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ABSTRACT We present a simulation framework on a geometrical optimization rule of the synaptic pass-
transistor (SPT) for a low power analog accelerator (AA). Here, the SPT is a synaptic transistor (Syn-Tr) in
series with a load resistor to be scaled with respect to a geometrical ratio between a channel length and width
of the Syn-Tr. When only the load resistance is increased for the reduction of the power consumption of the
SPT, a synaptic characteristics (e.g. a synaptic dynamic ratio, DRw) is hard to be maintained. To overcome
this, the channel geometrical ratio and scaling factor of the load resistance are required to be increased
equally, thus a geometrical optimization rule. Here, the load resistance is equivalent to a geometric mean
where two extreme cases of the synaptic full facilitation and full depression are considered. To verify the
proposed rule, we perform a semiconductor device simulation for a static and pulsed characteristics of the
SPT. When the SPT is scaled based on the geometrical optimization rule, from the simulation results, it is
found that the static-power consumption is decreased while maintaining the DRw. As a trade-off relation,
however, the noise power-spectral-density is found to be increased due to a higher thermal noise associated
with a higher total resistance of the scaled SPT. Here, the increased noise power-spectral-density of a single
SPT may affect the performance of the AA based on the SPT-array, so we also show a crossbar simulation,
checking the classification accuracy against a standard dataset (e.g. MNIST).

INDEX TERMS Synaptic pass-transistor, geometrical optimization rule, analog accelerator, synaptic weight,
synaptic dynamic ratio, full depression, full facilitation, maximum static-power consumption.

I. INTRODUCTION
A neuromorphic system, which mimics behaviors of a bio-
logical nervous system, has been considered as a promis-
ing candidate due to a more efficient computing capability
compared to the conventional computer system based on the
von Neumann architecture [1]–[5]. For example, the data
can be efficiently processed with an artificial neural net-
work (ANN) which mimics the connection of the biological
neurons. Here, a multi-layer perceptron (MLP) structure can
be employed for a simple ANN (see Fig. 1(a)) [6], [7].
Besides a higher data processing efficiency of the neuro-
morphic system, a low-power characteristics of a synaptic
device, which is a fundamental building block, is essential for
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a high-level intelligence of the system [8]–[11]. Here, a level
of the intelligence is proportional to the number of synaptic
devices, resulting in the increase of a total power consumption
proportionally. In this respect, the power consumption of a
single synaptic device has to be minimized. In the case of the
human brain having a high-level intelligence, it is known that
its total power consumption is only 10 W in spite of a huge
number of synapses (i.e. 1015) in the brain [12], [13]. This is
mainly because the power consumption per synapse is very
small level of 0.01 pW. Note that a single central processing
unit (CPU) for the conventional computer system shows a
high-power consumption of 100 W approximately, which is
10 times higher compared to the total power consumption of
the brain [14], [15].

As a typical two-terminal synaptic device, a memris-
tor with a low-power consumption has been reported,
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FIGURE 1. (a) Schematic of an artificial neural network (ANN) as a simple
multi-layer perceptron (MLP) structure with three layers (e.g. the input
layer, hidden layer, and output layer). Here, the In is nth neuron of an
input layer, Hm is mth neuron of a hidden layer, Ok is kth neuron of an
output layer, wnm is a synaptic weight between In and Hm, and wmk is a
synaptic weight between Hm and Ok . (b) Schematic of the synaptic
pass-transistor (SPT) with a charge trapping layer (CTL) and (c) the
three-dimensional view of the synaptic transistor (Syn-Tr). Here, the
equivalent resistance (Rtr ) of the Syn-Tr can be varied when electrons are
trapped or de-trapped depending on the polarity of the
programming-voltage (V prog

G ) and number of programming-pulses
applied to the gate.

indicating its power consumption in the range of nano-watts
[11], [16]–[19]. However, that is about six orders of magni-
tude larger compared to a biological synapse (e.g. 0.01 pW
per synapse). It may be because a high voltage to generate
memristive phenomena, such as an electro-chemical met-
allization and valency change, is still required [20], [21].
Therefore, it is expected that a higher-level intelligence of
the neuromorphic system based on memristors with these
memory phenomena is difficult to be achieved due to a
limitation for reducing the power consumption of each
device. As another type, three-terminal synaptic devices
based on a metal-oxide-semiconductor field-effect transistor

(MOSFET) have been investigated for a low power oper-
ation [22]–[24]. For a memory function of this synap-
tic device, programming-pulses are required to be applied
to a gate terminal for a memory function, such as a
read/write operation, in these synaptic devices. However,
a high programming-voltage for both short-term memory
phenomena (e.g. an impact ionization) and long-term mem-
ory (e.g. a trapping and de-trapping of charges through a
tunneling) phenomena of theMOSFET-based synaptic device
is needed giving rise to a high burst current. This is expected
to lead to an increase of the static-power consumption, thus
a limitation of a high-level intelligence in the neuromorphic
system.

