IEEE Access

Multidisciplinary Rapid Review : Open Access Journal

Received March 13, 2022, accepted March 22, 2022, date of publication March 28, 2022, date of current version April 1, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3162925

Internalizing Knowledge for Anticipatory
Classifier Systems in Discretized Real-Valued

Environments

NORBERT KOZLOWSKI™ AND OLGIERD UNOLD

Department of Computer Engineering, Faculty of Computer Science and Telecommunications, Wroctaw University of Science and Technology,

50-370 Wroctaw, Poland
Corresponding author: Norbert Kozlowski (norbert.kozlowski @pwr.edu.pl)

ABSTRACT Real-valued environments are challenging for learning systems because of a significant increase
in the input space size of the problem. This work demonstrates that Anticipatory Learning Classifier
Systems (ALCS) can successfully build sets of conditional rules foreseeing the consequences of executed
actions. Three major classes of Learning Classifier Systems - Anticipatory Classifier System (ACS), ACS2,
Yet Another Classifier System (YACS), alongside the traditional Dyna-Q algorithm implementations were
adapted to handle real-valued input signal discretization. Aspects like the ability to capture all possible
interactions, model generalization capabilities, size of the solution of relative execution times were compared
in four different problems using probabilistic modelling, providing unbiased judgments. Results proved that
the examined ALCS are capable of solving selected problems. Despite increased input size, all possible
environmental transitions were learned latently, without obtaining any explicit incentives. Such an internal
representation provides a more compact solution representation and can optimize learning speed further by
executing imaginary environmental interactions or performing action planning for a new set of potential

problems.

INDEX TERMS Genetic algorithms, latent learning, learning classifier systems, reinforcement learning.

I. INTRODUCTION

The Reinforcement Learning (RL) framework considers
adaptive agents involved in a sensori-motor loop inter-
acting with the environment [1]. Here, the agent acts as
the decision-maker and tries to influence the environment
through actions. As a result, it obtains the scalar reward
and observes a new environmental state. In this work, the
agent is a model-based learner with a goal of maximizing the
sum of environmental rewards by constructing a functional
representation of an environment. Such an internal model
comprise the transition function estimation and the reward
signal. The transition function links a successive state s’ to a
state-action pair (s, a) and defines the probability of reaching
that future state given state-action pair. The reward signal
maps a transition tuple (s, a, s’) to a scalar value ranking
possible movements.

The associate editor coordinating the review of this manuscript and

approving it for publication was Kathiravan Srinivasan

33816

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

An internal model of the environment can be developed
by applying particular psychological findings. In contrast
with behaviourist theories, Tolman postulated that animals
develop a sort of cognitive map representing the surrounding
world [2]. Later, Seward provided further empirical evidence
by performing experiments with rats in mazes without incen-
tives [3]. This concept of exploring the environment without
any rewards or punishments is referred to as latent learning.

Latent learning capabilities are interesting because they are
independent of the obtained reward and might improve the
speed of building the agent’s environmental model. When
an agent interacts with the environment, the consequence
of the action comprises both a possible reward as well as a
new situation. Thus, the agent might be able to predict the
sequence of the following states before executing an action,
thus internalizing knowledge about the environment. This can
be utilized to plan the next moves or speed up the RL process
by simulating hypothetical situations [1].

In this paper, we examine the latent-learning capabilities
of learning classifier systems (LCS) to solve RL problems.

VOLUME 10, 2022

https://orcid.org/0000-0003-4873-6730
https://orcid.org/0000-0003-4722-176X
https://orcid.org/0000-0002-9352-0237

N. Kozlowski, O. Unold: Internalizing Knowledge for Anticipatory Classifier Systems in Discretized Real-Valued Environments

IEEE Access

Holland proposed LCS [4] showing their advantage over
other RL systems, like Q-learning, by the generalisation abil-
ity [5], [6]. The framework has been successfully applied
in multiple domains [7], like data mining [8]-[12], medical
diagnosis or military operations [13]. By aggregating several
situations into a single rule, LCS have the edge over tabular
RL by effectively reducing both the model size and learning
time.

A particular class of Michigan-style LCS, -called
Anticipatory Learning Classifier Systems (ALCS), capable of
building rules in form condition-action-effect triples, is inves-
tigated herein. This structure makes it possible to anticipate
a group of possible successive states related to executing the
desired action in a particular condition. Stolzmann applied
ALCS in robotics by performing two latent learning exper-
iments [14]. In the first one, Khepera robots simulated rats
in the maze; second, a robotic arm was coordinated with a
camera in the hand-eye task. It was shown that it is possible
to optimise the learning process by action planning and
goal-directed learning mechanisms in both cases.

The main contribution includes adjusting ALCS imple-
mentations to real-valued perception and performing diverse
tests across selected scenarios with ranging difficulties.
Moreover, most of the selected benchmarking problems
use a real-valued signal representation that better resembles
real-world conditions and proves broader applicability. Suc-
cessful adaptation to such input perception was performed
for the XCS system with both tabular knowledge storage
[15]-[18], and by using the piecewise-linear function
approximation techniques [19], [20]. To our knowledge, such
research including ALCS, has not yet been performed before.
The examined algorithms were analysed in terms of their
latent learning capabilities, thus revealing their merits and
perils. Finally, all results were obtained using publicly avail-
able software, are easily reproducible and extensible.

Section II will explain ALCS systems like ACS, ACS2,
YACS, alongside Dyna-Q. Particular attention will be placed
on latent-learning capabilities and how rules can be cre-
ated and utilised. Next, the “Testing Scenarios” section
describes four benchmark problems with varying difficulties.
The majority of them are discretised real-valued environ-
ments. Preliminary research performed in section III proved
that ALCS can handle an increased input space caused by
the real-valued input [21], [22]. Statistical comparison and
conclusions are presented in sections IV and V accordingly.
Finally, section VI proposes possible future directions.

Il. MATERIALS AND METHODS

A. LATENT LEARNING IN LEARNING CLASSIFIER SYSTEMS
Learning Classifier Systems [4] are a family of flexible,
evolutionary, rule-based machine learning systems involving
a unique tandem of local learning and global evolutionary
optimisation of the collective model localities. They describe
a framework that consists of the discovery and learning com-

VOLUME 10, 2022

ponents. Despite the misleading name, they should be instead
viewed as a general, distributed optimisation technique.

The system stores the knowledge in an evolving population
[P] of classifiers. All classifiers comprise an IF-THEN rule
describing the environmental state, which could be applied
alongside a few other metrics explaining their relevance. The
discovery component might introduce new classifiers into the
population by utilising two processes — covering and heuris-
tics. The covering creates new classifiers with a rule matching
exactly the environmental state. Then, some generalisation is
introduced randomly. The heuristic (most often the genetic
algorithms) attempts to mix rules of promising individuals
from the population [P]. All rules are re-evaluated continu-
ously by the learning component during the interaction with
the environment, changing their metrics accordingly. Accu-
rate classifiers are kept in population, while the others are dis-
carded. The measure used to assess classifiers’ performance
was initially based on the obtained reward associated with the
particular classifier and is termed as a fitness value.

