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ABSTRACT Cooperative networks integrating non-orthogonal multiple access (NOMA) and simultaneous
wireless information power transfer (SWIPT) are emerging technologies that have been investigated as
potential techniques to support the proliferation of the Internet of Things (IoT) and to obtain greener
communications. In this sense, the optimization of resource allocation schemes is crucial to improve the
performance of future cooperative wireless networks. However, conventional optimization methods that
attempt to find the optimal solution may entail high computational complexity. Therefore, we propose a
low-complexity particle swarm optimization (PSO)-based scheme to solve the resource allocation problem
in a cooperative non-linear SWIPT-enabled NOMA system with a non-linear energy harvesting (EH) user.
Specifically, we consider two optimization problems. First, we minimize transmission power, and second,
we maximize energy efficiency subject to meeting quality-of-service (QoS) constraints. The problems
are non-convex and challenging to solve. Furthermore, we develop the optimal solution based on convex
optimization and the exhaustive search (ES) method to validate the results of the proposed PSO-based
framework. Afterward, we investigate the performance of five swarm intelligence-based baseline schemes
and evaluate an additional low-complexity solution based on the cuckoo search (CS) technique. For
comparison purposes, we use orthogonal multiple access (OMA), equal power splitting (EPS), and time
fixed (TF) baseline schemes. To our satisfaction, the proposed SWIPT NOMA network outperforms the
benchmark schemes, and the proposed PSO-based framework achieves the nearest performance to the
optimal scheme with lower complexity than obtained by the comparative swarm intelligence techniques
and from convex optimization with the ES method.

INDEX TERMS Cuckoo search, non-linear simultaneous wireless information power transfer, non-
orthogonal multiple access, particle swarm optimization, resource allocation.

I. INTRODUCTION
Currently, the limited spectrum and energy resource uti-
lization problem is one of the main concerns for the
development of future wireless technologies that permit
proliferation of the Internet of Things (IoT), device-to-device
(D2D) communications, spectrum sharing, massive machine-
type communications, and so on [1]. To enhance spectrum
efficiency, non-orthogonal multiple access (NOMA) is an
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emerging technique enabling multiple users to share the same
time–frequency resource block. NOMA can be classified
into power and code domains. In this paper, we focus on
power-domain NOMA where the transmitter sends all the
messages of the users by utilizing different power levels
for each user in accordance with their channel conditions,
i.e., the messages of users with weaker channel conditions
are transmitted with more power than messages of users
with stronger channel conditions. At the receiver, users with
better channel conditions perform successive interference
cancellation (SIC) to remove interference caused by users
with stronger channel conditions, and users with the weakest
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channel conditions decode messages by treating the other
messages as noise [2].

Moreover, efficient energy harvesting (EH) techniques
have been investigated to improve energy efficiency in
limited-processing-power and low-power energy-constrained
communication networks, such as wireless body area net-
works, IoT devices, and wireless sensor networks [3]–[6].
Particularly with small communication devices, one of the
main challenges is to autonomously maintain connectivity
and maximize network lifetime. In this regard, the radio
frequency (RF) EH technique is capable of receiving RF
signals and converting them to electricity to extend the
battery lifetime of communications devices and avoid wasted
power [7]. Indeed, through the application of EH technology,
conventional batteries can be eliminated, which entails cost
reductions, eliminating wires, and promoting environmen-
tally friendly technologies [8]. One main application of the
RF-EH technique is simultaneous wireless information and
power transfer (SWIPT). SWIPT technology allows users to
receive information and harvest energy from the received RF
signal at the same time [9]. SWIPT appears to be a powerful
technique, providing energy-efficient green communications,
especially in emergency situations. For instance, in [10],
SWIPT was integrated into a device-to-device (D2D) system
to assist natural disaster communications where replacing or
recharging batteries is a critical issue.

Among the benefits of SWIPT is prolonging the life-
time of energy-constrained networks since SWIPT users
can serve as cooperative relays to edge nodes. Further-
more, SWIPT-enabled NOMA systems have demonstrated
meaningful yields over the conventional orthogonal mul-
tiple access (OMA) scheme in terms of spectral effi-
ciency [11], energy efficiency [11]–[13], power consump-
tion [7], [14], [15], and secrecy sum rate [16]. For instance,
the authors in [11], [12], and [17] maximized energy
efficiency in NOMA SWIPT systems subject to the quality of
service (QoS) by utilizing analytical approaches. The results
showed that SWIPT-enabled NOMA systems satisfactorily
outperformed the conventional OMA. Moreover, energy-
saving designs are crucial to establishing eco-friendly
communication systems. Therefore, optimization problems
have been addressed to minimize the power in wireless
networks [7], [15]. In this sense, Luo et al. [7] designed
a deep learning scheme to find an approximately optimal
solution for minimizing total transmission power in a SWIPT
NOMA network. Garcia et al. derived a closed-form solution
to minimize the total transmission power of a cooperative
system aided by a collaborative SWIPT user [15]. The
outcomes of these studies verified the superiority of NOMA
over baseline multiple access schemes. It is worth noting
that not one of the previous articles considered non-linear
EH, which greatly increases the difficulty in solving the
optimization problem due to coupled variables involved in
problem resolution.

To suitably design a SWIPT system, a fundamental
requirement is to accurately model the EH circuit that

allows transforming the received RF signal into a direct
current (DC) signal. Although the employment of linear
EH models still prevails in most of the literature, recent
investigations have highlighted the importance of including
realistic models of EH circuits in the analysis of communica-
tions systems [18], [19]. Indeed, practical EH reveals a non-
linear relation between the stored energy and the received
RF power because of physical impairments, such as non-
ideal energy conversion efficiency, storage imperfections,
non-linear circuits, etc. [20], [21]. Consequently, to leverage
the advantages of SWIPT and acquire more-accurate results,
the application of realistic EH models must be integrated into
wireless SWIPT systems.

Although nonlinear EH models consider a more realistic
environment, reluctance to adopt them still exists because
of the complexity in solving the optimization problems.
Conventional optimization methods attempting to find the
optimal solution may entail high computational complexity,
and a closed-form solution is inflexible to change since
it needs to be reformulated after a change in the net-
work [15]. Therefore, the metaheuristic branch of artificial
intelligence (AI) algorithms has opened doors to dealing with
complex computational problems. Metaheuristics generate
possible solutions to optimization problems and select the
best one with low complexity and high accuracy. Overall,
the most popular metaheuristic algorithms in the fields of
science and engineering include the genetic algorithm [22],
the cuckoo search (CS) [23], and particle swarm optimization
(PSO) [24]. For instance,Mohiz et al. [23] discussed different
metaheuristic algorithms and identified which ones work the
best to optimize the placement of tasks for network-on-chip
cores. The paper concluded that CS is more suitable for
placement with a low computational overhead. Moreover,
hybrid schemes have been developed by combining two or
more characteristics of the original metaheuristic algorithms
to enhance optimization results [25].

