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ABSTRACT Time-varying linear equation systems have been solved by the traditional zeroing neural
dynamics approach in recent years. However, this method has to satisfy the stability constraint, which is
a very rigorous condition. For this reason, traditional Lagrange-type finite difference formulas fail to lead to
effective solutions, and we have to utilize more instants and reduce accuracy so that this condition is satisfied.
In this work, we develop a new method of solving a time-varying linear equation system, which is based on
theoretical solution decomposition. As a result, the proposed solutions are stability-constraint-free. We do
not have to meticulously search effective time-discretization formulas because traditional Lagrange-type
formulas are sufficient and especially effective. In addition, the proposed solutions have other advantages.
For example, they do not need convergence procedures; they do not have storage requirements for past
calculative results; and they are still effective when the sampling gap value is relatively large. Detailed
comparisons are presented in this paper. Comparative numerical experiments are also shown to substantiate
the effectiveness and advantages of the proposed solutions.

INDEX TERMS Time-varying linear equation system, stability-constraint-free solutions, theoretical solution
decomposition, Lagrange finite difference.

I. INTRODUCTION
Linear equation systems are fundamental mathematical prob-
lems that are frequently encountered in engineering and sci-
entific fields [1]–[6]. When coefficients in a linear equation
system vary over time, the system becomes a time-varying
linear equation system (TVLES) [7]. The real-time require-
ment has gradually increased, and thus, effective resolution
of the time-varying problem is urgently needed [8]–[13].

Although TVLES is a static linear equation system when
considering a specific time instant, solving TVLES is much
more complicated than static solving because real time is
the core requirement of solving TVLES [14]–[19]. There
are many classical methods to solve static linear equa-
tion systems in numerical computation methods, such as
Gaussian elimination and decomposition [20]–[24]. How-
ever, these methods fail to solve TVLES because of time
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delays [25]–[29]. Specifically, when these methods are uti-
lized to solve TVLES, they must be viewed as static at differ-
ent time instants. When time reaches the current instant, these
conventional methods can be implemented. Thus, the current
instant solution can be obtained only after a few seconds
because of the necessary computation time. If we view the
obtained solution as the next instant solution, a lagging error
exists.

Different from conventional methods, zeroing neural
dynamics has been presented, which is especially used for
time-varying problems [30]–[33]. Zeroing neural dynamics
is a special kind of neural network [32]–[43]. Zeroing neu-
ral dynamics to develop solutions of the time-varying prob-
lem has the following procedure [44]: First, the problem is
viewed as continuous-time problem, and the vector/matrix-
form error function e(t) is defined based on the problem to be
solved. Second, we select a suitable design formula, such as
ė(t) = −λe(t), to zero the error function. We rearrange
the equation as an explicit differentiation equation. Finally,
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TABLE 1. Lagrange-type formulas for approximating ẋ(tk ) with different truncation errors.

we search for an effective time-discretization formula for the
discretization of the explicit differentiation equation so that
we can obtain the final solution to solve the original problem.

From the above procedure, we know that time-
discretization formulas are necessary, which is also the core
point to realize real-time computation [45], [46]. However,
finding an effective formula for discretization is challenging
work and must satisfy strict conditions [47]. First, it must be
1-step-ahead, i.e., discretizing ẋ(tk ) by x(tk+1), x(tk ), x(tk−1)
and x(tk−2) · · · , so that the generatedmodel has the prediction
ability. For this simple reason, most formulas in the numerical
ODE literature, such as backward formulas, are unsuitable.
Second, a 1-step-ahead formula does not necessarily lead to
a stable model. In [48], a series of Lagrange-type formulas
were presented, which are all 1-step-ahead. For convenience
of discussion, they are partially repeated, as shown in Table 1.
None of these formulas lead to stable solutions when we use
the zeroing neural dynamics method.

There also exist some effective discretization formulas due
to researchers’ unremitting efforts. However, the approxi-
mation needs more instants so that the formula satisfies the
requirement of stability. In [49], the relationship between the
time-instant number and precision of formulas was inves-
tigated. Specifically,‘‘two-instant and three-instant formula
groups have linear precision at most. Four-instant formula
group has quadratic precision at most. Five-instant and
six-instant formula groups have cubic precision at most.
Seven-instant and eight-instant formula groups have quartic
precision at most. Nine-instant formula group has quintic
precision at most’’ [49]. These formulas have lower precision
than Lagrange-type formulas when the time-instant number is
the same.