In the most popular LCS modification — XCS [15], the
classifier fitness is based on the accuracy of a classifier’s
payoff prediction instead of the prediction itself, and the
learning component responsible for local optimisation fol-
lows the Q-learning pattern. In the next step, the classifier’s
predictions are updated using the immediate reward feedback.
The main difference between XCS and Q-Learning is that,
in XCS, it entails the prediction of a general rule that is
updated, whereas, in Q-learning, the prediction is associated
with an environmental state-action pair.

The latest LCS advancements focus mainly on problems
related to knowledge visualization and rules compaction [23],
[24], learning with incremental data [25], [26], classifying
images using convolutional autoencoders [26]-[28], or deal-
ing with perceptual aliasing environments [29].

However, in this paper, yet another family of LCS is con-
sidered — Anticipatory Learning Classifier Systems. They
are differentiated from others so that a predictive schema
model of the environment is learned rather than the reward
prediction maps. In contrast to the usual classifier structure,
classifiers in ALCS have a state prediction or an anticipa-
tory part that forecasts the environmental changes caused
when executing the specified action in the specified context.
Knowing the consequences of the action classifiers naturally
involves latent learning properties. Similarly, as in the XCS,
ALCSs derive classifier fitness estimates from the accuracy
of their predictions; however, the accuracy of anticipatory
state predictions is considered rather than the reward predic-
tion accuracy. The following sections describe the mechanism
used for learning proper rules without environmental reward
in three popular ALCS implementations — ACS, ACS2 and
YACS alongside the Dyna-Q benchmark used as a reference.

B. ACS AND ACS2

Hoffmann proposed a theory of a psychological theory
of anticipatory behavioural control [30], stating that con-
ditional action-effects relations are learned latently using

33817

IEEE Access

N. Kozlowski, O. Unold: Internalizing Knowledge for Anticipatory Classifier Systems in Discretized Real-Valued Environments

reinforcement

RN

Sgtart €«——>» R €«<—>» E

'\//

differentiation

FIGURE 1. The theory of anticipatory behavioural control. Adapted
from [31] p. 4.

> comparison < Erea|

anticipations, which he further refined in [31]. The following
points (visualised in Figure 1) can be distinguished:

1) Any behavioural act or response (R) is accompanied by
anticipation of its effects.

2) The anticipations of the effects E,,;; are compared with
the real effects E,pq;.

3) When the anticipations were correct, the bond between
response and anticipation is strengthened and weak-
ened otherwise.

4) Behavioural stimuli further differentiate the R — E,;;
relations.

From this insight into the presence and importance of
anticipations in animals and man, it can be inferred that rep-
resenting and utilizing them in animats would be beneficial.

The first approach was undertaken in 1997 by Stolz-
mann [32]. He presented a system called ACS (“‘Anticipatory
Classifier System”), enhancing the classifier structure with
an effect part anticipating the consequences of an action in
a given situation. A dedicated component realizing Hoft-
mann’s theory was introduced — Anticipatory Learning Pro-
cess (ALP) to introduce new classifiers.

The ACS starts with a population [P](¢) of most general
classifiers (#’ in a condition and effect parts) for each action.
To ensure the presence of a classifier in every consecutive
situation, it is unable to delete those classifiers. During each
behavioural act, the current perception of the environment
o(t) is captured. Then, a match set [M](¢) is formed that
comprises all classifiers from [P](#) where the condition is
found to match the perception o (¢). Next, one classifier c/ is
drawn from [M](¢) using a certain strategy. Then the classi-
fiers action c/.a is executed in the environment, after which
a new perception o (f + 1) and reward p(¢r + 1) values are
presented to the agent. Knowing the classifier anticipation
and the current and next state, the ALP module can then adjust
the condition and effect parts of the classifier c/. Certain cases
might occur based on this comparison. In the useless case,
no change in perception is perceived from the environment
after taking a given action. If so, the quality c/.q is decreased.
In the unexpected case, the new state o (¢t + 1) is not shown
to match the prediction of c/.E. Then, a new classifier with
a matching effect part is generated. The incorrect one is
penalized as before. The last case is the expected case when
the new state matches the classifier prediction, increasing its
quality. After the ALP application, RL also updates attributes
pertaining to obtained reward p(z + 1) based on the overall
prediction’s correctness.

33818

Later, in 2002 Butz [33] presented an extension called
ACS2. The significant changes from the previous version
include:

1) explicit representation of anticipations,

2) application of learning component across the whole
action set [A] (all classifiers from [M] advocating
selected action),

3) introduction of Genetic Generalization module for
introducing new classifiers using promising offspring.

The complete behavioural act is presented in Figure 2, and
the algorithm is described thoroughly in [14], [34]. The recent
advancements for the ALCS family include the integration
of the action planning mechanism [35], PEPACS extension
where the concept of Probability—Enhanced—Predictions is
used for handling non-deterministic environments [36] or
BACS tackling the issue of perceptual aliasing by building
Behavioral Sequences [37].

C. YACS

Gérard introduced a “‘Yer Another Classifier System”
(YACS) [38] in 2002. It shares the same C — A — E clas-
sifier structure as ACS and ACS2. The essential conceptual
difference between those two is that YACS is designed to
decorrelate the acquisition of relevant C and E parts. It builds
them independently using a set of heuristics.

First, an E part representing the information about the
anticipated effects occurring in the environment is built.
Then, the second part of the process is in charge of discov-
ering the C parts relevant to it. A C part must discriminate
between situations, so that the E part discovered by the first
mechanism is always correct when the classifier is applied.

YACS learns E parts by directly comparing the successive
perceived situations. It remembers the last perceived situation
and the last performed action. Knowing the current situation
o (1) resulting from executing action A;_1 in situation o (t — 1)
at each time step, YACS computes the desired effect (DE).
It refers to the ideal effect part of the classifier, which could
have been fired at the preceding time step.

After forming the action set [A], each classifier E part is
compared to DE. If there are no matches, YACS creates a new
classifier. Additionally, each classifier keeps track of whether
recent matches were positive or negative. At a later stage,
this property named trace is used for determining whether
the classifier is accurate.

The C part of the classifier should be most general and
as specific as possible, and this goal is achieved incremen-
tally. Here neither mutation nor crossover operators, but the
mutspec is used. It generates new classifiers by selecting
one general feature of the C part and then creating one new
classifier per possible value. In this way, each newly created
classifier applies to less possible situations than the original
one. The authors describe the process of a careful selection
of a feature to specialize as the expected improvement by
specialization [38].

