IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received March 9, 2022, accepted March 22, 2022, date of publication March 28, 2022, date of current version April 4, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3162863

Recent Advances in Data Engineering
for Networking

ENGIN ZEYDAN ", (Senior Member, IEEE), AND JOSEP MANGUES-BAFALLUY

Centre Tecnologic de Telecomunicacions de Catalunya, Barcelona, 08860 Castelldefels, Spain
Corresponding author: Engin Zeydan (engin.zeydan@cttc.cat)
This work was supported in part by the EU H2020 SGROWTH Project under Grant 856709, in part by the Generalitat de Catalunya under

Grant 2017 SGR 1195, and in part by the National Program on Equipment and Scientific and Technical Infrastructure through the
European Regional Development Fund (FEDER) under Grant EQC2018-005257-P.

ABSTRACT This tutorial paper examines recent advances in data engineering, focusing on aspects of
network management and orchestration. We provide a comprehensive analysis of standardization efforts
as well as platform development activities related to data engineering driven network design. We then focus
on the integration aspects of the data engineering ecosystem and telecommunication networks. The results of
our tutorial investigation show that despite various efforts towards standardization and network management
and orchestration platforms, there is still a significant gap in applying recent developments in the evolving
data engineering world to the telecommunication domain. New advanced functionalities in data engineering
as well as clear separations between the building blocks of data engineering pipelines within the proposed
standardized architectures have been overlooked or not explored in detail by the standardization or platform
development bodies in the telecommunication domain. Therefore, at the end of the paper, we discuss these
gaps and research challenges in the context of future development processes for data engineering-driven net-
work design and applications of data engineering concepts in telecommunication networks. We also propose
several recommendations for early adoption of these technologies and frameworks in telecommunication

infrastructures and platforms.

INDEX TERMS Data engineering, network management, orchestration, tutorial.

I. INTRODUCTION

Over the past few decades, telecommunication operators and
service providers have experienced exponential growth in
connectivity. At the same time, there has been an increased
demand for massive connectivity, huge amounts of data, and
in some cases ultra-low latency communications. Because
of this, network complexity has increased placing a tremen-
dous burden on telecommunication providers to manage and
orchestrate the network. To address the highly complex issues
that such larger and highly integrated networks pose in
the design, analysis, deployment, and management phases,
recent advances in data science and engineering technologies
in both academia and industry, have encouraged the adop-
tion of various Artificial Intelligence (Al)/Machine Learn-
ing (ML) platforms and frameworks at different layers of
the telecommunication network infrastructure. On the other
hand, the advanced techniques used by large companies,

The associate editor coordinating the review of this manuscript and

approving it for publication was Derek Abbott

VOLUME 10, 2022

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

such as Google, Facebook, NetFlix, Apple, and Amazon,
to demonstrate how to leverage data, have led to major break-
throughs in the business landscape in terms of improving
products, services, and customer experiences. As a result of
the increasing computing power of computers and advances
in AI/ML algorithms from IT and the cloud giants, new
data processing capabilities are being introduced that have
disrupted entire industries, including telecommunications.
Therefore, improving network intelligence has been the focus
of interest in the telecommunication world in recent years
with many diverse and compelling use cases [1]-[7]. (Note
that the detailed use cases and their classifications within each
Standards Developing Organizations (SDOs) and alliance
bodies are given in Section XI.)

Advanced algorithms (e.g., neural network-based Deep
Learning (DL) algorithms) and computational patterns used
in AI/ML platforms can help discover valuable information
hidden in vast amounts of numerical data (images, videos,
datasets, etc.). This will enable better decision making in the
development of telecommunication infrastructure products,

34449

https://orcid.org/0000-0003-3329-0588
https://orcid.org/0000-0003-4960-9434
https://orcid.org/0000-0002-0945-2674

IEEE Access

E. Zeydan, J. Mangues-Bafalluy: Recent Advances in Data Engineering for Networking

services and applications, while opening up innovative busi-
ness opportunities. The recently evolving AI/ML ecosystem,
its open source community [8], partnerships between the
public private industry and academia [9], and the results
from the labs of large cloud and IT giants like Facebook Al
Research (FAIR),! Google AI? and Microsoft AP etc. will
support and enhance data-driven intelligence by gaining real-
time (from streamed data) and long-term (from stored data)
insights to understand what is going on in their infrastructure
and develop competitive advantages. This will help develop
better and more personalized services for telecommunication
providers.