As a method to limit the burst current, synaptic devices can
be connected with a load resistor, which leads to a low-power
operation. For example, a synaptic pass-transistor (SPT),
where a n-channel synaptic transistor (Syn-Tr) is connected
in series with the load resistor, was introduced, as depicted in
Fig. 1(b) [25]. Here, a load resistance (RL) of the SPT limits
the maximum current level as VI / RL where the VI is a fixed
input voltage. In addition, the power dissipation of the SPT
can be reduced by the increase ofRL . However, the increase of
RL may cause side-effects, such as a degradation of a synaptic
characteristics. Therefore, a selection of an appropriate RL is
important.

In this paper, a simulation framework on a geometrical
optimization rule (GOR) of the SPT for a low power analog
accelerator (AA). Here, the SPT is a Syn-Tr in series with
the load resistor, is presented scaling RL with respect to a
geometrical ratio (Lch/Wch) between a channel length (Lch)
and width (Wch) of the Syn-Tr for a low-power operation.
To reduce the power consumption of the SPT, when only
the RL is increased, the synaptic characteristics, such as a
synaptic dynamic ratio (DRw) between the fully-facilitated
and fully-depressed weights, are difficult to be maintained.
To maintain this DRw, the Lch/Wch and scaling factor of RL
are needed to be increased with the same rate, so a GOR is
suggested. Here, the RL is equivalent to a geometric mean
where two extreme synaptic states of the full facilitation and
full depression of the Syn-Tr are considered. To check the
GOR, a semiconductor device simulation for the static and
pulsed characteristics of the SPT is performed. When both
the Lch/Wch and scaling factor of RL are equally scaled up
with applying the GOR, it is found that the static-power
consumption is reduced while maintaining the DRw wider
compared to the case without applying the GOR. As a trade-
off relation, however, it is found that the noise power-spectral-
density (PSD) of the SPT is increased due to the increase of
the thermal noise which is related to the increase of RL and
equivalent resistance (Rtr ) of the Syn-Tr. Here, when the SPTs
are arrayed as an AA, it is expected that the increased noise
PSD of a single SPT can lead to the decrease of the classi-
fication accuracy of the AA based on the SPT-array. From
the crossbar simulation for the Modified National Institute
of Standards and Technology database (MNIST), it is also
found that the classification accuracy is decreased due to the
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FIGURE 2. (a) Conceptual plot of the current-voltage characteristics to express the synaptic process through the threshold voltage shifts
changed by programming-pulses. Here, the SS is a subthreshold slope. (b) Notional plot of the current-voltage characteristics when only
αL is increased without applying the geometrical optimization rule (GOR). Note that the v1 and v2 are an amount of the shifted VT .

higher noise PSD, as increasing Rtr and RL . Therefore, it is
shown that the classification accuracy can be decreased due
to the increased total resistance of each arrayed SPT although
we can expect the reduction of the power consumption in
the AA, suggesting a trade-off relation between the power
consumption and classification accuracy.

II. SPT AND RELATED THEORIES
A. BASIC STRUCTURE AND OPERATING PRINCIPLE
As shown in Fig. 1(b), the SPT consists of the Syn-Tr and RL .
Here, theRL is added for a voltage output (VO), employing the
pass-transistor concept. For the Syn-Tr, a memory function is
implemented with a charge trapping layer (CTL) in the insu-
lator system based on a semiconductor-oxide-nitride-oxide-
semiconductor (SONOS), as seen in Fig. 1(c). With this CTL,
charges (e.g. electrons) are trapped or de-trapped depend-
ing on the polarity of the programming-voltage (V prog

G ) and
number of programming-pulses applied to the gate. Thus,
a threshold voltage (VT ) is varied according to the number
of electrons trapped in the CTL, which results in a change of
the drain current (ID) at a fixed read voltage (V read

G ). Since
the Rtr can be expressed as VI/ID, the change of ID leads
to a variation of Rtr . Assuming that the SPT operates only
in the subthreshold region, the Rtr can be represented as
follows [25],