VOLUME 10, 2022

N. Kozlowski, O. Unold: Internalizing Knowledge for Anticipatory Classifier Systems in Discretized Real-Valued Environments

IEEE Access

ACS2

Environment
oft) =Aq olt) o(t+1)
add,
delete,.--"""""%
Population o Genetic
E Generalization
L Mechanism Match Set(t+1
Match Set(t) >)
Sa= Jai= modify,
CZ £ A2 o E2 sctioh Action Set{l) add, Gy =iy Eh
Cy - A3 - E3 L Cq - A - Ey selection _delete Cy — Az — E4
Gy~ Ag— E > = , > -~
C; _ Ai _ E: match set Cs i3 53 action set Ciy - Ay - Ey ‘Anticipatory Learning Cq - Ax - B4
c A e generation Cs - A3 - E5 generation Cs - Ay - Eg Process Cs - A» - Ej
CS A2 ES Cg - Ap - Eg C; - Ay - E;
TN S S Cg Aq Eg A Cg Ay Eg
Cg - Ay - Eg A
Cg - Ay - Eg upda!le:“' Reinforcement
Learning

max fitness

FIGURE 2. A behavioural act in ACS2. Environmental model is stored as a set of rules as a population and later refined by GA, ALP and RL modules.

Figure adapted from [31] p. 27.

On the other side, ACS learns latently using the mecha-
nism of “specialization of changing components’. When the
classifier anticipates badly, the ALP process may create a
new one by specializing both C and E parts simultaneously
and incrementally. Moreover, ACS2 relies on the genetic
algorithm to correct over-specialization cases and reduce the
population size.

D. DYNA-Q ARCHITECTURE

Basic RL algorithms like Q-Learning cannot perform ‘“‘cog-
nitive’’ operations, such as reasoning and planning (because
they do not learn an internal model of the environment’s
dynamics). Dyna-Q architecture [39] is an online planning
agent with an internal environmental model. In later experi-
ments, it was used to compare and highlight the generalisation
capabilities of LCS.

Each (S, A;) tuple outputs a prediction of the resultant
reward and next state (R;+1, St+1). The environmental model
is table-based and assumes the environment is deterministic.
After each transition (Sy,A;) — (Ry41,S:+1) the model
records in its table entry for (S;,A;) the prediction that
(Ri+1, St4+1) will deterministically follow.

Real experiences are augmented by performing learning
steps using the internal model when interacting with the
environment. The planning here is the random-sample one-
step tabular Q-learning method that only uses previously
experienced samples.

E. OTHER ANTICIPATORY CLASSIFIER SYSTEMS

There are other approaches in designing anticipatory classi-
fier systems as well - MACS, AgentP and X-NCS. The Mod-
ular Anticipatory Classifier System (MACS) [40] introduces

VOLUME 10, 2022

anew formalism where the classifiers capture changes only in
limited perception attributes. Therefore, it can model certain
regularities more efficiently. The AgentP model [41] was
created for dealing with aliased states, and the X-NCS [42]
combines the XCS with artificial neural networks, where two
fully connected multilayer perceptrons replace a conventional
condition-action rule.

Given that they are less popular and there are fewer reliable
implementations and benchmarks available checking them
reliably was challenging and not included in the comparison.

F. TESTING SCENARIOS

Four stationary toy problems were selected to compare the
algorithm performance. Three of them present a vector of
real values to the agent and are scalable. The last is a simple
discrete multi-step benchmark problem used by the YACS
authors to further highlight the latent-learning mechanism’s
capabilities. The real-value signal discretization sequence is
presented in Figure 3. Since the overall goal is to learn the
environmental model correctly, each problem presents differ-
ent challenges. All environments were created accordingly to
the OpenAI Gym [43] interface and are available publicly.'

1) CORRIDOR

The corridor is a 1D multi-step, linear environment intro-
duced by Lanzi to evaluate the XCSF agent [44]. The system
output is defined over a finite discrete interval [0, n]. On each
trial, the agent is placed randomly on the path and can execute
two possible actions - move left or right (which corresponds
to moving one unit in a particular direction - see Figure 4).

1 https://github.com/ParrotPrediction/openai-envs

33819

IEEE Access

N. Kozlowski, O. Unold: Internalizing Knowledge for Anticipatory Classifier Systems in Discretized Real-Valued Environments

Environment

Execute step

Agent

A

Return real-valued state representation

\ 4

Discretizer

Pass real-valued state

|
v
Discretization process

Al

Return discretized signal

Proceed with operations
using discretized signal

Environment

)

Agent

Discretizer

FIGURE 3. Sequence flow for processing real-valued signal. The discretizer can be perceived as external component executing the desired strategy - i.e.
creating k separate bins or using hashing functions. Finally, the agent is unaware of real-valued input and can work without any significant modifications.

0 <+ agent - n

FIGURE 4. The Corridor environment. The size of the input space is n. The
agent perceives a one-element vector denoting its position.

The trial ends when it reaches the final state n (obtaining
reward r = 1000) or when the maximum number of steps
is exceeded.

Lanzi used a real-valued version of this environment where
the agent location is denoted by a value between [0, 1].
Predefined step size was added to the current position when
it executed an action, thus changing its value. The reward is
paid out when the agent reaches the final state s = 1.0.

The environment examined herein signifies the state
already in discretized form divided into 20 distinct states.

2) GRID

Grid refers to an extension of the Corridor environment [44]
by adding a vertical dimension and two new actions (move up,
move down). The raw agent perception is now identified as a
pair of real numbers (sg, s1), where s € [0, 1]. Similarly, the
environment is presented to the agent in a discretized form.
Each dimension is divided into n — 1 equally spaced buckets.
The goal is to reach the reward located at position (n, n) - see
Figure 5.

3) REAL-MULTIPLEXER (rMPX)
The modification to the traditional Boolean Multi-
plexer (MPX) was introduced by Wilson [16] to examine the

33820

(0,n) (n,n)
i
<+ agent 4
t
(0,0) (n,0)

FIGURE 5. The Grid environment. The size of the input space is n2. The
agent perceives a vector of two elements denoting its coordinates.

performance in single-step environments using real-valued
data. For the rMPX, the only difference between boolean
multiplexer is that generated perception consists of real-value
attributes drawn from a uniform distribution. To validate
the correct answer, the additional variable - secret threshold
6 = 0.5 is used to map each allele into binary form. However,
the standard version is still not suitable to be used with ALCS.
Because an agent utilizes perceptual causality to form new
classifiers, assuming that after executing an action, the state
will change. The MPX does not have any possibility to send
feedback about the correctness of the action.

Butz suggested two solutions to this problem [33]. In this
paper, we assume that the state generated by the rMPX is
extended by one extra bit, denoting whether the classification

VOLUME 10, 2022

N. Kozlowski, O. Unold: Internalizing Knowledge for Anticipatory Classifier Systems in Discretized Real-Valued Environments

IEEE Access

TABLE 1. Example of discretizing real-valued input using 6 bins.

A random perception signal of 6-bit rIMPX extended with 1 bit (last
column) was used. The size of the input space is 2 - 66 = 93312 unique
states.

Original 0.86 | 0.29 | 0.56 | 0.89 | 0.33 | 049 | 0.0

Discretized | 5 1 3 5 2 2 0
North
o7
0 1 2
S West East
[3] 111
3 4 5
F : South
[§] 7 : 8 21

FIGURE 6. The discrete Simple Maze environment. The goal can be
reached optimally in eight successive steps.

was successful. This bit is by default set to zero. The agent
responds correctly after being switched, thus providing direct
feedback. A detailed example can be found in [21].