Motivated by the advantages provided by metaheuristic
algorithms for solving complex optimization problems, this
paper investigates the application of swarm intelligence
schemes for solving resource allocation optimization prob-
lems in a nonlinear SWIPT NOMA green communication
system. Among them, we propose the PSO-based scheme
as a potential solution that achieves high accuracy with low
complexity. To evaluate the performance of the proposed
network even further, we formulated two different optimiza-
tion problems: power transmission minimization and energy
efficiencymaximization. Themain contributions of this paper
can be summarized as follows.
• The goal is to optimize total transmission power and
energy efficiency in a cooperative, non-linear, SWIPT-
enabled NOMA system with a non-linear EH user
while satisfying the constraints on minimum data
rates, minimum harvested energy at the terminal, time
fraction, and power splitting ratio range.

• The optimization problems considered are non-convex
involving joint optimization of the time transmission
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fraction, power-splitting ratio, and power allocation
and are thus difficult to solve directly. To tackle
this issue, we propose a low-computational-complexity
scheme based on PSO. Moreover, we compare the
performance of five swarm intelligence-based baseline
schemes and develop a low-complexity solution based
on CS [26]–[28]. To validate the performance of the pro-
posed PSO scheme, we provide an analytical approach
based on convex optimization with the exhaustive
search (ES) method, denoted as CVX+ES.

• Furthermore, we analyze the effect from linearity of
EH on the transmit power and energy efficiency of the
proposed scheme (SWIPT NOMA cooperative commu-
nication optimizing the power variables, time factor,
and the power-splitting ratio) and the following baseline
schemes: SWIPT NOMA cooperative communication
with a time fixed (TF) scheme, and SWIPT NOMA
cooperative communication with equal power splitting
(EPS). Moreover, we investigate the conventional OMA
baseline scheme for comparison purposes. To our
satisfaction, simulation results demonstrated that the
proposed cooperative non-linear SWIPT-NOMA system
reduces more transmission power and can obtain higher
energy efficiency than the benchmark schemes.

• Numerical results show that the outcomes obtained by
PSO reach near-optimal performance, compared to those
obtained by optimal (but time- and energy-consuming)
convex optimization with the ES method [27]. In addi-
tion, we provide a complexity comparison between the
optimal scheme (CVX+ES) and the swarm intelligence
schemes in terms of computation time. Thus, we val-
idated PSO as achieving convergence faster than the
CS-based framework and with less computational time.

The rest of the paper is organized as follows. The
system model is described in Section II. In Section III,
we formulate the optimization problems of total transmission
power minimization and energy efficiencymaximization, and
we present the proposed PSO-based solution and comparison
approaches. Finally, numerical results and the conclusion are
presented in Section IV and Section V, respectively.

II. SYSTEM MODEL
We propose a cooperative, non-linear, SWIP-enabled NOMA
system composed of three users and one transmitter, as shown
in Figure 1, where all nodes have one single antenna.
Moreover, the user close to the transmitter, denoted by u2, acts
as a cooperative decode-and-forward (DF) relay that provides
SWIPT to aid a distant user, u1, to receive messages. Assume
there is no direct transmission link between the transmitter
and distant user u1 because of the shadowing effect and
obstacles. User 3 acts as a non-linear RF EH user (denoted
by u3) capable of providing an alternative power supply for
electronic devices where conventional energy sources are
costly or difficult to implement because of remote locations,
areas of catastrophic damage, or toxic environments.

FIGURE 1. Cooperative non-linear SWIPT-enabled NOMA system.

FIGURE 2. Frame structure of the considered cooperative non-linear
SWIPT enabled NOMA system.

A transmission is completed in two phases, as shown
in Figure 2. In the first phase, the transmitter performs
superposition coding according to the NOMA principles by
sending the messages of u1 and u2 to nearby user u2, while u3
extracts RF power by receiving the superimposed signal from
the transmitter. In the second phase, u2 forwards message
1 to u1 by utilizing the stored energy obtained during the first
phase. More details on the first and second phases are in the
following subsections.

A. FIRST PHASE
In the first phase, the transmitter conveys a superimposed
signal denoted by x, x = m1x1+m2x2, where x1, x2 ∈ C are
the independent and identically distributed (i.i.d) messages
for u1 and u2, respectively. Moreover, the transmitted symbol
is normalized as E

(
|x1|2

)
= E

(
|x2|2

)
= 1, and the

power variables are denoted by m1 and m2, for u1 and u2,
respectively. At the receiver, u2 provides SWIPT by dividing
the superimposed received signal into two parts according to
power-splitting ratio α, one for information decoding and the
other for energy harvesting. Accordingly, the received signal
for information decoding at u2 can be given by

y(1)2 =
√
1− αk̃2 (m1x1 + m2x2)+ z

(1)
2 , (1)

where k̃2 is the channel coefficient between the transmitter
and user 2, z(1)2 ∼ CN

(
0, σ 2

2

)
is the additive white gaussian

noise (AWGN), and α ∈ (0, 1) is the power-splitting ratio.
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In accordance with NOMA principles, since u2 has the
strongest channel conditions, it employs SIC to first decode
the message of u1 and then subtracts this message from
the received signal to decode its message, x2, without
interference. Consequently, the signal-to-interference-plus-
noise ratio (SINR) of u2 when decoding message 1, x1, is
described in equation (2), and the signal-to-noise ratio (SNR)
of u2 when decoding its own message, x2, is equation (3):

SINR(1)2,x1
=

(1− α) k2m2
1

(1− α) k2m2
2 + σ

2
2

, (2)

where k2 =
∣∣k̃2∣∣2,

SNR(1)2,x2
=
(1− α) k2m2

2

σ 2
2

. (3)

Hence, the rate for the distant user’s data and the rate for
the nearby user’s data at u2 can be given by (4) and (5),
respectively:

R(1)x1,u2 = τ log2
(
1+ SINR(1)2,x1

)
, (4)

and

Ru2 = τ log2
(
1+ SNR(1)2,x2

)
, (5)

where τ ∈ (0, 1) is the transmission time fraction for the first
phase.

