve the HC for the PV
compared to that of Scenario II. The operating point
of the SOP was included as the control variable for the
cooperative voltage control strategy;

• Scenario IV: The volt-var curve parameter of the smart
PV inverter wasmodified as shown in Table 2 to improve
the HC for PV compared to that of Scenario III.

For a specific load profile in Scenario II, an example of
calculating the correction variable by comparing the two
profile curves (i.e., maximum available generation profile
and actual PV profile) is shown in Fig. 7. From 11:00 to
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TABLE 2. Volt-var curve parameters by scenarios.

FIGURE 7. Comparison before and after correction of actual PV profile
curve.

FIGURE 8. Probability distribution of maximum HC for PV in Scenario II:
(a) Histogram; (b) Probabilistic/Cumulative density function.

15:00, the network reliability constraints were violated in this
horizon because the actual PV generation ratio (red box) was
higher than the maximum available generation ratio (black
line). Therefore, themaximumHC for the PVwas determined
by scaling down the PVBC (blue box) using the correction
variable in (24).

Fig. 8 shows the probability distribution of the maximum
HC for the PV for Scenario II. Using 50 loads and 100 PV
profile curves, the maximum HC for PV for a total of 5,000
was calculated for each scenario. The probability distribution
function (PDF) and cumulative distribution function (CDF)
curves were generated by fitting the HC for PV data based on
the Gaussian distribution function [41]. For instance, in the

FIGURE 9. Comparison of probability distribution for maximum HC for PV
between scenarios: (a) PDF; (b) CDF.

CDF of Fig. 8 (b), the HC value for a cumulative probability
of 5% was 36,641 KW. This value means that if the DSO
operates the DN with a PV penetration of 36,641 KW (as
in Scenario II), the risk of violating the network reliability
constraints is 5%.

The results of comparing the probability distributions for
the maximum HC for the PV between scenarios are shown in
Fig. 9. Several conclusions were drawn from the comparison
results between each scenario as follows:
• From the comparison with Scenarios I and II, it can be
concluded that more PV penetration can be secured if
the DSO intervenes in the operation policy of the voltage
regulation devices to perform cooperative control, rather
than locally operating these devices;

• By comparing Scenarios II and III, it can be confirmed
that power flow control using SOP has a positive effect
on enhancing the HC. This is since active/reactive power
flow control not only solves bottlenecks in the DN but
also contributes to the voltage profiles of the nodes;

• The effects of the volt-var curve parameters of the smart
PV inverter on the increase in HC can be obtained by
comparing Scenarios III and IV. The steeper the slope of
the volt-var curve, the more aggressive is the regulation
of the reactive power output to maintain the voltage at
the PV connection point. This reduced the sensitivity
of the voltage rise relative to PV penetration. For the
transition from Scenario III to IV, the DSO can notify
each PV generator owner of a parameter change through
regulations or recommendations. For DSO-owned PVs,
an engineer directly dispatches to the location where the
PV is installed and modifies the parameter.

Fig. 10 shows a boxplot comparison of the distribution
of the maximum HC for each PV under different scenarios,
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FIGURE 10. Boxplot comparison of each HC for PV between scenarios.

TABLE 4. Comparison of cumulative probability by HC.

which was determined to maximize the sum of HCs in the
DN. Red cross marks in Fig. 10 are outliers in the box plot
diagram, indicating the HC value at significantly lower or
higher risk levels. If the DSO chooses the HC at the high-
est risk level (i.e., the red cross mark that corresponds to
the highest HC value), there will be a high probability of
violating constraints. As the network operation strategy of
the DSO changes depending on the scenario, the optimal
combination of PV capacity that maximizes the sum of HCs
also varies. In Scenario I, because voltage regulation devices
operate locally, the maximum capacity of individual PVs was
not significantly affected by the volatility of PV generation
and load demand. However, in the centralized ANM scheme
(i.e., from Scenarios II to IV), the range of HC variation for
each PV increased since the DSO directly controlled each
device. Even in some PVs, the mean value in the distribu-
tion of HC was lower than in Scenario I. However, for the
purpose of DSO, this sacrifice can be justified to maximize
the sum of HCs within the DN. In other words, through the
analysis of Fig. 10, the DSO can find out which scenario has
themost impact on increasing the HC distribution at the target
PV location. In addition, for the specific ANM strategy to
be applied by the DSO, they can analyze the most effective
candidates of PV location in terms of increase in the HC.