Rtr =
Lch
Wch

VI
Ksubexp

{
q(V read

G − VT )/(ntkT )
} , (1)

where Ksub is a constant related to the diffusion coefficient
in the subthreshold regime, nt is an ideality factor about the

interface state, kT is a thermal energy, q is an elementary
charge, and VT = VT0 + 1VT . Here, 1VT is the amount of
the threshold voltage shift from the initial value (VT0). Also,
1VT can be represented as −Qtrape /Ci, where Q

trap
e is the

magnitude of a negative charge density per area, correspond-
ing to the number of electrons trapped in the CTL, and Ci is a
gate-insulator capacitance per area. Note that the operation in
the subthreshold regime can be a key aspect for an ultralow-
power synaptic device due to a low operating current and high
sensitivity of the current for a small variation of 1VT [26].
By defining Lch/Wch ≡ αtr and Rtr/αtr≡Rtr0, Eq. (1) can be
rewritten as,

Rtr = αtrRtr0. (2)

Here, the Rtr0 at VG = V read
G is the rest channel resistance

normalized with αtr , which is a function of VT depending on
the polarity and number of programming-pulses. Since the
SPT can be considered as Rtr in series with RL , the VO is
determined as,

VO =
RL

RL + Rtr
VI . (3)

With the definition of w (≡ VO/VI ), the w can be expressed
as shown below,

w =
RL

RL + Rtr
. (4)

Thus, the w is varied depending on the change of Rtr which
is a function of 1VT .
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B. DETAILED PROCEDURE OF THE SYNAPTIC OPERATION
As the Syn-Tr is based on the n-channel MOSFET, the ini-
tial state of the SPT is a full facilitation (FF) with VT =
VT0(1VT = 0) (see Fig. 2(a)). The channel resistance at
the FF (i.e. Rfftr ) can be expressed as VI/I

ff
D , where the I

ff
D is

the drain current for the FF at VG = V read
G . From this FF

condition, multiple positive programming-pulses are applied
to get a positive 1VT of v1 > 0, which leads to the decrease
of ID at VG = V read

G . As shown in Fig. 2(a), when the ID has
become n1 times lower compared to the FF condition, it is
defined as the reference drain current (I refD ). This state is to
be called a reference state of the SPT with VT = VT0 + v1 at
which the reference channel resistance (i.e. Rreftr ) is denoted
as VI/I

ref
D . Since I refD = I ffD /n1, the R

ref
tr can be expressed as,

Rreftr = n1R
ff
tr . (5)

Here, the Rreftr is to be RL for the SPT operation, so the RL is
given from Eq. (5),

RL = n1R
ff
tr . (6)

Since the w at the FF (wff ) is found by replacing the Rtr
with Rfftr in Eq. (4), the wff can be represented with Eq. (6),
as follows,

wff =
RL

RL + R
ff
tr

=
n1

n1 + 1
≈ 1, (7)

where wff is almost unity (i.e. the FF) with the condition of
n1 � 1. Note that the wff can be generalized as a maximum
w (wmax) for any n1, as follows,

wmax =
n1

n1 + 1
. (8)

By applying multiple positive programming-pulses, the VT
can be further increased by v2> 0 from the reference condi-
tion. So, the ID is further decreased by n2 times, as described
in Fig. 2(a). For this case, a full depression (FD) with VT =
VT0 + v1 + v2(1VT = v1 + v2) is assumed to be made. The
channel resistance at the FD (i.e.Rfdtr ) is represented asVI/I

fd
D .

Here, the I fdD is the drain current for the FD at VG = V read
G .

Since I fdD = I refD /n2, the R
fd
tr is expressed as n2R

ref
tr . Along

with Eq. (5), it can also be rewritten as,

Rfdtr = n1n2R
ff
tr . (9)

In Eq. (4), theRtr isR
fd
tr at the FD. Alongwith Eqs. (6) and (9),

the w at the FD (wfd ) is derived as,

wfd =
RL

RL + R
fd
tr

=
1

1+ n2
≈ 0, (10)

where thewfd approaches zero (i.e. the FD)with the condition
of n2� 1. Similar to Eq. (8), the wfd can also be generalized
as a minimum w (wmin) for any n2, as follows,

wmin =
1

1+ n2
. (11)

In addition, with the wmax and wmin of the SPT, the DRw is
defined as,

DRw ≡
wmax
wmin

=
n1(1+ n2)
n1 + 1

. (12)

Here, the DRw becomes n2 with the condition of both n1 and
n2� 1 while achieving both wmax = w ff and wmin = wfd of
the SPT.