Furthermore, in the theoretical linear model of an EH
circuit, the users harvest all the power of the incoming signal.
For instance, the linear model of the energy harvested by u2
can be written as:

Eh(1)2_linear = τηαk2
(
m2
1 + m

2
2

)
, (6)

where η is the energy harvesting efficiency. However, the
practical non-linear EH model is given by the logistic
function that includes the saturated harvested power and
circuit specifications. Therefore, the energy stored by u2
follows the nonlinear EH model in [9], and can be calculated
as follows:

Eh(1)2 = τ
ψu2 − L�
1−�

, (7)

where � =
1

1+exp(ab) and ψu2 =
L

1+exp
(
−a
(
pintu2−b

)) ,
in which pintu2 denotes the input power. In this case, pintu2 =
αk2

(
m2
1 + m

2
2

)
. L is a constant that sets the maximum

harvested power at the EH receiver when the EH circuit is
saturated. Parameters a and b are constants depending on
the detailed circuit specifications, for example, capacitance,
resistance, and diode turn-on voltage. We consider the values
adopted in [9], which are L = 3.9mW , a = 1500, and b =
0.0022. For simplicity, we assume the energy stored by user
2 is only utilized for transmitting information to user 1, and
energy consumption for signal processing and maintaining
the circuit can be ignored [12]. Therefore, the transmit power
at user 2 can be given by

Psw =
Eh(1)2

1− τ
. (8)

Finally, the energy harvested by u3 utilizes the nonlinear
EH model described in [9] and can be expressed by

Eh(1)3 = τ
ψu3 − L�
1−�

. (9)

Here, ψu3 =
L

1+exp
(
−a
(
pintu3−b

)) , and pintu3 =

|ẽ|2
(
m2
1 + m

2
2

)
, where ẽ is the channel coefficient from the

transmitter to user 3. Note that the ideal linear EH model for
u3 can be expressed as

Eh(1)3_linear = τη|ẽ|
2
(
m2
1 + m

2
2

)
. (10)

B. SECOND PHASE
In this phase, nearby user u2 utilizes its stored energy to
forward message x1 to u1. Thus, the received signal at u1 is

y(2)1 =
√
Psw̃f x1 + z

(2)
1 , (11)

where f̃ is the channel coefficient from u2 to u1, and z
(2)
1 ∼

CN
(
0, σ 2

1

)
is AWGN at u1. Then, the SNR to decode x1 is

expressed by

SNR(2)1,x1
=

Psw
∣∣∣f̃ ∣∣∣2
σ 2
1

=
Eh(1)2 · f

(1− τ)
, (12)

where f =

∣∣∣f̃ ∣∣∣2
σ 21
. Then, the rate for the distant user’s data at u1

can be written as seen in (13):

R(2)x1,u1 = (1− τ) log2
(
1+ SNR(2)1,x1

)
. (13)

III. PROBLEM FORMULATION AND SOLUTION
A. TRANSMISSION POWER OPTIMIZATION PROBLEM
In this problem, we aim to minimize the total transmission
power of the cooperative non-linear SWIPT-enabled NOMA
system with a nonlinear EH user by jointly optimizing the
transmission time fraction, τ, the power-splitting ratio, α, and
power allocation variables m2

1 and m2
2 while satisfying the

QoS constraints from all users. For simplicity, let us define
m2
1 = p1 andm2

2 = p2. Then, the resource allocation problem
to minimize the total transmission power is equivalent to the
minimization of p1+p2, which can be formulated as follows:

min
p1,p2,τ,α

p1 + p2 (14a)

s.t. τ log2

(
1+

(1− α) k2p1
(1− α) k2p2 + σ

2
2

)
≥ γ1, (14b)

(1− τ) log2

(
1+ f τ

ψu2 − L�
(1−�) (1− τ)

)
≥γ1 (14c)

τ log2

(
1+

(1− α) k2p2
σ 2
2

)
≥ γ2, (14d)

τ
ψu3 − L�
1−�

≥ φ, (14e)

p1 + p2 ≤ Pmax (14f)
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0 < α < 1, (14g)

0 < τ < 1, (14h)

where (14b) and (14c) guarantee that the rate of distant-
user data at u2 and u1, respectively, can reach the minimum
rate requirement constraint, γ1. Equation (14d) corresponds
to the minimum rate constraint for u2, in which γ2 denotes
the minimum rate target. Equation (14e) corresponds to the
minimum harvested power constraint for u3, in which φ
denotes the minimum harvested power requirement. Con-
straint (14f) guarantees that the power to transmit message
1 and message 2 does not exceed the maximum available
power at the transmitter. Constraint (14g) indicates that the
power splitting ratio, α, is between 0 and 1. Constraint (14h)
points out that the time factor, τ, is between 0 and 1.

We can see that this problem is non-convex because of
constraints (14b) to (14e). Specifically, (14b) is non-convex
due to coupled power allocation variables p1 and p2, power-
splitting ratio α, and time fraction τ . Moreover, (14c) is
non-convex due to the coupled fraction time, τ, and due
to ψu2 , which is challenging because ψu2 involves the sum
of the power allocation variables p1 and p2 multiplied by
power splitting ratio α. Similarly, constraint (14e) is non-
convex due to the coupled fraction time, τ, and ψu3 . In
(14e), ψu3 involves the sum of the power allocation variables
p1 and p2. Thus, optimization problem (14) is difficult to
solve directly. Conventional optimization techniques and ES
methods are used to solve resource allocation problems when
searching for the optimal solution. However, these techniques
involve high complexity due to a high computational load
that entails undesired delays in updating the optimal solution.
Moreover, if an additional element is involved in the
network, a closed-form solution should be reformulated.
Therefore, we investigate low-complexity solutions to solve
the proposed resource allocation problems more efficiently
with much lower complexity and without degrading the
network performance. We particular studied the potential
PSO framework to obtain a low-complexity solution in
the proposed cooperative non-linear SWIPT-enabled NOMA
system. Moreover, we investigated CS and CVX+ES-
based frameworks for comparison purposes. In addition,
we considered two baseline schemes based on an EPS ratio
and a TF scheme.

1) ANALYTICAL SOLUTION FOR TRANSMISSION POWER
MINIMIZATION
Since problem (14) is non-convex and cannot be directly
solved, let us fix the value of variable τ for any given τ ∈
(0, 1) to transform non-convex optimization problem (14).
Then, after some derivations, problem (14) is transformed
into a convex problem as follows:

min
p1,p2,α

p1 + p2 (15a)

s.t. νu1,2k2p2 +
νu1,2σ

2
2

(1− α)
− k2p1 ≤ 0, (15b)

κu2

α
− k2 (p1 + p2) ≤ 0, (15c)

νu2σ
2
2

(1− α)
− k2p2 ≤ 0, (15d)

κu3 − |ẽ|
2 (p1 + p2) ≤ 0, (15e)

p1 + p2 ≤ Pmax (15f)

0 < α < 1, (15g)

where νu1,2 =
(
2
γ1
τ − 1

)
, νu2 =

(
2
γ2
τ − 1

)
, κu3 = b −

1
a ln

(
L

L�+(1−�) φτ
− 1

)
, κu2 = b− 1

a ln
(

L
L�+(1−�)χu2

− 1
)
,

χu2 =
νu1,1(1−τ)

f τ , and νu1,1 =
(
2
γ1
1−τ − 1

)
.