A k bins discretizer is used to convert real numbers into
integers. Its value is used to control the accuracy of generated
rules — see Table 1. Thus, the input space of the environment
can be calculated as 2k", where k refers to the number of bins
and n the length of the MPX signal. This environment is also
particularly interesting because it possesses the properties of
epistasis (non-linear feature interaction) and heterogeneity.

When the correct answer is given, the reward r = 1000 is
obtained, otherwise r = 0.

4) SIMPLE MAZE

Gérard and Sigaud presented a Simple Maze environment
in [45] to evaluate the properties of the YACS agent. Itis a par-
tially observable Markov problem where the agent is placed
in the starting location (denoted as ““S’’), at the beginning of
each new trial, and the goal is to reach the final state “F”* by
executing four possible actions — moving north, east, south or
west — see Figure 6.

The agent perceives its surroundings (presence of path or
walls) in four cardinal directions. The decision to move onto
the wall does not affect the agent’s position - it remains in
the same cell. After reaching the final location, the trial is
finished, the agent is moved into starting position, and the
reward of r = 1 is paid out.

IIl. RESULTS

ALCS algorithms were compared across four described envi-
ronments to assess the latent learning capabilities. Four met-
rics — population size, model knowledge, generalisation and
average trial time were captured.

o The population size represents how many rules are
needed to model all possible transitions. The lower
number means that the algorithm is more efficient in

VOLUME 10, 2022

TABLE 2. Classifier structure comparison in Grid environment for the
(18, 19) state. The population was created after 25 explore trials. For each
action, ACS2 manages to create a correct list of classifiers. The ACS is
slower, and an initial default classifier accompanies each action. Finally,
the YACS cannot create fully general and accurate classifiers at all.

ACS ACS2 YACS

18 # « 17 # 18 # « 17 # 1819 « 17 #
HH— HH 1819 «+— 3 #
18# — 19 # 18# — 19 # 1819 — 19 #
HH = HH 1819 — 7T #
HHIHH F19T ## F19T ##
#19 | #18 #19 | #18 1819 | # 18
#H#LHH#

rule compacting and performs latent learning more opti-
mally.

o The knowledge metric checks every possible transition
in the environment and determines if there is a classifier
or rule inside the population for correctly representing
such transition. The growth rate represents how quickly
the internal model of the environment is built.

o The generalisation is the percentage of “wildcards” in
the classifiers’ condition parts. A higher number means
that model is generalising better (wildcard matches any
value for a certain attribute). This metric does not apply
to Dyna-Q. Ideally, it should be negatively correlated
with population size.

« Moreover, a purely technical indicator is used for mea-
suring the relative time needed to complete one learn-
ing trial. It allows comparing the effectiveness of each
model in terms of execution speed. Because all exam-
ined ALCS in each trial perform exhaustive population
look-ups, the execution time is estimated to increase
with population size.

Additionally, the ACS2 algorithm is tested in its basic form
alongside two extensions enabled - (1) the genetic generali-
sation and (2) the Optimistic Initial Quality (OIQ) [22].

1) The genetic generalisation is responsible for introduc-
ing new offspring classifiers by using operators such
as mutation and crossover. ACS2 determines if this
module should be fired by calculating its average time
from the last application. Subsequently, two parent
classifiers are selected from the action set [A] using
the roulette-wheel selection algorithm. Two offspring
classifiers are created, to introduce wildcard attributes
or perform two-point crossover randomly.

2) The OIQ ensures that all newly created classifiers are
“optimistic” by increasing their initial quality metric.
This modification was inspired by the Optimistic Initial
Values introduced by Sutton in [1]. The value was
increased from cl.q = 0.5 to cl.g = 0.8. The ratio-
nale for this modification is that classifiers’ fitness is
partially based on quality. A greater value should cause
faster convergence of an optimal number of classifiers
in the population.

33821

IEEE Access

N. Kozlowski, O. Unold: Internalizing Knowledge for Anticipatory Classifier Systems in Discretized Real-Valued Environments

Population size

40

N
w

Number of rules/classifiers

N
o

Knowledge

100%

80%

60%

40%

20%

15
0%
0 50 100 150 200 250 300 0 50 100 150 200 250 300
trial trial
Generalization Average trial time
25.0% 0.06
20.0% 0.05
@ 0.04
15.0% 0
el
c
S 0.03
L
10.0% n
(0.02
5ol See
0.01
0.0%] TP -SSR S-S TP - - - - -
0.00
0 50 100 150 200 250 300 (3) & Keg & o & ,DO
trial < Y o N/ o ¥ N
g ¢ 9 °
< v
g
$
—— ACS ACS2 —— ACS2_0IQ —=— ACS2 _GA ACS2_GA_OIQ YACS —o— DynaQ

FIGURE 7. Latent learning comparison in the Corridor environment discretized into 20 states.

Experiments were performed in Python language using
the open-sourced PyALCS? library [46]. All evaluated algo-
rithms select an action using epsilon-greedy strategy. Ran-
dom possible action is chosen when the threshold of ¢ =
0.5 is greater than a random value drawn from a uniform
distribution. Otherwise, the currently known best move is pro-
posed. Additionally, all calculations were performed multiple
times before being averaged to smooth the obtained results.
Relevant environments were taken from the OpenAl Gym
extension package.? The code for reproduction is delivered as
an interactive Jupyter Notebook # and is publicly available.

Common parameters that were used across the experiments
included the following: learning rate 8 = 0.1, exploration
probability € = 0.5, discount factor y = 0.95, inadequacy
threshold 6; = 0.1, reliability threshold 6, = 0.9, YACS
trace length 3, OIQ initial quality g,j; = 0.8. The Dyna-Q
algorithm performs five steps ahead simulation in each trial.

2https:// github.com/ParrotPrediction/pyalcs/releases/tag/3.0.0
3 https://github.com/ParrotPrediction/openai-envs/releases/tag/3.0.0
4https://zenodo.0rg/record/6347037

33822

Additionally, each experiment was executed 50 times and the
results were averaged.

A. CORRIDOR

The first testing environment is the real-valued Corridor that
is discretized into 20 distinct states. Figure 7 illustrates that
almost all algorithms except ACS manage to stabilize the
population size and ultimately learn the environment in about
100 trials. Although the environment does not expose any
generalization capabilities, ACS created some invalid general
classifiers. Therefore, the population size is larger than other
algorithms, and knowledge acquisition is slower. Due to the
aggressive classifier creation mechanism, the YACS learns
the environment almost instantly, but the exhaustive heuristic
needed for evolving classifiers results in a much slower exe-
cution time than other agents due to internal representation of
all visited states.