The numerical comparison results for the distribution of
HC by scenario are shown in Tables 3 and 4. In Table 3,
the maximum HCs are compared with respect to the specific
risk (i.e., cumulative probability in Fig. 9), and values in
parentheses indicate the incremental amount compared to
the base scenario. Using the centralized ANM from DSO
(i.e., Scenario II), additional PV installation up to approxi-
mately 3,878 KW is possible at a risk of 1% to 5% compared
to local control (i.e., Scenario I). In addition, through the
application of SOP and tuning the parameter of the smart PV
inverter (i.e., Scenario IV), extra PV penetration of approxi-
mately 8,656 KW is possible, which means an improvement

FIGURE 11. Example of the sum of HC regarding the PV profile cases

of about 26.4% (in 5% of the cumulative probability case).
The risk values for the specific HC under each scenario are
listed in Table 4. Under a constant PV penetration, the risk of
violating network constraints can be reduced by up to 1.81%
by utilizing the SOP and centralized control compared to
Scenario I (in 32,763 KW of maximum HC for the PV case).

In this study, we used the global optimization solver (GA)
to solve the co-simulation-based optimization framework
linked with an external tool (OpenDSS). The computation
time for simulation was about 46 minutes (2,772s). However,
since the proposed framework is performed offline in the sys-
tem planning stage, the computation time does not necessarily
have to be significantly short. In addition, the setpoints calcu-
lated by the ANM are sent hourly to each controllable device
but can be adjusted regarding the convenience of the DSO.

The HC has a unique value depending on the topology of
the DN and where the DSO wants to install the PV. If the
topology of the DN is changed, the DSO can recalculate the
HC through the proposed method.

IV. DISCUSSIONS
A. RISK SELECTION
Through the risk figures calculated by this paper, the DSO
should ultimately pick a proper risk value for determination
of HC. At this time, the DSO can refer the reference values
used in several previous studies; in [42], voltage violation
condition of 3% in DN is targeted to control the distributed
renewables. In China, the confidence constraint for the num-
ber of voltage fluctuations is limited using a probabilistic
index such as 95% [43]. In South Korea, system operator
defines the permissible value for the frequency of voltage
fluctuations as its own reliability standards [44]. Besides,
in the BS-EN-50160, 10-min voltage magnitudes should be
within a specific range as a condition of 95% probability [45],
[46]. However, the DSO can determine any new risk figures
by analyzing the trade-offs between the risk of reliability
violation and additional HC acquisition. For the DSO who
wants to strict risk management, the proposed framework
can be used as a deterministic way by applying specific
representative PV and load profile curves (e.g., best and worst
cases).

B. PRACTICAL IMPLEMENTATION
After the DSO selects the sum of the HCs from the desired
risk values, the DSO should check which PVBC set the
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TABLE 3. Comparison of HC by cumulative probability.

selected sum of HC belongs to. For example, Fig. 11 shows
a plot of the sum of HC determined for 100 actual PV
profiles. Four sets of representative PVBCs were calculated
for the 4 load profile curves. If the sum of HC is selected as
12,500 KW, PVBC1 corresponds to the final base capacity,
since the value of 12,500 KW belongs to the distribution of
the sum of HC in PVBC1 as shown in Fig. 11. The final
HC for each PV is then determined by multiplying the base
capacity for each PV location by the correction variable (τs)
that corresponds to 12,500 KW.

If the selected value for the sum of HC is increased,
intersections with multiple PVBC sets occur. For instance,
if the value of 20,000 KW is selected as the sum of HC
in Fig. 11, four sets of PVBCs correspond to the selected
sum of HC. In this case, one PVBC set should be chosen
according to the intent of the DSO. The DSO can consider
other various factors, such as geographic conditions and the
additional investment cost for the site.

V. CONCLUSION
In this study, a two-stage optimization-based framework for
determining the probabilistic HC for PV was proposed. The
proposed method can reflect the probabilistic characteristics
owing to the uncertainty of the PV and load output over
time and quantify the improvement of the flexibility of the
DN resulting from the integrated management of controllable
resources by DSO. In addition, the benefit of a novel power
controller called SOP was introduced to enhance the HC.

The proposed HC calculation framework allows the DSO
to use the results of numerical analysis on the risk reduction
effect by additional devices or network operation strategies to
confirm the economic impact of new technologies. This can
also be used to review whether the PV capacity to be installed
is reasonable at a given location. In other words, the DSO can
utilize the proposed method to calculate the sensitivity of the
amount of additional HC for PV according to the introduction
of new facilities or operation strategies in the grid planning
stage and utilize them as a basis for their investment decision-
making process.

Future research could include a process for determining
the optimal location/rated capacity for a new facility or a
new high-level cooperative operation strategy for the DSO to
maximize the risk reduction impact on the HC for PV.
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