C. LOAD RESISTANCE AND TWO EXTREME
SYNAPTIC STATES
Since the I fdD is limited to the off-current floor (Ioff ), the n1 and
n2 are also limited, thus limited1VT . In this respect, the opti-
mum condition of n1 and n2 should be found with the limited
number of programming-pulses. Assuming that the transistor
is always operated in the subthreshold regime and subthresh-
old slope (SS) is constant, it is found that n1n2 is a constant
for the constant 1VT as v1 + v2. So, n1 = n2 is optimum to
be both the n1 and n2 � 1, satisfying v1 = v2. Otherwise,
either n1 or n2 is decreased, which results in the lack of the
condition of n1 � 1 or n2 � 1. Especially, for the case of
n1 > n2, because the FD is difficult to be made (see Eq. (11)),
the DRw could be reduced, as can be seen in Eq. (12). Now,
in order to maintain this optimum after a scaling of the SPT,
a scaling condition to keep n1 = n2 is discussed. Based on
Eq. (2), the Rfftr can be defined as,

Rfftr ≡ αtrR
ff
tr0. (13)

Here, the Rfftr0 is the rest channel resistance at the FF, which
is Rtr0 at VT = VT0. With this, Eqs. (6) and (9) can also be
rewritten as, respectively,

RL = n1αtrR
ff
tr0, (14)

Rfdtr = n1n2αtrR
ff
tr0. (15)

Also, the RL is individually defined as,

RL ≡ αLRL0, (16)

where the αL is a scaling factor of RL and RL0 is the rest load
resistance. With Eqs. (14) and (16), we set RL0 = n1R

ff
tr0 and

αtr = αL to maintain n1 = n2. Under these conditions, the
RL is determined as a geometric mean associated with Rtr for
two extreme synaptic states from Eqs. (13) to (16),

RL =
√
RfftrR

fd
tr . (17)

So, when the αL and αtr are changed to the same value, the RL
and Rtr are determined obtaining a wide DRw from Eq. (12).
And Eq. (17) is also satisfied. Accordingly, both the αL and
αtr should be equally increased to maintain an optimum state
in terms of the synaptic characteristics, thus the GOR.

D. GEOMETRICAL OPTIMIZATION RULE AND
POWER CONSUMPTION
As mentioned earlier, since the SPT consists of the Syn-Tr
and the load resistor, the increase of RL can reduce the power
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FIGURE 3. Current-voltage characteristics of the Syn-Tr at the full depression (FD) and the full facilitation (FF) for (a) αtr = 1, (b) αtr = 10, (c) αtr = 102,
(d) αtr = 103, and (e) αtr = 104 (αtr = αL ≡ α). The load resistance can be determined at each reference current level where n1 = n2 � 1, which satisfies
the GOR. Here, the off-current floor (Ioff ) is assumed to be 10−13 A.

consumption of the SPT. There are two kinds of the power
consumption of the SPT: a static-power consumption (Pstatic)
and a dynamic-power consumption (Pdyn). Here, the Pdyn is
negligible because it can be sufficiently smaller than Pstatic
by extending the rising and falling time of the programming-
pulse. So, it is important to reduce Pstatic, which is dominant
in the power consumption of the SPT. Here, since Pstatic =
V 2
I /(Rtr + RL), the maximum of Pstatic (Pmaxstatic) in the SPT is

expressed for Rtr � RL , as follows [27],

Pmaxstatic ≈
V 2
I

RL
. (18)

Thus, the increase of αL makes RL bigger, which results in
the decrease of Pmaxstatic as seen in Eq. (18). Here, according
to the proposed GOR, the αtr should be increased together
to keep the condition of αtr = αL for n1 = n2. This can
also keep an optimally large DRw. However, when only the
RL is increased, the αL is greater than αtr , thus n1 > n2 (see
Fig. 2(b)). For this case, the FD is difficult to bemade because
the wmin is hard to approach zero, which can be explained
with the decreased n2 (see Eq. (11)). So, based on Eq. (12),
the lack of the synaptic depression happens while the DRw
is smaller. To examine this and a low-power consumption
of the SPT scaled with the GOR, it is suggested to firstly
find a proper RL with the static characteristics of the Syn-Tr.
After finding a proper RL based on the GOR, the power
consumption and DRw of the scaled SPT can be analyzed
with the pulsed characteristics for the synaptic depression and
facilitation.

III. RESULTS AND DISCUSSION
A. METHODOLOGY
Based on the theoretical analysis on the GOR in the previous
section, a low-power consumption and wide DRw of the SPT
are expected to be achieved, as applying the GOR. To check
this, a static and pulsed characteristics of the SPT (i.e. a
combination of the Syn-Tr andRL) are shown in the following
Sections III-B and C. For this, the semiconductor device
simulation is performed with the SILVACOTM ATLASTM.
Here, based on the GOR, the αtr and αL are set to be the same
value, which is defined as a single scaling factor α(≡ αtr =
αL) for a convenience. As increasing α, the Rtr is scaled up
with the same rate as the RL . Besides αtr and αL , other device
properties are given in Ref. 26. As increasing the α, it is also
expected that the noise characteristics (e.g. a noise PSD) of
the SPT is varied. To verify this, the noise characteristics is
monitored.