Problem (15) is convex and can be solved by the CVX
toolbox in MATLAB [34]. The optimal value of τ is obtained
with a one-dimensional ES method. For each candidate value
of τ , problem (15) needs to be solved to evaluate the objective
function. The ES method gives the optimal value of τ but
entails high computational complexity. Then, this method can
be considered the optimal solution for comparative analysis.
In addition, a near-optimal value of τ can be obtained by
using metaheuristic methods, such as PSO or CS, to reduce
the load computational complexity. Therefore, in Subsection
III.A.2 and Subsection III.A.3, we propose PSO and CS-
based approaches for transmission power minimization.

2) PROPOSED PSO-BASED FRAMEWORK FOR
TRANSMISSION POWER MINIMIZATION
PSO is a potential optimization scheme based on a population
called the swarm, which is composed of particles that move
together in a search space, with the objective being to find the
optimal solution. Each particle contains the variables to be
optimized, and its position is updated each iteration towards
the local and global best positions. The global best position
indicates the position in which a particle has reached the
best yield in the population, whereas the local best position
indicates the position in which the particle has reached its
own best yield so far. In this paper, each particle position is
denoted by qr , which is a vector of four elements (p1, p2, α,
and τ ) that correspond to the set of variables to be optimized,
and it can be written as follows:

qr =
{
qp1,r , qp2,r , qα,r , qτ,r

}
, (16)

where r = 1, 2, 3, . . . ,Rp, in which Rp denotes the
number of particles in the swarm. Moreover, the feasible
search region for each element of the particle’s position,
qp1,r , qp2,r , is denoted as [0,Pmax] , where Pmax is the
maximum transmission power at the transmitter. The search
region for the particle’s position, qα,r and qτ,r , is the range
(0, 1) .

Since proposed problem (14) is a constrained optimization
problem, a method to deal with constraints is required.
Therefore, we utilize the penalty method, where fitness
function f (qr ) = f (p1, p2, α, τ ) is based on the objective
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function of problem (14) as follows:

f (qr ) = p1 + p2 + ς
4∑
i=1

ξ (gi), (17)

where ς is the penalty value, gi is the i-th constraint of
problem (14), and ξ (gi) = 0 if gi is satisfied, whereas
ξ (gi) = 1, otherwise. If all constraints are satisfied, f (qr )
is the objective function without penalty.

Furthermore, the search strategy to find the optimal
solution is based on updating each particle’s velocity and
position. Based on [15], the velocities of the particles are
updated as follows:

vt+1r = Inetvtr + j1c1
(
lbtr − qtr

)
+ j2c2

(
gbt − qtr

)
, (18)

where Inet denotes the inertia weight for the velocity update,
vtr is the velocity of the r-th particle in the t-th iteration, lbtr
denotes the local best position of the r-th particle, qtr denotes
the position of the r-th particle in the t-th iteration, and gbt

denotes the global best position of all particles in the t-th
iteration; j1 and j2 are random numbers between 0 and 1, and
c1 and c2 are the cognitive and social parameters, respectively.
Then, to update the r-th particle’s position for each of

the elements described in (16), the previous particle position
plus the updated velocity indicated in (18) are considered as
follows:

qt+1r = qtr + vt+1r . (19)

The procedure of the proposed PSO-based algorithm in
solving the power minimization problem (14) is described in
Algorithm 1, where the input parameters correspond to the
maximum transmission power at the transmitter, Pmax

; the
target rate of user 1, γ1; the target rate value of user 2, γ2;
the minimum energy harvesting at user 3, φ; the maximum
number of iterations, denoted by I totalPSO ; the number of
particles, R; the inertia weight for the velocity update, Ine;
random numbers j1, j2, and cognitive and social parameters
c1 and c2. Moreover, the initial global best position is
allocated in accordance with the objective function, wherein
this paper the initial gb selects the minimum objective value
from among all the initial particle positions.

Moreover, the computational complexity of PSO is based
on the number of particles, Rp, and the total number
of iterations, I totalPSO [30]. Thus, the total complexity of the
proposed PSO scheme is O

(
Rp · I totalPSO

)
.

3) CS-BASED FRAMEWORK WITH LÉVY FLIGHTS FOR
TRANSMISSION POWER MINIMIZATION
The CS algorithm was inspired by the brood parasitism of the
cuckoo species, laying their eggs in the nests of other birds.
However, when a host bird realizes the eggs are not its own,
it will either leave its nest and build a new one or push the
intruding cuckoo’s eggs out of the nest. This action can be
represented by probability pa ∈ [0, 1].
Some cuckoo species are able to mimic the pattern and

color of the eggs of a few select host species. This is a key

Algorithm 1 The Proposed PSO-Based Algorithm to Solve
Problem (14)
1: Establish the input parameters of PSO.
2: Set iteration counter t = 1.
3: Initialize particle positions that are randomly selected

according to the feasible search region [0,Pmax] ,
and (0, 1) . qt =

{(
qtp1,1, q

t
p2,1

, qtα,1, q
t
τ,1

)
, . . . ,(

qtp1,Rp , q
t
p2,Rp

, qtα,Rp , q
t
τ,Rp

)}
4: Initialize the particles’ velocities: vt =

(
vt1, v

t
2, . . . , v

t
r
)

5: Calculate minimum transmission power f
(
qtr
)
by evalu-

ating (17) for each r-th particle.
6: Set the initial best particles’ positions, ∀r .

lbtr = qtr .
7: Set the initial global best position,

gbt = argmin
1≤r≤Rp

f
(
lbtr
)
.

8: For each particle r do
9: From (18), update the particles’ velocities.
10: From (19), update the particles’ positions.
11: Update the best particles’ positions,

if f
(
qt+1r

)
< f

(
lbtr
)
then

lbt+1r = qt+1r
else

lbt+1r = lbtr
end if

12: end for
13: Update the global best particles’ positions,

gbt+1 = argmin
1≤r≤Rp

f
(
lbt+1r

)
.