B. GRID
The Grid environment increases the difficulty by adding
one dimension to the Corridor. As was done before, it is

VOLUME 10, 2022

N. Kozlowski, O. Unold: Internalizing Knowledge for Anticipatory Classifier Systems in Discretized Real-Valued Environments

IEEE Access

Population size

1200

1000

800

600

Number of rules/classifiers

M W Tl B e B ™ el il B BTl el N

aamameama S S e s

0 50 100 150 200 250
trial

Generalization

50%1 &

40%

30%

Knowledge

100% [— 5
80% / //-

60%
40%
20%

0%

0 50 100 150 200 250
trial

Average trial time

1.75

1.50

=
N
v

Seconds [s]
-
o
o

20% 0.75
0.50
10%
0.25
0%] +———0—0—0——0—0——0—0—0—0—0—— e N
0 50 100 150 200 250 0.00 (2] i\ (o3 NG (3 “ o
trial & v(f,” o/\ '\S O: E@' §
N &
ke
—— ACS ACS2 —— ACS2 0IQ —=— ACS2 GA ACS2_GA 0IQ YACS —+— DynaQ

FIGURE 8. Latent learning comparison in the Grid environment discretized into 400 states.

discretized into 20 - 20 = 400 distinct, discrete states. The
significant change is that now rule generalization is possible.
In Figure 8 the population size shows that the Dyna-Q creates
distinct rules for each state and action combination. Mean-
while, ACS and ACS2 algorithms model the environment
with minimal rules. Classifiers from ACS2 GA reached a
maximum of 50% generality. Although the ACS seems to
have a greater generalization score, some classifiers are still
over-general. As before, the YACS is the slowest implemen-
tation among all tested algorithms.

The population generated by YACS is non-deterministic;
exemplary differences in the classifier structure is obtained
after an arbitrary run is depicted in Table 2. It becomes evident
that YACS lacks the generalization mechanism by creating
over-specialized rules.

C. REAL-MULTIPLEXER

The rMPX is the only single-step environment considered.
The examined version is a 3-bit, where one bit represents the
location of the correct answer, and the remaining two bits

VOLUME 10, 2022

hold arbitrary values. To determine whether the real-valued
signal is either O or 1, the threshold of 0.5 was applied.
In addition, each observation attribute was discretized into
ten distinct values, which led to 2000 individual states. The
environment is pretty easy to scale by changing the signal
length and discretization factor, making it a good benchmark
problem. Moreover, the signal needs to be estimated back
from a discrete form into continuous to calculate the models’
knowledge. With a higher discretization resolution, this may
not be entirely feasible.

Algorithms’ performance is presented in Figure 9. Inter-
estingly, basic ACS did not manage to evolve any reliable
classifiers through the experiments. Those that are created are
over-general and did not learn any desired knowledge. It is
also notable that the Dyna-Q explicitly learned all possible
transitions. The rule acquisition is faster in earlier trials due
to the stochastic nature of the environment. Classifiers created
by YACS are the most specific from all ALCSs. It learns
the environment dynamics very rapidly, but the created rules
are oscillating (initial phases of gaining knowledge). The

33823

IEEE Access

N. Kozlowski, O. Unold: Internalizing Knowledge for Anticipatory Classifier Systems in Discretized Real-Valued Environments

Population size

2000

1500

1000

Number of rules/classifiers

500

0 2000 4000 6000 8000
trial

10000 12000 14000

Generalization

80%
60%
40%

20% \._ 7

0%

0 2000 4000 6000 8000
trial

10000 12000 14000

—— ACS ACS2 —— ACS2_0IQ

Seconds [s]

—=— ACS2_GA

Knowledge

100%

80%

60%

40%

20%

0%

o

2000 4000 6000 8000
trial

10000 12000 14000

Average trial time

0.014

0.012

0.010

o o
o o
S S
& o

0.004

0.002

0.000

&
N
>

ACS2_GA 0IQ YACS —+— DynaQ

FIGURE 9. Latent learning comparison in the 3-bit rMPX environment discretized using 10 bins.

ACS?2 obtained the best results with a genetic generalization
mechanism. While an excess of classifiers has been gener-
ated in early trials, the population size is reduced over time
while increasing generality. Only this algorithm among tested
herein holds such capabilities.

D. SIMPLE MAZE

Lastly, to further highlight the potential of latent learning,
the simple, discrete and deterministic environment was used.
Figure 10 illustrates that the knowledge is reached by ACS2
(both variants) and Dyna-Q algorithms. Since no generali-
sation is possible, the optimal number of classifiers should
converge to the number of Dyna-Q rules. Both ACS and
YACS did not settle the optimal number of rules due to invalid
generalisation. The ACS2 GA learned the environment in the
early trials by generating many classifiers. Both its population
and specificity decreases over time, resulting in the desired
solution to the problem.

IV. BAYESIAN ANALYSIS

In order to statistically assess the significance and perfor-
mance of obtained results, a Bayesian estimation [47], [48]
(BEST) approach was used. We wanted to compare the

33824

performance of each agents’ last trial using the Bayesian
approach, which yields complete distributional information
about the collected data, whereas the frequentist Null Hypoth-
esis Statistical Testing (NHST) uses just a single point value.
Having an explicit distribution of credible parameter values,
inferences about null values can be made without even refer-
ring to p values as in NHST.

Each of the four experiments was executed 50 times and
was independent. According to the Central Limit Theorem,
this sample size of data is enough to consider approximat-
ing the normal distribution. [49], [50]. Every combination
of collected agent-metric data samples x was modelled as
Student-t distribution, which has the possibility of modelling
a distribution with heavier tails. It was described with three
parameters - u, (expected mean value), oy (standard devia-
tion) and v (degrees of freedom). The standard deviation o
parameter uniformly covers a vast possible parameter space.
The degrees of freedom follows a shifted exponential distri-
bution controlling the normality of the data. When v > 30,
the Student-t distribution is close to a normal distribution.
However, if v is small, Student t-distributions have a heavy
tail. Therefore, value of v ~ Exp(zl—g) allows the model to

VOLUME 10, 2022

N. Kozlowski, O. Unold: Internalizing Knowledge for Anticipatory Classifier Systems in Discretized Real-Valued Environments

IEEE Access

Population size

©
o

.
i
4

/

B]
o o

w
o

Number of rules/classifiers

3

i
o

0 50 100 150 200 250
trial
Generalization

80%
60% X

J
20% B - e R e A

© A o LS : P

20%
0%

0 50 100 150 200 250

trial

—— ACS ACS2 —— ACS2_0IQ

FIGURE 10. Latent learning comparison in the Simple Maze environment.

be more tolerant for potential outliers. Therefore, in order
to apply the Monte Carlo sampling method, the following
distributions were proposed [47]:

1~ Ny, 07) ey
1
1

v~ Exp(E) 3)

The random variables were drawn 100,000 times for each
modelled data sample. Table 3 presents the means of the
obtained distribution. Additionally, Figure 11 plots the rela-
tive differences across all methods. The following regularities
can be observed:

1) in all cases the ACS agent produces the most general
population (mostly not the most efficient one) and
YACS agent is the slowest,

2) the performance of pairs ACS2 - ACS2 OIQ and ACS2
GA - ACS2 GA OIQ is very similar. The Genetic Algo-
rithm component tends to increase the generalisation
score, alongside population size and computation time.