With the extracted data for both the synaptic weight-update
and noise characteristics in the device level, when a SPT-array
composed of these SPTs is used as the AA, it is expected
that the performances (e.g. classification accuracy (CA))
of the AA are affected due to the variation of the noise
PSD. To check this, the 1w-w plot and classification accu-
racy are described in the following Section III-D. For this,
the AA simulation is performed using a resistive mem-
ory simulator, called the CrossSimTM of which the detailed
description is shown in the Supplementary Material (see
Section S1) [28]–[30]. Also, the descriptions with respect
to the validation of the proposed models (i.e. the SPT
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and AA) are shown in the Supplementary Material (see
Section S2).

B. STATIC CHARACTERISTICS OF THE SYN-TR
As seen with the graphical analysis in Fig. 2(a), to find the
value of RL which satisfies the condition of n1 = n2, the
static characteristics of the Syn-Tr needs to be analyzed.
In addition, to check whether this condition of n1 = n2 can
be maintained with applying the GOR, the current-voltage
characteristics is required to be monitored as scaling the
Syn-Tr. Hence, we show the transfer characteristics of each
Syn-Tr scaled up with αtr . Fig. 3 shows the I-V curves at the
FF and FDof the Syn-Tr, respectively, for five different values
ofαtr . Here, when theRL as the geometricmean ofRfftr andR

fd
tr

is determined with Eq. (17), the αtr and αL are to be the same
value, thus the GOR. As depicted in Fig. 3(a), for αtr = 1 as

a reference case, it is found that I ffD≈ 10−5 A and I fdD ≈ 10−9

A at V read
G = 0.2 V. With them, the level of I refD is chosen

as 10−7 A where n1 = n2 ≈ 102. With this, the equivalent
RL is calculated as 106� for VI = 0.1 V. This is because
RL ≡ VI/I

ref
D , which is also corresponding to the geometric

mean for Rfftr = 104� and Rfdtr = 108�, using Eq. (17). When
the value of this load resistor is set to the RL0, the αL becomes
unity, thus αL = αtr = 1. Based on this reference case, as
seen in Figs. 3(b)-(e), when the αtr is gradually scaled up

by a factor of 10, it is found that the level of I ffD and I fdD is
equally decreased tenfold. Meanwhile, the I refD is selected as
a level decreased tenfold, so the RL is increased with the rate
of αtr , which is found to satisfy αL = αtr with Eq. (16). It is
because the n1 and n2 are maintained as the same value of
102, approximately. This is also consistent with the geometric
mean of Rfftr and R

fd
tr for each case. These results indicate that

the αtr and αL are required to be increased equally to maintain
the synaptic characteristics, such as a DRw with the optimum
condition of n1 and n2.

C. PULSED CHARACTERISTICS OF THE SYN-TR
From the analysis on the static characteristics of the Syn-Tr,
it is expected that the DRw of the SPT is maintained, which
satisfies n1 = n2 ≈ 102 with the GOR. In addition, the
increase of both Rtr and RL based on the GOR can result in
the decrease of ID. So, it is expected that the Pstatic of the
SPT is reduced with the decrease of ID. To verify these DRw
and Pstatic, the pulsed characteristics for VO and ID of the
SPT needs to be monitored for the synaptic depression and
facilitation processes, respectively, depending on the polarity
and number of the programming-pulses.

For the synaptic depression, the positive programming-
pulses are applied with V prog

G = 8 V, V read
G = 0.2 V, and

pulse-width = 1 µs (see Fig. 4(a)). After 20 cycles of the
positive programming-pulses, it starts to apply the nega-
tive programming-pulses for the synaptic facilitation, where
V prog
G = −4 V, V read

G = 0.2 V, and pulse-width = 2 µs

FIGURE 4. (a) Waveform of the positive programming-pulses
(with V prog

G = 8 V and V read
G = 0.2 V) and negative programming-pulses

(with V prog
G = −4 V and V read

G = 0.2 V) for the synaptic depression and
facilitation, respectively. (b) Voltage output which appears on the load
resistor and (c) drain current of the SPT over 40 cycles of
programming-pulses for five different values of α. (d) The maximum static
power consumption as a function of α which is calculated with the
maximum output voltage (V max

O ) and maximum drain current (Imax
D )

indicated in (b) and (c), respectively.