In this work, we develop a newway to solve TVLES, which
is based on theoretical solution decomposition. As a result,
the proposed solutions are stability-constraint-free. We do
not have to meticulously search effective time-discretization
formulas because classical Lagrange-type formulas are suf-
ficient and especially effective. In addition, the proposed
solutions have other advantages. For example, they do not
need convergence procedures; they do not require storage
past calculative results; and they are still effective when
the sampling gap value is relatively large. Detailed com-
parisons are presented in this paper. Comparative numerical

experiments are also shown to substantiate the effectiveness
and advantages of the proposed solutions.

The remainder of this paper is organized into six sec-
tions. Section II shows the problem formulation of TVLES.
Section III develops the stability-constraint-free solutions.
Section IV compares the proposed and conventional solu-
tions. Section V gives a theoretical analysis of the proposed
solutions. Section VI presents some comparative numerical
experimental results. Section VII concludes this paper with
final remarks. The main contributions are listed as follows.
1) We propose a method to solve a time-varying linear

equation system that is based on theoretical solution
decomposition, which is quite different from zeroing
neural dynamics.

2) Stability-constraint-free solutions are proposed based on
this new method. The proposed solutions have some
advantages in terms of stability, convergence procedures
and so on.

II. PROBLEM FORMULATION
A time-varying linear equation system (TVLES) is a stream
of linear equation systems over time. It is formulated as

A(tk+1)x(tk+1) = b(tk+1), (1)

where A(tk+1) is the time-varying nonsingular square matrix
and vector, and b(tk+1) is time-varying vector, and thus
TVLES (1) is determined. Note that future solution x(tk+1)
should be obtained during time interval [tk , tk+1) to satisfy
the requirement of real-time computation.

III. STABILITY-CONSTRAINT-FREE SOLUTIONS
We consider the continuous-time form of TVLES (1) and
define x∗(t) as its theoretical solution. Then, we have the
following equation:

A(t)x∗(t) = b(t).

Direct derivation of the above equation leads to

A(t)ẋ∗(t)+ Ȧ(t)x∗(t) = ḃ(t),

where ẋ∗(t), Ȧ(t) and ḃ(t) are time derivatives of x∗(t), A(t)
and b(t), respectively. It is rewritten as

ẋ∗(t) = A−1(t)(ḃ(t)− Ȧ(t)x∗(t)), (2)
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where A−1(t) is inverse of A(t). We use the classical central
difference formula

ẋ(tk ) =
x(tk+1)− x(tk−1)

2τ
+ O(τ 2) (3)

to discretize ẋ∗(t) in equation (2), where τ is the sampling
gap, and obtain

ẋ∗(tk ) =
x∗(tk+1)− x∗(tk−1)

2τ
+O(τ 2).

We combine the above discretization equation and equa-
tion (2) with truncation errors omitted and obtain

x∗(tk+1)− x∗(tk−1)
2τ

= A−1(tk )(ḃ(tk )− Ȧ(tk )x∗(tk )). (4)

Furthermore, the backward finite difference formula

u̇(tk ) =
3u(tk )− 4u(tk−1)+ u(tk−2)

2τ
+ O(τ 2)

is employed to approximate ḃ(tk ) and Ȧ(tk ), i.e.,
ḃ(tk ) =

3b(tk )− 4b(tk−1)+ b(tk−2)
2τ

+O(τ 2),

Ȧ(tk ) =
3A(tk )− 4A(tk−1)+ A(tk−2)

2τ
+O(τ 2).

Then, employing the above equations to approximate ḃ(tk )
and Ȧ(tk ) in equation (4), we have

x∗(tk+1)− x∗(tk−1)
2τ

= A−1(tk )
(
3b(tk )− 4b(tk−1)+ b(tk−2)

2τ

−
3A(tk )− 4A(tk−1)+ A(tk−2)

2τ
x∗(tk )

)
. (5)

It is rewritten as

x∗(tk+1) = x∗(tk−1)+ A−1(tk )
(
3b(tk )− 4b(tk−1)

+b(tk−2)-(3A(tk )− 4A(tk−1)+ A(tk−2))x∗(tk )
)
.