VOLUME 10, 2022

—=— ACS2_GA

Knowledge

100%

90%

80%

70%

60%

50%

40%

30%

0 50 100 150 200 250
trial
Average trial time

0.05

0.04
)
- 0.03
°
C
S
[}
Y 0.02

0.01

0.00 o

& & g & S 8 &
A v('l Y 7 7 Ny A?
g ¢ 9 °
< 4
G
RS
ACS2_GA_0IQ YACS —o— DynaQ

V. DISCUSSION

Learning the environmental model latently from sensory
input signals allows for a much richer source of information
than just from a scalar reward signal. Having the internal
representation of environmental dynamics facilitates optimiz-
ing learning speed (action planning, imaginary experiences)
or faster adapting to new agent goals while having a world
model remaining relatively intact.

This paper proves for the first time that the certain systems
examined herein (ACS, ACS2, YACS) can successfully learn
latently in real-valued environments by performing rele-
vant, fully reproducible experiments when the input space
is significantly increased. The modifications included dis-
cretizing the environmental perception to ensure compat-
ibility with the inner agent’s mechanism before applying
its learning components. Minding the nature of ALCS, the
usage of such nominal values for state representation would
be the most straightforward approach. ALCS systems by
design are not limited by fernary alphabet, therefore cre-
ating an arbitrary number of potential states is achievable.
This possibility allows ALCS systems to be used in a much

33825

IEEE Access

N. Kozlowski, O. Unold: Internalizing Knowledge for Anticipatory Classifier Systems in Discretized Real-Valued Environments

TABLE 3. Means and standard deviations of Student-t distribution obtained by performing Bayesian estimation of metrics from the last trial runs.

Knowledge Generalisation | Population Time
ACS 0.911 £ 0.009 0.051 £0.0 39.0+£ 0.0 | 0.006 £ 0.001
ACS2 1.000 £ 0.000 0.000 £ 0.0 38.0+ 0.0 | 0.003 £ 0.001
ACS2 0IQ 1.000 £ 0.000 0.000 £ 0.0 38.0+£ 0.0 | 0.004 £ 0.001
ACS2 GA 1.000 £ 0.000 0.000 £ 0.0 38.0+£ 0.0 | 0.003 £ 0.001
ACS2 GA OIQ | 1.000 £ 0.000 0.000 £ 0.0 38.0+£ 0.0 | 0.004 £+ 0.001
YACS 1.000 £ 0.000 0.000 £ 0.0 38.0+£ 0.0 | 0.064 £ 0.005
Dyna-Q 1.000 £ 0.000 0.000 £ 0.0 38.0+ 0.0 | 0.002 =+ 0.001
(a) Corridor
Knowledge Generalisation Population Time
ACS 0.947 £0.000 | 0.526 £ 0.000 78.000 =£ 0.000 0.081 £ 0.004
ACS2 0.951 £ 0.001 | 0.446 £ 0.005 87.889 £+ 1.024 0.061 £ 0.002
ACS2 0IQ 0.971 £0.001 | 0.442 + 0.006 89.103 £ 1.305 0.061 £ 0.002
ACS2 GA 0.951 £0.001 | 0.500 £ 0.000 78.000 £ 0.001 0.071 £ 0.002
ACS2 GA OIQ | 0.971 £0.001 | 0.500 =£ 0.001 78.000 £ 0.001 0.071 £ 0.002
YACS 0.944 £0.002 | 0.032 £ 0.005 | 804.550 £ 53.449 | 2.001 £ 0.134
Dyna-Q 0.727 £0.002 | 0.000 £ 0.000 | 1171.132 £ 3.131 | 0.037 £ 0.001
(b) Grid
Knowledge Generalisation Population Time
ACS 0.000 £ 0.000 | 0.875 =+ 0.000 4.000 £ 0.000 0.000 =+ 0.000
ACS2 0.998 £0.001 | 0.173£0.001 | 1636.380 £ 6.589 | 0.004 £ 0.001
ACS2 0I1Q 0.999 £0.001 | 0.172£0.001 | 1634.535 £ 7.966 | 0.004 £ 0.001
ACS2 GA 1.000 £ 0.001 | 0.317 +£0.001 | 973.439£6.410 | 0.003 & 0.001
ACS2 GAOIQ | 1.000 £ 0.001 | 0.316 +0.002 | 979.342 +6.347 | 0.003 4 0.001
YACS 0.979 £0.002 | 0.103 £0.005 | 1169.114 £9.550 | 0.014 £ 0.001
Dyna-Q 0.986 £ 0.001 | 0.000 £ 0.000 | 1972.311 £ 0.711 | 0.000 £ 0.000
(c) tMPX
Knowledge Generalisation Population Time
ACS 0.966 £ 0.007 | 0.510£0.001 | 21.308 +0.137 | 0.005 4 0.001
ACS2 1.000 £ 0.000 | 0.329 +0.003 | 30.875 £ 0.448 | 0.004 £ 0.001
ACS2 0IQ 1.000 £ 0.000 | 0.327 +0.003 | 31.409 £ 0.664 | 0.004 £ 0.001
ACS2 GA 1.000 £ 0.000 | 0.450 +0.004 | 53.349 £1.011 | 0.009 £ 0.002
ACS2 GA OIQ | 1.000 £ 0.000 | 0.463 4+ 0.004 | 51.717 +0.871 | 0.012 + 0.002
YACS 1.000 £ 0.001 | 0.265 4 0.005 | 26.473 £ 0.403 | 0.039 £ 0.004
Dyna-Q 1.000 £ 0.000 | 0.000 & 0.000 | 32.000 £ 0.000 | 0.002 =+ 0.001

(d) Simple Maze

broader range of possible environments without significant
modifications.

The number of ways to discretize a continuous attribute
is infinite. Kotsiantis in [51] surveys possible discretization
techniques, but in this work, the preferred method is to divide
the search space into n equally spaced intervals. This choice
requires a careful selection of the number of buckets. Due
to certain environmental regularities, an invalid setting might
result in under-performing or creating an excessive model.

All examined ALCS created a more compact rules pop-
ulation than the straightforward Dyna-Q approach. The
utilization of generalization capabilities is a trade-off between
computation speed and readability. However, among all
tested algorithms, Dyna-Q was the fastest and conceptually
the easiest to understand.

Also, two families of ALCS were tested — the ACS along-
side ACS2 and YACS. Due to experiments, ACS2 turned
out to be the most mature and stable. The genetic general-
ization modification enables the population size to shrink,
simplifying the internal model. However, the second modi-
fication - OIQ - improved the knowledge acquisition speed in
the Corridor and Grid environments over the default ACS2.

YACS also showed unexpected behaviour when tested on
environments other than discrete, multi-step mazes (initially
suggested by Gérard). Due to its heuristics, certain problems

33826

were revealed like random population evolution (leading to
different solutions in each trial) or non-optimal internal rep-
resentation storage of all visited states. The latter is especially
problematic in larger input-space environments where the
slow performance will dampen the benefits of generalization
capabilities.