(see Fig. 4(a)). Note that common specifications of the
programming-pulses are as follows, the duty cycle, rising
time, and falling time are 50 %, 10−7s, and 10−7s, respec-
tively. Fig. 4(b) shows theVO sampled atVG = V read

G for each
α, where the positive and negative programming-pulses are
repeated 20 times for the synaptic depression and facilitation
processes, respectively.
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As shown in Fig. 4(b), for α = 1 (reference case), it is
found that the VO is gradually decreased with applying the
positive programming-pulses for the synaptic depression,
approaching VO ≈ 0. It is because the Rtr is gradually
increased, which can be explained with Eqs. (1) and (3).
And the VO finally arrives at around zero, corresponding to
the FD as a synaptic state, because the Rtr is approximately
100 times larger compared to RL , suggesting n2 ≈ 102 (see
Eq. (3)). Afterward, for the synaptic facilitation, it is also
found that the VO is gradually increased with a series of nega-
tive programming-pulses. This is because the Rtr is gradually
decreased, which can also be explained with Eqs. (1) and
(3). After 20 cycles of negative programming-pulses for the
synaptic facilitation, the VO approaches the maximum value
(Vmax

O ) of VO (i.e. Vmax
O ≈ VI = 0.1 V), which corresponds to

the synaptic state of the FF. This is due to a relative dominance
between Rtr and RL (i.e. Rtr � RL), satisfying n1 ≈ 102 (see
Eq. (3)). As this reference case, although the α is increased
up to 104, it is shown that the trends of VO remain the same in
all cases of α. This is because both the Rtr and RL are equally
scaled up with α. It is consistent with Eq. (3) where the α is
canceled out.

Since it is expected that these increased Rtr and RL can lead
to the decrease of ID, the ID as another factor of Pstatic needs
to be monitored. Fig. 4(c) describes the ID also sampled at
VG = V read

G for the synaptic depression and facilitation pro-
cesses, respectively, for five different values of α. As seen in
Fig. 4(c), for the reference case (i.e. α = 1), it is found that the
ID decays with a series of the positive programming-pulses
for the synaptic depression. This is also because the Rtr is
gradually increasedwith the positively shiftedVT (i.e.1VT >
0), which is explained with Eq. (1) and ID = VI /(Rtr+RL) for
VI = 0.1 V. After the positive programming-pulses continued
for 20 cycles, the ID reaches the current level of 10−9 A,
which is two orders of magnitude smaller compared to its
maximum level (ImaxD ). This is because the Rtr is 100 times
larger compared to RL (i.e. n2 ≈ 102). Afterward, for the
synaptic facilitation, the ID is gradually increased with apply-
ing the negative programming-pulses, recovering to ImaxD . It is
because of the Rtr decreased gradually with a negative shift
(i.e. 1VT < 0) of VT , which is also explained with Eq. (1)
and ID = VI / α(Rtr + RL) for VI = 0.1 V. And the ID finally
arrives at ImaxD due to Rtr � RL , satisfying n1 ≈ 102. When
the α is increased by a factor of 10, it appears that the ID is
scaled down tenfold while maintaining the same trend as the
reference case. It is because the Rtr and RL are equally scaled
up with α, satisfying ID = VI / (Rtr + RL) for VI = 0.1 V
(see Eqs. (2) and (16)). Accordingly, as seen in Figs. 4(b)
and (c), since the VO is equally maintained for all cases of
α, it implies that the Pstatic can be reduced with the decrease
of ID. Here, as a maximum value of Pstatic, the Pmaxstatic can
be calculated as a product of Vmax

O and ImaxD at the FF for
each α, as shown in Fig. 4(d). For the reference case (i.e.
α = 1), as can be seen, it is found that the Pmaxstatic is about
10 nW, which is consistent with the calculation for RL =
106� and VI = 0.1 V (see Eq. (18)). When the α is increased

FIGURE 5. Synaptic weight versus the number of programming-pulses for
two cases of αtr = αL (with the GOR) and αtr = 1� αL (without applying
the GOR) under four different conditions of (a) αL = 10, (b) αL = 102,
(c) αL = 103, and (d) αL = 104. We apply the same number of pulses for
the synaptic depression and facilitation, respectively, considering the
symmetrical aspect of the weight-update.

by a factor of 10, as expected, the Pmaxstatic is reduced due to
ImaxD decreased with α, as shown in Fig. 4(c). This can also
be explained with Eq. (18). The increase of α leads to the
increased RL (see Eq. (16)), thus a reduction of Pmaxstatic for a
fixed VI . Note that the Pdyn is expected to be observed for the
synaptic depression and facilitation processes, respectively,
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FIGURE 6. PSD of the voltage noise extracted for the SPT scaled with five
different values of α.