14: if t < I totalPSO , then
t = t + 1 and go to Step 8

else
go to Step 15

end if
15: Return: the best values of resource allocation variables,{

p∗1, p
∗

2, α
∗, τ ∗

}
= gb, to obtain the minimum value of

total transmission power indicated in problem (14).

feature that increases cuckoo chick reproduction and prevents
them from being abandoned. Overall, the advantage is that
the cuckoo eggs hatch slightly earlier than the host eggs, and
once the first cuckoo chick emerges, its first act is to dislodge
the host species’ eggs. This increases its access to feeding
opportunities [31].

The main idea is that each egg in a nest represents a
solution, and the nests with high-quality eggs, i.e., those
with potentially the best solutions, will replace a not-so-
good solution in the nest and will be carried over to the next
generation. In this paper, we assume each nest has one egg.

Then, each egg is a vector of four elements, p1, p2,
α, and τ , that are the variables to be optimized, qn ={
p1,n, p2,n, αn, τn

}
, where n = 1, 2, 3, . . . ,N , in which

N denotes the number of nests. Similar to equation (17),
indicated in the PSO-based algorithm, we use a penalty
function to deal with constraints, as follows:

f (qn) = p1 + p2 + ς
4∑
i=1

ξ (gi). (20)
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Then, each solution, f (qn), is based on the objective
function of problem (14), which aims to minimize total
transmission power. After that, the generation of new
solutions is carried out by Lévy flights [19-21]. For instance,
the procedure in Lévy flights to generate a new solution for
power allocation variable p1 can be expressed as follows:

pt,new1 = pt1 + R · β · L (s, λ)
(
pt1 − p

t
1,g

)
, (21)

where R is random numberN (0, 1), pt1,g is the nest with the

best fitness function, L (s, λ) = λ0(λ) sin(πλ/2)
π

1
s1+λ

, β > 0 is
the step size, and factor 1 < λ ≤ 3 we consider to have a
value of λ = 3/2. Parameter s denotes the step length based
on Mantegna’s algorithm [32], and it can be calculated by

s =
u

|υ|1/β
, (22)

where u ∼ N
(
0, σ 2

u
)
, υ ∼ N

(
0, σ 2

υ

)
, σ 2

u ={
0(1+λ) sin(πλ/2)
0[(1+λ)/2]λ2(λ−1)/2

}
, σ 2

υ = 1.
Similarly, the process to compute the new solution for

power allocation variables p2, α, and τ can be written as

pt,new2 = pt2 + R · β · L (s, λ)
(
pt2 − p

t
2,g

)
, (23)

αt,new = αt + R · β · L (s, λ)
(
αt − αtg

)
, (24)

and

τ t,new = τ t + R · β · L (s, λ)
(
τ t − τ tg

)
. (25)

For simplicity, we denote that qtg =
{
pt1,g, p

t
2,g, α

t
g, τ

t
g

}
.

It is worth mentioning that in this paper, we implement
an improved CS version described in [26]. In the con-
ventional CS algorithm, the probability, pa, and the step
size, β, are fixed parameters. However, fine-tuning these
parameters can be essential to enhancing the convergence
rate and the performance of the algorithm. Therefore,
we implemented the improved CS version, which dynami-
cally changed the parameters, pa and β, based on the number
of generations. Accordingly, probability pa was modified
as follows:

pa = pmax
a −

t

I totalCS

(
pmax
a − pmin

a

)
, (26)

where t denotes the current iteration, and I totalCS denotes
the total number of iterations. According to the experiment
results, we consider pmax

a = 0.5, and pmin
a = 0.25.

Moreover, step size parameter β is modified as follows:

β = βmax exp (q · t) , (27)

where q =
1

I totalCS
ln
(
βmin
βmax

)
. A fraction of the worst

nests, pa, are abandoned and their positions are updated as
follows [28]:

pt,new1 = pt1 + R ·
(
pt1,g − p

t
1,u

)
, (28)

pt,new2 = pt2 + R ·
(
pt2,g − p

t
2,u

)
, (29)

αt,new = αt + R ·
(
αtg − α

t
u

)
, (30)

τ t,new = τ t + R ·
(
τ tg − τ

t
u

)
, (31)

where qtu =
{
pt1,u, p

t
2,u, α

t
u, τ

t
u

}
is a randomly selected nest.

The procedure of the CS-based algorithm in solving power
minimization problem (14) is described in Algorithm 2. The
input parameters are the maximum transmission power at the
transmitter, Pmax

; the target rate value of user 1, γ1; the target
rate value of user 2, γ2; the minimum energy harvesting at
user 3, φ; the maximum iteration number, I totalCS ; the number
of nests, denoted by N ; the probability that a host bird
discovers the intruder cuckoo’s egg, pa; step size β, factor
λ, and step length s. In addition, as input parameters, the
lower and upper boundaries of the variables to be optimized
are considered. Then, power allocation variables p1 and p2
are within the range [0,Pmax], while variables for fraction
transmission time τ and power splitting ratio β fall within
(0, 1) . Moreover, the computational complexity of the CS
depends on the number of nests, N , and the total number of
iterations, I totalCS [33]. Thus, the total complexity of the CS
scheme is O

(
N · I totalCS

)
.

B. ENERGY EFFICIENCY OPTIMIZATION PROBLEM
In this problem, we aim to maximize the total energy
efficiency of the proposed cooperative non-linear SWIPT-
enabled NOMA system that also considers an additional non-
linear EH user. Here, we jointly optimized the transmission
time fraction, τ, the power-splitting ratio, α, and the power
allocation variables, p1 and p2, while satisfying the QoS
constraints of all users. The energy efficiency is defined as
the ratio of total rate to power consumption, as shown in the
objective function of the problem, and it can be formulated as
follows:

max
p1,p2,τ,α

Ru1 + Ru2
τ (p1 + p2 + pc1)+ (1− τ) (Psw + pc2)

s.t. (14b), (14c), (14d), (14e), (14f ), (14g), (14h), (32a)

where Ru1 = min
(
R(1)x1,u2 ,R

(2)
x1,u1

)
, pc1 and pc2 are the circuit

power variables at user 1 and user 2, respectively.
It is worth highlighting that the energy efficiency max-

imization problem is more challenging to solve since the
cost function is in fractional form and constraints are
non-convex. Therefore, in Subsection III.B.1, we propose
a swarm-intelligence-based scheme called PSO to reduce
the computational complexity, and in Subsection III.B.2,
we develop a CS-based benchmark scheme for comparison
purposes.