Note that the allowed period of time to calculate solution
x(tk+1) is from tk to tk+1. During this time interval, A(tk ),
A(tk−1), A(tk−2), b(tk ), b(tk−1), and b(tk−2) are all known.
Thus, x∗(tk ) and x∗(tk−1) can be obtained directly by{

x∗(tk ) = A−1(tk )b(tk ),
x∗(tk−1) = A−1(tk−1)b(tk−1).

Finally, the stability-constraint-free solution to solve TVLES,
which is termed the TVLES-SCF-I solution, is obtained as
follows:

x(tk+1) = x̄(tk−1)+ A−1(tk )
(
3b(tk )− 4b(tk−1)

+b(tk−2)-(3A(tk )− 4A(tk−1)+ A(tk−2))x̄(tk )
)
, (6)

where x̄(tk ) and x̄(tk−1) are obtained by x̄(tk ) = A−1(tk )b(tk )
and x̄(tk−1) = A−1(tk−1)b(tk−1).

In addition, we can employ other one-step-ahead formulas
with higher precision, such as

ẋ(tk ) =
1
3τ
x(tk+1)+

1
2τ
x(tk )− τx(tk−1)

+
1
6τ
x(tk+2)+ O(τ 3), (7)

to discretize ẋ∗(t), and the following backward formula is
employed to approximate ḃ(tk ) and Ȧ(tk ):

u̇(tk ) =
11
6τ
u(tk )−

3
τ
u(tk−1)+

3
2τ
u(tk−2)

−
1
3τ
u(tk−3)+ O(τ 3).

Similarly, the stability-constraint-free solution to solve
TVLES, which is termed the TVLES-SCF-II solution,
is obtained as follows:

x(tk+1)=−
3
2
x̄(tk )+3x̄(tk−1)−

1
2
x̄(tk−2)+ A−1(tk )

(
11
2
b(tk )

− 9b(tk−1)+
9
2
b(tk−2)−b(tk−3)−

(11
2
A(tk )

− 9A(tk−1)+
9
2
A(tk−2)−A(tk−3)

)
x̄(tk )

)
, (8)

where x̄(tk ), x̄(tk−1) and x̄(tk−2) are obtained by x̄(tk ) =
A−1(tk )b(tk ), x̄(tk−1) = A−1(tk−1)b(tk−1) and x̄(tk−2) =
A−1(tk−2)b(tk−2).
In solutions (6) and (8), the calculations of inverse A−1(tk ),

A−1(tk−1) etc are necessary. In this work, we only investigate
the case of determined TVLES for the research rigor. For an
underdetermined TVLES, the solutions of inverse become
pseudo-inverse, which are not unique. It may lead to the
failure of solving TVLES. In this case, we could use the min-
imum norm solution, which minimizes the norm ‖x‖2, such
that the solutions of pseudo-inverse are unique. Furthermore,
considering the characteristic of continuous change over time
for TVLES, the proposed solutions would be still effective.

IV. COMPARISONS WITH CONVENTIONAL SOLUTIONS
When we develop solutions in conventional ways to solve
TVLES [46], an error function is first defined as A(t)x(t) −
b(t). Then, the zeroing neural dynamics method is utilized,
and a continuous-time solution with a differential equation
form is obtained as

ẋ(t) = A−1(t)
(
−Ȧ(t)x(t)− λ(A(t)x(t)− b(t))+ ḃ(t)

)
,

where coefficient λ > 0. Furthermore, discretization for-
mulas are employed for the discretization of the above
continuous-time solution. For example, when the Taylor dis-
cretization formula [50]

ẋ(tk ) =
1
τ
x(tk+1)−

3
2τ
x(tk )+

1
τ
x(tk−1)

−
1
2τ
x(tk−2)+ O(τ 2). (9)

is employed, the conventional solution is obtained as follows:

x(tk+1) = −A−1(tk )
(
τ Ȧ(tk )x(tk )+ h(A(tk )x(tk )

−b(tk ))− τ ḃ(tk )
)
+

3
2
x(tk )− x(tk−1)+

1
2
x(tk−2) (10)
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with h = τλ. When the five-instant discretization
formula [47]