FIGURE 7. Conceptual diagram of the n×m SPT-array (i.e. SPT-based AA)
constructed for the crossbar simulation. For every column of the
SPT-array, SPTs are connected with a single load resistor. Here, the
synaptic weight of each SPT (wnm) is varied with the nth input voltage
(VIn), nth gate voltage (VGn), and mth load resistance (RLm). The voltage
output for the mth column, which appears on each load resistor, is the
signal for the hidden layer (VHm) to be transferred toward the output
layer of the ANN.

due to the existence of the displacement current associated
with the voltage difference changed for a rising time and
falling time of the programming-pulse.

According to the trend of VO observed in Fig. 4(b), the w,
which is defined as VO/VI , is found to be fully depressed (i.e.
wmin ≈ wfd ) and fully facilitated (i.e. wmax ≈ wff ) regardless
of the increased α to reduce the power consumption of the
SPT. In other words, the DRw is expected to be wider than the
DRw for the case without applying the GOR. To clarify this,
the weight dynamics needs to be monitored for the compari-
son between SPTs scaled with the GOR and without applying
the GOR. Fig. 5 depicts the synaptic weight dynamics for two
cases of αtr = αL (i.e. with the GOR) and αtr = 1 � αL
(i.e. without applying the GOR), which is plotted for each αL .
Here, for the scaling based on the GOR, the w is calculated
with its definition (i.e. w ≡ VO / VI ) and the given input

voltage (i.e. VI = 0.1 V), as seen in Fig. 4(b). Similarly, for
the case without applying the GOR, the w is also extracted
from the VO over 40 cycles of programming-pulses.

As depicted in Fig. 5, the trends of w remain identical in
all the GOR-based cases, corresponding to the trends of VO,
as seen in Fig. 4(b). This appears due to the Rtr and RL scaled
up with the same rate of α, which can also be explained with
Eq. (4) where all scaling factors are canceled out. Further, it is
found that the DRw is maintained as 112, which is calculated
with Eq. (12). This is because the optimum condition of
n1 = n2 ≈ 102 is always satisfied with the GOR, as shown in
Fig. 3. On the other hand, for the cases of αtr = 1 � αL ,
it is also found that the DRw is reduced with the increase
of αL . As mentioned earlier, since the product of n1 and n2
is constant, the n1 increases and n2 decreases when only αL
is increased for a fixed αtr (i.e. αtr = 1). Then, the wmin is
very difficult to be zero due to the decreased n2, which is
explained with Eq. (11). In this respect, the DRw is reduced
(see Eq. (12)), approaching 1+n2 with the increase of n1 and
decrease of n2. Note that, for the case of αtr = 1 � αL , the
wmax is easy to be almost unity because of n1 which is larger
compared to n2. And this can also be explained with Eq. (8).
Consequently, it is verified that the DRw can be maintained

as a relatively large value of 112 while achieving a low-power
consumption of the SPT when both the Rtr and RL are scaled
up with applying the GOR.

D. CLASSIFICATION ACCURACY OF THE SPT-ARRAY AS
THE ANALOG ACCELERATOR
When the α is increased, the Pstatic is reduced due to the
increase of Rtr and RL while maintaining a wide DRw of
112 for wmin ≈ wfd and wmax≈wff . However, it is expected
that the increased Rtr and RL can lead to a higher PSD of the
voltage noise (e.g. a thermal noise and flicker noise) for the
SPT scaled with the GOR. Indeed, as shown in Fig. 6, when
the α increases, it is found that the PSD of the voltage noise
is gradually increased with the rate of α. This is because the
thermal noise, which is a dominant noise source in the SPT,
is proportional to the Rtr and RL [31].

When a SPT-array composed of these SPTs (see Fig. 7)
is used as the AA based on the MLP structure seen in
Fig. 1(a), it is expected that the increased noise PSD of
each SPT can result in the degradation of performances,
such as a classification accuracy (CA), in the AA. To verify
this, it is required to firstly monitor the weight-update of
the SPT-array based on the noise characteristics shown in
Fig. 6. Fig. 8 shows the weight-update of the SPT-array with
color maps of the cumulative distribution function (CDF) for
five different values of α. The CDF distribution illustrated
in Figs. 8(a) and (b) represents the probabilistic change of
w with respect to a given synaptic state for each synap-
tic process (e.g. a synaptic depression and facilitation).
Here, 1w is defined as a difference between wn and wn−1
where the wn is w after applying the nth programming-
pulse and wn−1 is w before applying the nth programming-
pulse. These are extracted based on the weight dynamics
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FIGURE 8. 1w vs w plots for (a) the synaptic depression and (b) synaptic facilitation for each α shown with the cumulative distribution function (CDF) of
the probabilistic change in w . Here, 20 cycles of the programming-pulses are applied to arrayed SPTs for the synaptic depression and facilitation,
respectively.