1) PROPOSED PSO-BASED FRAMEWORK FOR ENERGY
EFFICIENCY MAXIMIZATION
Similar to (16), we define the objective function as follows:

f (qn) =
Ru1 + Ru2

τ (p1 + p2 + pc1)+ (1− τ) (Psw + pc2)

−ς

4∑
i=1

ξ (gi). (33)
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Algorithm 2 CS-Based Framework to Solve Power Mini-
mization Problem (14)
1: Input parameters of CS scheme.
2: Objective function f (qn) in (20).
3: Initialize a population of N host nests for each variable

to be optimized, qn =
{
p1,n, p2,n, αn, τn

}
, n ∈

{1, .2, . . . ,N } .
4: Initialize t = 0.
5: Evaluate fitness function for each nest, F tn = f

(
qtn
)
,∀n,

and find qtg.
6: For t < I totalCS do
7: Calculate β with (27) and obtain new position

qt,newn =

{
pt,new1,n , pt,new1,n , α

t,new
1,n , τ t,newn

}
for each

nest via Lévy flights with (21), (23), (24), and (25).
8: Evaluate the fitness function for each nest,

F t,newn ,∀n.
9: For all nests do:

if F t,newn < F tn
F t+1n = F t,newn , qt+1n = qt,newn

else
F t+1n = F tn, q

t+1
n = qtn

end if
10: Calculate the value of pa with (26).
11: A fraction, pa, of the worst nests are abandoned,

and the corresponding positions of the nests are
updated based on (28)-(31).

12: Evaluate fitness of new nests and execute Step 9; rank
all solutions and find the current best nest.

13: t = t + 1
14: end for
15: Return: the best values,

{
p∗1, p

∗

2, α
∗, τ ∗

}
= best_nest,

to obtain the minimum transmission power indicated in
problem (14).

Then, the PSO algorithm to solve problem (32) is based
on Algorithm 1 with the following modifications: (a) the
objective function is evaluated with (33); (b) the global best
position is obtained with gbt = argmax

1≤r≤Rp
f
(
lbtr
)
; (c) in

Step 11, the condition to update the local best position is
f
(
qt+1r

)
> f

(
lbtr
)
.

2) CUCKOO-SEARCH-BASED FRAMEWORK WITH LÉVY
FLIGHTS FOR ENERGY EFFICIENCY MAXIMIZATION
To maximize the energy efficiency of the proposed NOMA
SWIPT network based on CS with Lévy flights, we follow
Algorithm 2 with minor modifications. Since the current
optimization problem is one of maximization, in Step 9 of
Algorithm 2, we replace inequality F t,newn < F tn with
F t,newn > F tn. In addition, the objective function is given in
(33). Then, we obtain the best values,

{
p∗1, p

∗

2, α
∗, τ ∗

}
=

best_nest, to achieve the maximum energy efficiency indi-
cated in (32a).

IV. NUMERICAL RESULTS
In this section, we present the simulation results programmed
into MATLAB software, of the proposed cooperative non-
linear SWIPT-enabled NOMA system. The results are
averaged over several channel realizations. More specifically,
we present a performance comparison between the optimal
scheme provided by the convex optimization with the ES
method, denoted as CVX+ES, and the proposed PSO-based
scheme. Moreover, we assess the performance of the follow-
ing swarm intelligence-based baseline algorithms: CS, the ant
lion optimization (ALO) method, the butterfly optimization
algorithm (BOA), the firefly algorithm (FA), and the bat
algorithm (BA). In addition, we compare the performances
betweenNOMAandOMA transmission cooperative commu-
nication with a TF scheme (τ = 0.5) [35]–[39], and SWIPT
NOMA cooperative communication with the EPS scheme
(α = 0.5) [15].
Rayleigh fading channels k̃2, f̃ , ẽ have i.i.d. complex

Gaussian entries with zero mean and a certain variance,
i.e, k̃2 ∼ CN

(
0, d−pltru2

)
, f̃ ∼ CN

(
0, d−plu1u2

)
, and ẽ ∼

CN
(
0, d−pltru3

)
, respectively, where dij denotes the distance

between nodes i and j, and pl is the path-loss exponent; index
tr indicates the transmitter. In the simulations, we assume
the path-loss exponent is pl = 2 for channels k̃2, f̃ , ẽ, and
noise power is σ 2

1 = σ 2
2 = −60 dBm. The distances in

meters between the nodes are dtru2 = 15, du1u2 = 18, and
dtru3 = 6. Moreover, the maximum transmission power at
the transmitter is Pmax

= 30 dBm.

A. TRANSMISSION POWER MINIMIZATION
In this subsection, we analyze the numerical results obtained
for transmission power minimization. Figure 3 shows the
total transmit power of the proposed PSO-based scheme
compared with those of the following swarm intelligence
algorithms: CS, ALO, BAO, FA, and BA. The parameters of
each algorithm in Table 1 are set based on the best results
achieved through several experiments. The description of
these baseline swarm algorithms and their parameters are
explained in [40]. From Figure 3, it is observed that the
trend of all schemes rises as the minimum rate at user
1 increases. However, the proposed PSO scheme outperforms
the comparison swarm intelligent algorithms in terms of total
transmit power. It is noteworthy that the performance of CS
is very close to that obtained by PSO. Thus, to validate the
superiority of PSO, we evaluate the convergence behavior
between PSO and CS. In addition, we compare the average
(central processing unit) CPU running time of the proposed
PSO-based framework, the optimal CVX+ES method, and
the performance of five benchmark swarm intelligence
algorithms.

Figure 4 illustrates the convergence behavior of the
proposed low-complexity PSO algorithm and the CS baseline
algorithm according to the number of iterations. We can
see that as the number of iterations increases, the total
transmission power is minimized. Moreover, Figure 4 shows
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FIGURE 3. Total transmit power of the proposed PSO-based scheme, CS,
ALO, BOA, FA, and BA according to the minimum rate at user 1, γ1.

TABLE 1. Simulation parameters for transmission power minimization.

that for the PSO-based scheme, the transmit power converges
within about 60 iterations. Therefore, we fix the number of
iterations, I totalPSO , equal to 60 at other simulations. Moreover,
we also set the number of particles at Rp = 30, the inertia
weight to Ine = 0.7, along with the scaling factors, c1 =
1.494, and c2 = 1.494.Meanwhile, for the CS-based scheme,
Figure 4 shows that the transmit power converges within
about 250 iterations, which is a bit more than double that
of PSO and entails higher complexity. After the fine-tuning
process for CS, we set its parameters: number of nests,
N = 35, and total iterations, I totalCS = 250. Furthermore,
we can see that total transmission power increases as the
minimum requirement for EH at u3, and the minimum target
rates, γ1 and γ2, respectively, increases. This is because more

FIGURE 4. Convergence of the proposed PSO-based algorithm and CS
with different required rates γ1, γ2, and minimum harvested energy, φ,
for transmission power minimization.