To summarize, this work evaluated the capabilities of
building internal environmental models in the context of
learning classifier systems. ALCS was preferred over more
popular XCS because their formalism naturally enables stor-
ing knowledge in a suitable form. Additionally, for the
first time to our knowledge, ALCS were evaluated with
real-valued environments that posed a new challenge. The
experiments performed are fully reproducible using indus-
try standards and encourage others to continue the research
seamlessly.

V1. FUTURE ENHANCEMENTS
For future work, we recommend the following actions:

1) investigate the topic of rule-compaction dedicated to
the C-A-E classifier structure. Being able to represent
intervals in a single classifier would further reduce the
population size [23], [24],

VOLUME 10, 2022

N. Kozlowski, O. Unold: Internalizing Knowledge for Anticipatory Classifier Systems in Discretized Real-Valued Environments IEEEACC@SS

Bayesian Estimation of metrics

Simple Maze Corridor
knowledge knowledge

generalization time generalization time
population population
Grid rMPX
knowledge knowledge

generalization time generalization time
population population

— ACS ACS2 — ACS2_0IQ — ACS2_GA ACS2_GA_0IQ YACS —— DYNAQ

FIGURE 11. Means of Student-t distribution obtained by performing Bayesian estimation of metrics from the last trial runs. Values are normalized to the
maximum value for each metric. There are N different classes of agents - ACS, ACS2 (with GA modification), YACS and Dyna-Q. The 0IQ modification is
highly correlated with the ACS2 variant used.

2) investigate the impact of utilizing internal knowledge in [4] H.]J. Holland, “Escaping brittleness: The possibilities of general-purpose
demanding environments (like real-valued ones) using learning algorithms applied to parallel rule-based systems,” Mach. Learn.,
. . . . Artif. Intell. Approach, vol. 2, pp. 593-623, Feb. 1986.
mechanisms like action planning [35],

. [5] L. Pier Lanzi, “Learning classifier systems: A reinforcement learning

3) dimensionality reduction using an ensemble of LCS perspective,” in Foundation Learning Classifier System. Springer, 2005,
with deep-learning methods [26]-[28], pp. 267-284.

4) investigate the concept of performing active latent [6] P. L. Lanzi, “Learning classifier systems: Then and now,” Evol. Intell.,

vol. 1, no. 1, pp. 63-82, Mar. 2008.

rni nablin riosi 2 . The tradi-
lea ning by enab g curiosity [5]’ [53] e trad [7] J. H. Holmes, D. R. Durbin, and F. K. Winston, “The learning classifier

tional environments used for evaluating LCS would system: An evolutionary computation approach to knowledge discovery in
need to be adjusted by enabling cognitive maps forma- epidemiologic surveillance,” Artif. Intell. Med., vol. 19, no. 1, pp. 53-74,
tion May 2000.

[8] I. H. Witten, “Data mining: Practical machine learning tools and tech-
niques with Java implementations,” Acm SIGMOD Rec., vol. 31, no. 1,

REFERENCES pp. 76-71, 2016.

[11 S.R.Sutton, Introduction to Reinforcement Learning, vol. 135. Cambridge, [9] E.Bernad6, X. Llora, and M. Josep Garrell, “XCS and GALE: A compar-
MA, USA: MIT Press, 1998. ative study of two learning classifier systems on data mining,” in Proc. Int.
[2] C. E. Tolman, Purposive Behavior in Animals and Men. Berkeley, CA, Workshop Learn. Classifier Syst. Springer, 2001, pp. 115-132.
USA: Univ of California Press, 1932. [10] J. Bacardit and V. M. Butz, “Data mining in learning classifier systems:
[3] P.J. Seward, “An experimental analysis of latent learning,” J. Exp. Psy- Comparing XCS with GAssist,” in Learning Classifier System. Springer,
chol., vol. 39, no. 2, p. 177, 1949. 2003, pp. 282-290.

VOLUME 10, 2022 33827

IEEE Access

N. Kozlowski, O. Unold: Internalizing Knowledge for Anticipatory Classifier Systems in Discretized Real-Valued Environments

[11]

[12]

[13]

[14]

[15]
[16]
[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]
[31]

[32]
[33]
[34]

[35]

[36]

[37]

A. H. Abbass, J. Bacardit, V. M. Butz, and X. Llora, “Online adaptation
in learning classifier systems: Stream data mining,” Illinois Genetic Algo-
rithms Lab., Urbana, IL, USA, Tech. Rep. 2004031, 2004.

H. H. Dam, C. Lokan, and A. H. Abbass, “Evolutionary online data
mining: An investigation in a dynamic environment,” in Evolutionary
Computation in Dynamic and Uncertain Environments. Springer, 2007,
pp. 153-178.

R. Smith, A. El-Fallah, B. Ravichandran, R. Mehra, and B. Dike, The
Fighter Aircraft LCS: A Real-World, Machine Innovation Application.
Springer, 2004, pp. 113-142.

'W. Stolzmann and V. Martin Butz, “‘Latent learning and action planning in
robots with anticipatory classifier systems,” in Proc. Int. Workshop Learn.
Classifier Syst. Springer, 1999, pp. 301-317.

S. W. Wilson, “Classifier fitness based on accuracy,” Evol. Comput., vol. 3,
no. 2, pp. 149-175, 1995.

W. Stewart Wilson, “Get real! XCS with continuous-valued inputs,” in
Proc. Int. Workshop Learn. Classifier Syst. Springer, 1999, pp. 209-219.
C. Stone and L. Bull, “For real! XCS with continuous-valued inputs,” Evol.
Comput., vol. 11, no. 3, pp. 299-336, Sep. 2003.

H. H. Dam, H. A. Abbass, and C. Lokan, “Be real! XCS with
continuous-valued inputs,” in Proc. Workshops Genetic Evol. Comput.
2005, pp. 85-87.

L. Cielecki and O. Unold, “3D function approximation with rGCS classi-
fier system,” in Proc. 8th Int. Conf. Intell. Syst. Design Appl., Nov. 2008,
p. 974.

S. W. Wilson, ““Classifiers that approximate functions,” Natural Comput.,
vol. 1, no. 2, pp. 211-234, 2002.

N. Kozlowski and O. Unold, “Preliminary tests of a real-valued anticipa-
tory classifier system,” in Proc. Genetic Evol. Comput. Conf. Companion,
Jul. 2019, pp. 1289-1294.

N. Kozlowski and O. Unold, “Investigating exploration techniques for
ACS in discretized real-valued environments,” in Proc. Genetic Evol.
Comput. Conf. Companion, Jul. 2020, pp. 1765-1773.

Y. Liu, W. N. Browne, and B. Xue, “A comparison of learning classifier
Systems’ rule compaction algorithms for knowledge visualization,” ACM
Trans. Evol. Learn. Optim., vol. 1, no. 3, pp. 1-38, Sep. 2021.

Y. Liu, W. N. Browne, and B. Xue, ‘“Visualizations for rule-based machine
learning,” Natural Comput., vol. 4, pp. 1-22, Jan. 2021.