However, a major challenge for all telecommunication
providers in the world is to leverage recent advances and find
current technologies to develop data science and engineering
platforms. This is because of the various challenges in man-
aging infrastructure and utilizing vast computing resources.
Telecommunication companies serve millions of users who
depend on their services for their daily needs. In order to
maintain these critical services without interruption, telecom-
munication providers must be prepared to obtain the most
relevant and accurate information so that they can make
informed decisions and take the necessary actions. For this
reason, the design, implementation and maintenance of sys-
tems that can process incoming telecommunication-related
raw data sources and produce high-quality, reliable informa-
tion to support data analytics and AI/ML systems is critical
and falls within the scope of data engineering.

A. RELATED WORKS

There are numerous comprehensive review and position
papers on the recent developments and deployment of AI/ML
software, libraries and frameworks and their applications for
data centers, network traffic, Software Defined Networking
(SDN)/Network Function Virtualization (NFV)-enabled net-
works or Industry 4.0 [8], [10]-[25], [25]-[40].

In [10], the authors bridge the gap between DL and mobile
and wireless networking research by presenting recent sur-
veys and showing a typical pipeline of an application-level
mobile data processing system. The paper in [11] provides
an overview of DL for wireless communication networks.
The authors in [12] explore the applications of DL algorithms
in wireless networks for different network layers, including
the physical layer, the data link layer and the routing layer.
The paper in [13] gives an overview on unsupervised ML
approaches that are applied in the networking domain. In [14],
a framework for data-driven networks for proactive optimisa-
tion and related technologies in online data analytics for 5SG
systems are explored. The paper in [15] provides an overview
of evolving ML algorithms applied to self-organizing cellular
networks.

IFacebook Al Research, https://research.fb.com/publications/
2Google Al Research, https://research.google/pubs/
3Microsoft Al Research, https://www.microsoft.com/en-us/research/

34450

The authors in [16] focus on the possible solutions on how
ML can help support the targeted 5G network requirements.
The papers in [17], [18] provide an overview of ML algo-
rithms and their applications in SDNs. The authors in [19]
focus on the use of Al and ML for the design and operation
of Beyond 5G networks. The paper in [20] gives an overview
of ML in wireless communications and presents some unre-
solved issues. The paper in [21] gives an introduction to the
use of data science and describes steps towards knowledge
discovery in the context of wireless networks. In [22], various
software architecture practices that exist in the context of ML-
based software systems are described. The authors in [23]
provide an overview of related research on Al-based green
communication and how it can be used to accelerate applica-
tions in 6G. The position paper in [24] presents an agenda for
addressing the challenges associated with analyzing network
data through AI/ML so that it can be naturally adopted in
the network domain. In [25]. a comprehensive overview of
ML solutions for 5G cellular networks is given. However, the
focus of these contributions is on data science aspects rather
than on data engineering frameworks and building End-to-
End (E2E) data engineering pipelines. There is also a lack
of detailed analysis of the applications of these technologies
in larger areas/domains of E2E network management and
orchestration.

From a network management perspective, the paper
in [26] addresses ML solutions that can be used as a tool
for implementing network management, automation and
self-organization from a 5G perspective. Self-healing solu-
tions for emerging and future mobile networks are explored
in [27]. Networking issues in Big Data are addressed in [28].
The authors in [29] discuss the role of Al techniques in the
emerging concept of Zero-touch network and Service Man-
agement (ZSM). Although these papers focus on network and
service management issues, the emphasis is on applying data
science concepts to network management rather than explor-
ing data engineering aspects. The survey paper in [30] brings
together both Big Data Analytics (BDA) and Network Traf-
fic Monitoring and Analysis (NTMA) research, and focuses
specifically on approaches and technologies that can manage
the big NTMA data. However, the focus of this research is
only on aspects of network traffic monitoring and analysis,
concentrates on a limited number of available Big Data tools,
and lacks analysis of network management and orchestration
aspects. The survey paper in [39] focuses on Data Center
Networking and divides it into infrastructure and operations.
However, the focus of this paper is on the operational and
infrastructure aspects of data center networking rather than
merging it with data engineering concepts and developments.