ẋ(tk ) =
4
9τ
x(tk+1)+

1
18τ

x(tk )−
1
3τ
x(tk−1)

−
5

18τ
x(tk−2)+

1
9τ
x(tk−3)+ O(τ 3) (11)

is employed, the conventional solution is obtained as follows:

x(tk+1) = −
9
4
A−1(tk )

(
τ Ȧ(tk )x(tk )+ h(A(tk )x(tk )

−b(tk ))− τ ḃ(tk )
)
−

1
8
x(tk )+

3
4
x(tk−1)

+
5
8
x(tk−2)−

1
4
x(tk−3). (12)

For comparisons of conventional solutions and the
proposed solutions in this work, the central difference
formula (3) is employed for the discretization of con-
ventional continuous-time solutions because the proposed
TVLES-SCF-I solution (6) is also based on the central dif-
ference formula (3). The corresponding solution based on the
central difference formula (3) is shown below:

x(tk+1) = −
1
2
A−1(tk )

(
τ Ȧ(tk )x(tk )+ h(A(tk )x(tk )

−b(tk ))− τ ḃ(tk )
)
+ x(tk−1). (13)

Similarly, a finite difference formula (7) is employed for the
discretization of the conventional continuous-time solution
because the proposed TVLES-SCF-II solution (8) is also
based on this formula. The corresponding solution based on
this formula is shown below:

x(tk+1) = −3A−1(tk )
(
τ Ȧ(tk )x(tk )+ h(A(tk )x(tk )

−b(tk ))− τ ḃ(tk )
)
−

3
2
x(tk )

+ 3x(tk−1)−
1
2
x(tk−2). (14)

Note that solutions (13) and (14) fail to solve TVLES because
of nonstability, which is caused by the ineffective discretiza-
tion formulas (3) and (7). In contrast, the proposed TVLES-
SCF-I (6) and TVLES-SCF-II solutions (8) are effective in
solving TVLES, which are also based on these two formulas.
Specifically, the proposed TVLES-SCF solutions have some
differences and advantages compared with conventional solu-
tions, as shown below:
• TVLES-SCF solutions are not bound by the constraint
of zero stability. For example, the TVLES-SCF-I solu-
tion (6) is based on the central difference formula (3).
Based on previous work, we know that when the central
difference formula (3) is employed, the corresponding
solution does not satisfy the constraint of zero stability,
which would lead to divergence of the solution. How-
ever, the TVLES-SCF-I solution (6) is still effective in
solving the TVLES problem (1).

• TVLES-SCF solutions are still effective when the sam-
pling gap value is relatively large. In conventional solu-
tions such as (12), parameter h = τλ exists, which
affects the convergence of the solution. Limited by this

parameter, the sampling gap value has to be relatively
small, especially when employing high-precision dis-
cretization formulas. However, TVLES-SCF solutions
have no such parameter, and the sampling gap value
is only bound by truncation error. Thus, TVLES-SCF
solutions are still effective when the sampling gap value
is relatively large compared with conventional solutions.
In addition, it is a challenge to set the value of parame-
ter h. A smaller value of h leads to slower convergence,
and a larger value of h leads to divergence of the solution.

• TVLES-SCF solutions do not need convergence pro-
cedures and directly calculate and obtain future-instant
results. For conventional solutions, the calculation pro-
cedures are iterations. Current-step calculation is based
on past results. Starting from a random initial state,
the calculated results gradually converge to theoretical
time-varying results. However, TVLES-SCF solutions
are not iterations, which directly calculate and obtain
future-instant results with quite high precision.

• TVLES-SCF solutions do not require storage past
calculative results. For conventional solutions, the
current-step calculation is based on past calculative
results such as x(tk−1) and x(tk−2) and thus has to use
extra space to store them. However, TVLES-SCF solu-
tions only need past known information such as A(tk−1)
and A(tk−2).

V. THEORETICAL ANALYSIS
Theoretical analysis is shown below to guarantee the
effectiveness and precision of the proposed TVLES-SCF
solutions.
Theorem 1: If the TVLES problem (1) has high-order

derivatives, the errors of the TVLES-SCF-I (6) and TVLES-
SCF-II solutions (8) to solve this problem are O(τ 3) and
O(τ 4), respectively, where the solution error is defined as
‖x(tk+1)− x∗(tk+1)‖.