FIGURE 9. Classification accuracies of the SPT-array based AA versus
training epochs for each α. In the inset, the comparison table of average
classification accuracies for different values of α is shown. Here, the
classification task is tested for the MNIST.

and noise PSD shown in Figs. 5 and 6, respectively, with a
resistive memory simulator, called the CrossSimTM. As seen
in Fig. 8(a) and (b), the variability of 1w becomes greater
with the increase of α for the synaptic depression and facili-
tation, respectively. It is because of the increased noise PSD
of each scaled SPT, as depicted in Fig. 6. This implies that
the weight-update can be less predictable for the SPT-array
scaled with the increased α compared to the reference case.
These results also suggest that the training for the classifica-
tion task may bemore disturbed with the increased noise PSD
of scaled SPTs, leading to a decrease of CA in the AA.

To clearly check the relation between the CA of the
SPT-array and noise PSD of a single SPT, the CA with
respect to the weight-update shown in Fig. 8 also needs to
be monitored with a standard dataset, the MNIST [32], [33].
Fig. 9 describes the CA for the MNIST classification task
which is tested for the SPT-array composed of SPTs scaled
with five different cases of α. When the α is gradually scaled
up by powers of 10, as can be seen, an average value of
the CA extracted for 40 epochs is slightly reduced from

91.32 % to 91.04 %, as increasing α. This is because the
noise PSD increased with α can reduce the signal to noise
ratio (SNR) which is inversely proportional to the noise
PSD [31]. In addition, since it is known that the CA is
proportional to the SNR, the decreased SNR can lead to a
reduction of the CA [34]–[36].

Consequently, these results indicate that the power con-
sumption of a single SPT is reduced while maintaining a rel-
atively wide DRw due to the increased Rtr and RL . However,
since the noise characteristics of the SPT is degraded by the
increase of total resistance, the CA of the AA, where SPTs
are arrayed, is decreased, thus a trade-off relation between the
power consumption and CA in the AA. In addition, in terms
of a scaling of the semiconductor device, the SPT is scaled
down with the GOR where both Wch and RL are considered
for maintaining DRw and satisfying a low power operation.
This is expected that the level of integration would be high,
thus a high-level intelligence.

IV. CONCLUSION
In this article, the simulation framework on the GOR has been
presented for a low-power SPT which is the Syn-Tr in series
with the load resistor scaled with respect to the geometrical
ratio between the channel length and width of the Syn-Tr.
It has been shown that the synaptic characteristics, such as
the DRw between the fully-facilitated and fully-depressed
weights, can be varied due to the simply-increased load resis-
tance of the SPT for a low-power consumption. To optimize
this, the GOR has been suggested, allowing the DRw to
remain constant by equally increasing the channel geomet-
rical ratio and scaling factor of the load resistance. Here,
it has been found that the load resistance can be determined
as a geometric mean with respect to extreme states of the
synaptic full facilitation and full depression. To substantiate
the GOR, the results of the semiconductor device simulation
have been analyzed for the static and pulsed characteristics
of the scaled SPT. From the SPT scaled with the GOR,
it has been found that the low-power operation of the SPT
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can be achieved due to a reduced operating current at the
read voltage while maintaining the maximum DRw of 112.
As a trade-off relation, however, it has been also found that a
higher noise PSD appears due to the increase of the thermal
noise which is proportional to the total resistance of the
scaled SPT. Additionally, to check the influence of this scaled
SPT on the performance of the AA based on the SPT-array,
the weight-update and classification task against the MNIST
have been simulated. From the crossbar simulation, it has
been found that the classification accuracy of this AA is
decreased due to the increase of the noise PSD in the scaled
SPTs. Here, the power consumption over the SPT-array as
the AA can be reduced due to the decreased static-power
consumption of a single SPT, thus a trade-off relation between
the power consumption and classification accuracy in the AA
based on the SPT-array. Consequently, when SPTs are scaled
down for a high-level integration associated with the level of
intelligence which is proportional to the number of synaptic
devices, it can be believed that the GOR would be essential
for the semiconductor device scaling, maintaining DRw and
achieving a low power consumption.
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