M. Irfan, Z. Jiangbin, M. Igbal, Z. Masood, M. H. Arif, and S. R. U. Hassan,
“Brain inspired lifelong learning model based on neural based learning
classifier system for underwater data classification,” Expert Syst. Appl.,
vol. 186, Dec. 2021, Art. no. 115798.

M. Irfan, Z. Jiangbin, M. Igbal, Z. Masood, and M. H. Arif, “Knowl-
edge extraction and retention based continual learning by using convolu-
tional autoencoder-based learning classifier system,” Inf. Sci., vol. 591,
pp. 287-305, Apr. 2022.

M. Irfan, Z. Jiangbin, M. Igbal, and M. H. Arif, “‘Enhancing learning clas-
sifier systems through convolutional autoencoder to classify underwater
images,” Soft Comput., vol. 25, no. 15, pp. 10423-10440, Aug. 2021.

R. J. Preen, S. W. Wilson, and L. Bull, “Autoencoding with a classifier
system,” [EEE Trans. Evol. Comput., vol. 25, no. 6, pp. 1079-1090,
Dec. 2021.

A. Siddique, W. N. Browne, and G. M. Grimshaw, ‘‘Frames-of-reference-
based learning: Overcoming perceptual aliasing in multistep decision-
making tasks,” IEEE Trans. Evol. Comput., vol. 26, no. 1, pp. 174-187,
Feb. 2022.

J. Hoffmann, Vorhersage Erkenntnis. Gottingen, Germany: Hogrefe, 1993.
J. Hoffmann and A. Sebald, “‘Lernmechanismen zum Erwerb verhaltenss-
teuernden Wissens,” Psychol. Rundschau, Dec. 2000.

W. Stolzmann, Antizipative Classifier System. Osnabrueck, Germany:
Shaker Verlag 1997.

V. Martin Butz, “Anticipatory Learning Classifier System, vol. 4. Springer,
2002.

V. Martin Butz and W. Stolzmann, “An algorithmic description of ACS2,”
in Proc. Int. Workshop Learn. Classifier Syst. Springer, 2001, pp. 211-229.
O. Unold, E. Rogula, and N. Kozlowski, “Introducing action planning
to the anticipatory classifier system ACS2,” in Proc. Int. Conf. Comput.
Recognit. Syst. Springer, 2019, pp. 264-275.

R. Orhand, A. Jeannin-Girardon, P. Parrend, and P. Collet, “PEPACS:
Integrating probability-enhanced predictions to ACS2,” in Proc. Genetic
Evol. Comput. Conf. Companion, Jul. 2020, pp. 1774-1781.

R. Orhand, A. Jeannin-Girardon, P. Parrend, and P. Collet, “BACS:
A thorough study of using behavioral sequences in ACS2,” in Proc. Int.
Conf. Parallel Problem Solving From Nature. Springer, 2020, pp. 524-538.

33828

(38]

(39]

(40]

(41]

(42]

(43]

[44]

(45]

(46]

(47]

(48]

(49]
[50]
[51]

(52]

(53]

P. Gérard, W. Stolzmann, and O. Sigaud, “YACS: A new learning classifier
system using anticipation,” Soft Comput. Fusion Found., Methodol. Appl.,
vol. 6, nos. 34, pp. 216-228, Jun. 2002.

S. Richard Sutton, ‘“Reinforcement learning architectures for animats,” in
Proc. Ist Int. Conf. Simul. Adapt. Behav., 1991, pp. 288-296.

P. Gérard, J.-A. Meyer, and O. Sigaud, “Combining latent learning with
dynamic programming in the modular anticipatory classifier system,” Eur.
J. Oper. Res., vol. 160, no. 3, pp. 614-637, Feb. 2005.

V.Zhanna Zatuchna, “AgentP model: Learning classifier system with asso-
ciative perception,” in Proc. Int. Conf. Parallel Problem Solving Nature.
Springer, 2004, pp. 1172-1181.

T. O’Hara and L. Bull, “Building anticipations in an accuracy-based
learning classifier system by use of an artificial neural network,” in Proc.
Congr. Evol. Comput., vol. 3, Sep. 2005, pp. 2046-2052.

G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang,
and W. Zaremba, “OpenAl gym,” 2016, arXiv:1606.01540.

P. L. Lanzi, D. Loiacono, S. W. Wilson, and D. E. Goldberg, “XCS with
computed prediction in multistep environments,” in Proc. Conf. Genetic
Evol. Comput., 2005, pp. 1859-1866.

P. Gerard and O. Sigaud, “YACS: Combining dynamic programming
with generalization in classifier systems,” in Proc. Int. Workshop Learn.
Classifier Syst. Springer, 2000, pp. 52-69.

N. Kozlowski and O. Unold, “Integrating anticipatory classifier systems
with OpenAl gym,” in Proc. Genetic Evol. Comput. Conf. Companion,
Jul. 2018, pp. 1410-1417.

K. John Kruschke, “Bayesian estimation supersedes the T test,” J. Exp.
Psychol., Gen., vol. 142, no. 2, p. 573, 2013.

A. Benavoli, G. Corani, J. Demsar, and M. Zaffalon, “Time for a change:
A tutorial for comparing multiple classifiers through Bayesian analysis,”
J. Mach. Learn. Res., vol. 18, no. 1, pp. 2653-2688, Jan. 2017.

S. G. Kwak and J. H. Kim, “Central limit theorem: The cornerstone of
modern statistics,” Korean J. Anesthesiol., vol. 70, no. 2, p. 144, 2017.
M. R. Islam, “Sample size and its role in central limit theorem (CLT),”
Comput. Appl. Math. J., vol. 4, no. 1, pp. 1-7, 2018.

S. Kotsiantis and D. Kanellopoulos, “Discretization techniques: A recent
survey,” Int. Trans. Comput. Sci. Eng., vol. 32, no. 1, pp. 47-58, 2006.
M. Z. Wang and B. Y. Hayden, “Latent learning, cognitive maps, and
curiosity,” Current Opinion Behav. Sci., vol. 38, pp. 1-7, Apr. 2021.

R. Golman and G. Loewenstein, “Information gaps: A theory of prefer-
ences regarding the presence and absence of information,” Decision, vol. 5,
no. 3, p. 143, 2018.

NORBERT KOZLOWSKI was born in Poland,
in 1990. He received the B.S. degree from the
Department of Electronics, Wroctaw University
of Science and Technology, in 2014, and the
M.S. degree in advanced informatics and control,
in 2015. His research interest includes anticipatory
learning classifier systems with a particular inter-
est in the real-valued input signals.

OLGIERD UNOLD received the M.Sc. degree in
automation systems, in 1989, the M.Sc. degree in
information science, in 1991, and the Ph.D. and
D.Sc. degrees in computer science, in 1994 and
2011, respectively. He is currently a Full Professor
with the Department of Computer Engineering,
Wroctaw University of Science and Technology.
His research interest includes adaptive machine
learning methods.

VOLUME 10, 2022