Proof: When we consider the truncation error during
the derivation process of the TVLES-SCF-I solution (6),
equation (4) is exactly

x∗(tk+1)− x∗(tk−1)
2τ

+O(τ 2)

= A−1(tk )(ḃ(tk )− Ȧ(tk )x∗(tk )).

Furthermore, equation (5) is exactly

x∗(tk+1)− x∗(tk−1)
2τ

+O(τ 2)

= A−1(tk )
(
3b(tk )− 4b(tk−1)+ b(tk−2)

2τ
+O(τ 2)

−
(3A(tk )− 4A(tk−1)+ A(tk−2)

2τ
+O(τ 2)

)
x∗(tk )

)
,

which can be rewritten as

x∗(tk+1) = x∗(tk−1)+ A−1(tk )
(
3b(tk )− 4b(tk−1)

+b(tk−2)-(3A(tk )− 4A(tk−1)

+A(tk−2))x∗(tk )
)
+O(τ 3).
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FIGURE 1. Nine time-varying elements of the vector-form solution x(tk+1) generated by the
TVLES-SCF-I solution (6) (i.e., blue lines), conventional solution (10) (i.e., green lines) and
theoretical solution (i.e., red lines).

FIGURE 2. Solution errors defined as ‖x(tk+1)− x∗(tk+1)‖ of TVLES-SCF-I (6) and TVLES-SCF-II solutions (8) with (a) τ = 0.1 s, (b) τ = 0.01 s,
and (c) τ = 0.001 s to solve the TVLES problem (1).

FIGURE 3. Comparisons of the errors of (a) TVLES-SCF solutions (6) and (8), (b) conventional stability-constraint solutions (10) and (12)
satisfying stability-constraint, (c) conventional stability-constraint solutions (13) and (14) without satisfying stability-constraint when sampling
gap τ = 0.01 s.

Then, when defining the error of the TVLES-SCF-I solu-
tion (6) as ‖x(tk+1) − x∗(tk+1)‖, where ‖ · ‖ is the norm,
we have

‖x(tk+1)− x∗(tk+1)‖ = ‖O(τ 3)‖ = O(τ 3).

Thus, it is proven that the TVLES-SCF-I solution (6) to solve
the TVLES problem (1) is effective, of which the solution

error is O(τ 3). Similar to the above proven process, the
TVLES-SCF-II solution (8) to solve the TVLES problem (1)
is effective, of which the solution error is O(τ 4).

VI. NUMERICAL EXPERIMENTS
In this section, some numerical experimental results are
shown to substantiate the effectiveness and advantages of the

34232 VOLUME 10, 2022



J. Li et al.: Stability-Constraint-Free Solutions to Solve Time-Varying Linear Equation System

FIGURE 4. Errors of conventional stability-constraint solutions (10) and (12) when (a) h = 0.1, (b) h = 0.3 and (c) h = 0.5 with sampling gap
τ = 0.1 s.

FIGURE 5. Comparisons of TVLES-SCF solutions (6) and (8) and conventional stability-constraint solutions (13) and (14) when sampling gap
τ = 0.01 s for solving TVLES with sometimes-ill-conditioned and even sometimes-singular matrix. (a) Solution trajectories of TVLES-SCF
solution (6). (b) Residual errors of TVLES-SCF solutions (6) and (8). (c) Residual errors of conventional stability-constraint solutions (13)
and (14).

proposed TVLES-SCF solutions. Specifically, we consider
the TVLES problem (1) with the entries of A(tk ) ∈ R9×9 and
b(tk ) ∈ R9 being

ai,j(tk ) =


− sin(0.1(i− j)tk )/(i− j), when i > j
sin(0.1itk )+ 3, when i = j
cos(0.1(j− i)tk )/(j− i), when i < j

and

bi(tk ) =

{
cos(tk ), when i is odd
sin(0.5tk ), when i is even,

(15)

where i, j = 1, 2, · · · , 9.
First, to substantiate the effectiveness of the proposed