FIGURE 5. Performance comparison among the optimal scheme
(CVX+ES), the PSO-based scheme, the CS-based scheme, and cooperative
SWIPT-OMA for transmission power minimization.

power must be allocated to users as the QoS requirements
increase.

To validate the optimality of the proposed low-complexity
PSO-based framework, Figure 5 shows the performance
comparison between the optimal scheme, CVX+ES, the
PSO-based scheme, the CS-based scheme, and cooperative
SWIPT-OMA for transmission power minimization. Note
that CVX with the ES method corresponds to the analytical
solution indicated in subsection III.A. Figure 5 shows the
transmission power when the minimum EH requirement is
φ = −23dBm, and target rate at u2 is γ2 = 1 bit/s/Hz.
From Figure 5, we verify that the proposed PSO and
CS-based frameworks provide near-optimal performance,
compared with the CVX+ES method. In addition, it is
worth highlighting that the PSO-based scheme can reach a
result closer to the optimal solution provided by CVX+ES
in fewer iterations than under the CS, which means that
less time is needed to compute a solution with higher
performance. Therefore, in this paper, we propose the
PSO-based framework as the most suitable low-complexity
solution in the cooperative non-linear SWIPT-NOMA
network.
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TABLE 2. CPU running time.

Furthermore, the average CPU running times are compared
in Table 2 among the proposed PSO-based framework,
the optimal CVX+ES method, and five benchmark swarm
intelligence algorithms. The results are obtained by using
a computer with a 4 GHz i7-6700K CPU and 16 GB
RAM. Firstly, we can observe that CVX+ES requires the
most computation time. By contrast, the low-complexity
solutions provided by the proposed PSO-based scheme and
the swarm intelligence-based baseline algorithms can reduce
the CPU running time to obtain a sub-optimal solution.
However, it is remarkable that the PSO scheme requires
the least CPU running time to reach a solution than their
counterparts to reach a solution. This is because PSO
requires fewer iterations compared to the benchmark swarm
intelligence schemes, as shown in Table 1. Particularly,
from Figure 5, we can observe that CS and PS achieve a
very close performance to the optimal CVX+ES method.
However, we can also see that CS needs more time than
PSO to reach a solution. This is because PSO requires
fewer iterations to achieve convergence compared to the CS
method. Moreover, the number of particles, Rp, utilized in
PSO is lower than the number of nests, N , required under
CS. Recall that the computation complexity depends on the
number of iterations and the number of particles used by
each algorithm. Specifically, the computational complexity
of PSO is computed by O

(
Rp · I totalPSO

)
while the computation

complexity of CS is computed by O
(
N · I totalCS

)
. In this

sense, since the PSO-based scheme requires fewer iterations
and a lower number of particles than that required by
CS, the least computational complexity with the highest
accuracy is achieved by the proposed PSO-based solution.
Regarding CVX+ES, the problem (15) should be solved for
each possible time value for τ and it is needed to check
if the candidate solution satisfies all the constraints. Next,
the candidate solution with the lowest objective function is
defined as the best solution. Then, the CVX+ES method
cannot have a convergence behavior like the presented in
Figure 4 for PSO and CS because the possible values
of τ are tested in order from 0 to 1 with a predefined
step. For instance, we considered increments of 0.0001 for
τ, and thus, solved the problem (15) a total of 10,000
times, whereas the average time to solve the problem (15)
is 0.358 sec.

Moreover, we considered the total power minimization
problem for the cooperative non-linear SWIPT-enabled OMA
benchmark.We used the time-division multiplexing (TDMA)
technique in which three phases are required to complete

transmission in the comparison SWIPT-OMA scheme.
Specifically, TDMA allocates a fraction of time τ1 and τ2
to u1 and u2, respectively. Moreover, a fraction of time τ3 is
assigned to the cooperative transmission from u2 to u1. From
Figure 5, we observed that the proposed cooperative SWIPT-
NOMA scheme outperforms the conventional OMA strategy
in the cooperative network since OMA increases the total
transmission power compared with the proposed cooperative
NOMA scheme. This is because, in NOMA, the users share
the same frequency at the same time, which improves the
spectral efficiency of the system. By contrast, OMA requires
more resources to complete a transmission because users
share the same frequency channel at different times.

Figure 6 and Figure 7 illustrate the effect from linearity
of EH on the transmit power of the proposed scheme
(cooperative SWIPT NOMA communication optimizing
resource allocation variables p1, p2, τ, and α) and the
following baseline schemes: SWIPT NOMA cooperative
communication with TF, and SWIPT NOMA cooperative
communication with EPS. In cooperative non-linear SWIP-
NOMA, we used the non-linear EH model at u2 specified
in (7) and the non-linear EH model at u3 specified in (9).
On the other hand, for application of the ideal linear EH
model in the cooperative SWIPT-enabled NOMA system,
we used the linear EH model at u2 specified in (6) and
the linear EH model at u3 specified in (10). Moreover,
we considered η = 1 for the linear EH models. Overall,
we verified that the cooperative SWIPT-NOMA scheme with
a linear EHmodel achieved lower transmission power since it
considers the users to be storing all the power of the incoming
signal. By contrast, the non-linear EH model considers a
more realistic environment where the relationship between
stored energy and received RF power is non-linear because of
physical impairments, saturated harvested power, and circuit
specifications. Moreover, from Figure 6 and Figure 7, we can
see that the proposed cooperative non-linear SWIPT-NOMA
scheme outperforms the EPS and TF baseline schemes. This
verifies that including the power splitting ratio and time
fraction variables in the optimization problem improves the
performance of the network. Recall that the EPS and TF
schemes considered the power splitting ratio to be α = 0.5,
and the time transmission fraction to be set at τ = 0.5,
respectively.

B. ENERGY EFFICIENCY MAXIMIZATION
In this subsection, we assess the results for energy efficiency
maximization in the proposed nonlinear SWIPT NOMA
system.

Figure 8 shows energy efficiency among the proposed
PSO-based scheme and the following swarm intelligence
algorithms: CS, ALO, the BAO, FA, and BA. The parameters
of each algorithm in Table 3 are set based on the best
results achieved through several experiments. From Figure 8,
it is observed that the energy efficiency of all schemes
diminishes as the minimum rate at user 1 increases.
However, the proposed PSO scheme outperforms the other
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FIGURE 6. Transmit power comparison between the proposed
cooperative non-linear SWIPT-NOMA and cooperative linear SWIPT-NOMA
according to different required rate, γ1, γ2 = 1 bit/s/Hz, φ = −15 dBm.