solutions, we conduct a numerical experiment in which we
employ the TVLES-SCF-I solution (6) and conventional
solution (10) to solve the above TVLES problem (15). The
sampling gap is set as 0.1 s and the coefficient h = 0.1.
The task duration is 20 s. The numerical result is shown in
Fig. 1, which displays all nine time-varying elements of the
vector-form solution x(tk+1) generated by the TVLES-SCF-I
solution (6) (i.e., blue lines), conventional solution (10)
(i.e., green lines) and theoretical solution (i.e., red lines).
It can be observed that all solution trajectories generated by
the TVLES-SCF-I solution (6) and theoretical path always
overlap during the process. Thus, the effectiveness of the
TVLES-SCF-I solution (6) to solve the TVLES problem (15)
is substantiated. In addition, trajectories of conventional solu-
tion (10) also successfully track the theoretical ones after
dozens of iterations.

Second, to substantiate the precision of the pro-
posed TVLES-SCF solutions, i.e., the errors of the
TVLES-SCF-I (6) and TVLES-SCF-II solutions (8) are
O(τ 3) and O(τ 4), respectively, as proven in the theorem,
we set the sampling gap τ to different values, i.e., τ = 0.1,
0.01, and 0.001 s, and investigate the error of the TVLES-
SCF-I (6) and TVLES-SCF-II solutions (8), which is defined
as ‖x(tk+1)−x∗(tk+1)‖. Numerical results are shown in Fig. 2.
When the sampling gap τ = 0.1, 0.01, 0.001 s, the errors of
the TVLES-SCF-I solution (6) are of order 10−3, 10−6 and
10−9, respectively. Similarly, the errors of the TVLES-SCF-II
solution (8) are of order 10−4, 10−8 and 10−12, respectively.
Thus, the precision of the proposed TVLES-SCF solutions is
substantiated, which coincides with the theoretical results.

Third, to substantiate the advantages of the proposed
TVLES-SCF solutions compared with conventional methods,
as discussed in the above section, TVLES-SCF solu-
tions (6) and (8), conventional stability-constraint solu-
tions (10), (12), (13) and (14), including satisfying and not
satisfying stability-constraint solutions, are all employed to
solve the same problem with the same settings. In this group
of numerical experiments, the sampling gap τ = 0.1 s and
coefficient h = 0.1. The task duration is 20 s. The errors of
all solutions are shown in Fig. 3.Whenwe compare the results
in Figs. 3(a) and 3(b), it is observed that solutions (6) and (8)
have high precision from start. In contrast, solutions (10)
and (12) have high precision after nearly one hundred iter-
ations. Thus, it is substantiated that TVLES-SCF solutions
do not have convergence procedures and directly calculate
and obtain future-instant results, while conventional solutions
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do not. When we compare the results in Figs. 3(a) and 3(c),
TVLES-SCF solutions successfully solve the problem, while
solutions (13) and (14) do not, although they are all based on
nonstable discretization formulas such as central difference.
Thus, it is substantiated that TVLES-SCF solutions are not
bound by the constraint of zero stability, while conventional
solutions fail to do so.

Besides, we investigate TVLES problem with sometimes-
ill-conditioned and even sometimes-singular matrix as in
Example 2 of [46]. Specifically, a 10-by-10 time-varying
matrix is considered, of which the entries are the same as
those of Hilbert matrix except the first entry. The first entry
ak = 2 + sin(0.1π tk ). The matrix sometimes becomes the
Hilbert matrix, which is a classical ill-conditioned matrix.
Numerical results are shown in Fig. 5, which shows resid-
ual errors defined as ‖A(tk )x(tk ) − b(tk )‖ of TVLES-SCF
solutions (6) and (8) and conventional stability-constraint
solutions (13) and (14) when sampling gap τ = 0.01 s as well
as solution trajectories of TVLES-SCF solution (6). From
this figure, TVLES-SCF solutions still have relatively good
performances.

VII. CONCLUSION
In this work, stability-constraint-free solutions have been pro-
posed to solve time-varying linear equation systems. These
solutions are based on a new method, i.e., theoretical solution
decomposition, instead of traditional zeroing neural dynam-
ics. The proposed solutions have some advantages compared
with traditional zeroing neural dynamics solutions, which
have been presented in this paper. Comparative numerical
experiments have been conducted, and the corresponding
results substantiate the effectiveness and advantages. Besides,
our methodmay be effective for other time-varying problems,
which is our future research direction.
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