FIGURE 7. Transmit power comparison between the proposed
cooperative non-linear SWIPT-NOMA and cooperative linear SWIPT-NOMA
according to different required EH, φ, γ1 = 1 bit/s/Hz, γ2 = 1 bit/s/Hz.

FIGURE 8. Energy efficiency comparison among the proposed PSO-based
scheme, CS, ALO, BOA, FA, and BA according to the minimum rate at
user 1, γ1.

swarm intelligent algorithms by utilizing fewer iterations to
obtain the maximum energy efficiency which entails less
computational time. Similar to the transmit power problem,
the performance of CS is very close to that obtained by
PSO. Thus, to validate the superiority of PSO, we evaluate

TABLE 3. Simulation parameters for energy efficiency.

the convergence behavior and the CPU time between
PSO and CS.

Figure 9 illustrates the convergence behavior of energy
efficiency of the proposed low-complexity PSO-based algo-
rithm and the CS baseline scheme. As the number of itera-
tions increases, energy efficiency is maximized. Moreover,
Figure 9 shows that in the case of PSO, the energy efficiency
is converged within about 125 iterations. Therefore, we set
the number of iterations, I totalPSO , at 125. Moreover, we set the
number of particles to Rp = 35, the inertia weight to Ine =
0.7, and for the scaling factors, c1 = 1.494, and c2 = 1.494.
Regarding CS, from Figure 9, we can see that the energy
efficiency is converged within about 400 iterations. Similar
to the convergence behavior for the power minimization
problem, the number of iterations for energy efficiency is
also more than double that of PSO, which entails higher
complexity. After performing various experiments with CS,
we selected the parameters for the number of nests, N =
35, and the total iterations, I totalCS = 400. Moreover, from
Figure 11, we can see that the energy efficiency decreases as
theminimum requirements for EH at u3, and for theminimum
target rates, γ1 and γ2, increase. This is because when QoS
requirements increase, more power needs to be allocated to
users. Accordingly, energy efficiency is reduced, since its
relationship to power consumption is inversely proportional.

From Figure 10, we verified that the energy efficiency
performances obtained by the proposed PSO- and CS-based
frameworks are close to that by the ES method with the
minimum EH requirement, φ = −23 dBm, and for the
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FIGURE 9. Convergence of the proposed PSO-based algorithm and CS
with different required rates, γ1, γ2, and minimum harvesting energy, φ,
for energy efficiency maximization.

FIGURE 10. Energy efficiency performance of ES, cooperative non-linear
SWIPT-NOMA with PSO, cooperative non-linear SWIPT-NOMA with CS,
and cooperative non-linear SWIPT-OMA with PSO.

target rate at u2, γ2 = 1 bit/s/Hz. In contrast to the ES
method, the low-complexity solutions provided by PSO and
CS can lessen the time needed to achieve an approximately
optimal solution with low computational complexity. It is
worth noting that the proposed PSO-based scheme can reach
a result closer to the optimal solution provided by ES in
fewer iterations than the CS-based scheme. This means
less time is needed to compute a solution with higher
performance. Therefore, we propose the PSO-based scheme
as a powerful low-complexity solution in cooperative non-
linear SWIPT-NOMA networks. Moreover, from Figure 10,
we verify that the proposed cooperative SWIPT-NOMA
network outperforms the OMA scheme in terms of energy
efficiency.

Figure 11 and Figure 12 illustrate the effect from linearity
of EH on energy efficiency in the proposed cooperative
SWIPT NOMA communication that optimizes the variables
p1, p2, τ, and α, and on the following baseline schemes:
SWIPT NOMA cooperative communications with a TF
scheme, and SWIPT NOMA cooperative communications
with EPS. Besides, we consider η = 1. From Figure 11 and
Figure 12, we verify that the cooperative SWIPT-NOMA
scheme with the ideal linear EH model achieves higher

FIGURE 11. Energy efficiency comparison between the proposed
cooperative non-linear SWIPT-NOMA, and cooperative linear
SWIPT-NOMA according to different required rates, γ1, γ2 = 1 bit/s/Hz,
φ = −15 dBm.

FIGURE 12. Energy efficiency comparison between the proposed
cooperative non-linear SWIPT-NOMA, and cooperative linear
SWIPT-NOMA according to different required EH, φ, γ1 = 1 bit/s/Hz,
γ2 = 1 bit/s/Hz.

energy efficiency. This is due to a linear relationship between
the stored energy and the received RF power. Thus, users can
store all the power of the incoming signal. This differs from
the proposed non-linear EH model, which considers a more
realistic environment that involves saturated harvested power
and circuit specifications. Furthermore, from Figure 11 and
Figure 10, we can see that the proposed cooperative non-
linear SWIPT-NOMA scheme outperforms the EPS and TF
baseline schemes in terms of energy efficiency.

V. CONCLUSION
In this paper, we propose to optimize transmission power
and energy efficiency in a collaborative non-linear SWIPT-
NOMA system with a non-linear EH user while satisfying
constraints on minimum target rate at the users and minimum
harvested energy at the terminal. The considered optimization
problems are non-convex, involving joint optimization of
the transmission time fraction, the power splitting ratio, and
power allocation, and are thus difficult to solve directly.
To tackle this issue, we propose a PSO–based solution
with low computational complexity where results reach
performance near-optimal to those obtained by the optimal
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but time- and energy-consuming convex optimization and
ES methods. In addition, we also study and develop a CS-
based benchmark as an alternative low-complexity solution
and evaluate the performance of five swarm intelligence
benchmark schemes. Simulation results showed that PSO
requires fewer iterations than the swarm intelligence baseline
schemes to achieve convergence, which leads to the least
CPU time for PSO. Furthermore, we investigate cooperative
non-linear SWIPT-OMA, EPS, and TF benchmark schemes
for performance comparison with the proposed cooperative
non-linear SWIPT-NOMA system. Results showed that the
proposed cooperative non-linear NOMA with SWIPT can
reduce transmit power and achieved higher spectral efficiency
compared to the OMA, EPS, and TF baseline schemes.
It is worth highlighting that the optimization of the time
variable provided a significant performance improvement,
but it is conventionally kept as a constant in the literature.
Furthermore, we analyzed the application of a non-linear
EH model with the ideal linear EH. The developed schemes
with linear EH achieved lower transmission power and high
energy efficiency because they consider an ideal case where
the receiver harvests all the power of the incoming signal.
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