The authors in [31] conducted a comprehensive survey of
wired, wireless, and hybrid data centers to assess whether
they can meet the requirements of a real-time analytic Internet
of Things (IoT) network. However, the analysis focuses only
on real-time analytics and does not examine the network
management and orchestration aspects. The paper in [32]
provides an overview of the role of BDA in designing a

VOLUME 10, 2022

E. Zeydan, J. Mangues-Bafalluy: Recent Advances in Data Engineering for Networking

IEEE Access

variety of data communication networks. The authors in [33]
aim to design an industrial data platform that provides higher
real-time performance and compression ratio for industrial
data acquisition and processing. However, these works lack
details on building an E2E data engineering pipeline and do
not unify these data engineering components with network
management and orchestration. The authors in [34] provide
an overview of Big Data tools, but the focus is on manufac-
turing applications rather than telecommunication networks.
The review paper in [8] provides a comprehensive overview
of the latest Al software developments with comparisons
and trends in the development and usage process. In [35],
a detailed survey of distributed learning frameworks such
as federated learning, federated distillation, distributed infer-
ence, and multi-agent reinforcement learning over real-world
wireless communication networks is presented along with the
rationale for their deployment over wireless networks. How-
ever, these papers mainly focus on data science developments
rather than data engineering aspects by presenting only the
latest developments in DL, distributed learning or machine
learning frameworks and libraries.

The paper in [36] provides an overview of popular Big
Data frameworks for processing big data and compares them
using batch and iterative workloads. However, the authors do
not address how they relate to recent developments in net-
work management and the orchestration aspects of telecom-
munications. In [37], the authors present an example BDA
pipeline and architecture called LambdaTel for telecommu-
nication enterprises. Similar to our six-stage categorization
of the data engineering pipeline, the life cycle of BDA is
divided into four sequential stages namely data acquisition,
data preprocessing, data storage and data analytics in [38]
for wireless networks. On the other hand, these pipelines do
not focus on the application of these sequential phases to
network management and orchestration problems in industry,
academia, and standardization bodies. Moreover, they only
cover a few components compared to the data engineering
pipeline proposed here (e.g., details on the data management
& orchestration component are missing).

In contrast to the survey and review papers, this paper
provides a tutorial view of the recent date engineering solu-
tions to drive state-of-the-art developments in telecommuni-
cations, including papers in this research area that fills in the
gaps of the previous survey and tutorial papers on BDA and
network management & orchestration. Despite the previous
work on the potential applications of Big Data infrastructures
in telecommunication networks, there is still a lack of a
general E2E data engineering architecture for telecommuni-
cation and networking domains. In particular, it is unclear
to practitioners, researchers and developers in this emerging
field how to systematically collect, ingest, analyse, process,
visualize, and manage telecommunication data for network
management and orchestration. Therefore, in this tutorial
article, we explain how telecommunication networks can be
used for data-driven analysis and autonomous optimization in
future telecommunication networks using data engineering.

VOLUME 10, 2022

In this paper, we mainly focus on current data engineering
concepts and technologies related to network management
and orchestration, which are essential pillars for creating
data-driven intelligent support for telecommunication oper-
ators. Finally, we point out gap analyses, major challenges,
and research issues that need to be addressed in the future.

Data engineering concepts have emerged to develop scal-
able and resilient data warehouse systems or tools that can
support complex analytics across AI/ML infrastructures, plat-
forms, or products desired by data scientists, ML engi-
neers, or product teams. It is designed as a superset of
Business Intelligence (BI), data warehousing, DataOps, data
management, data architecture, orchestration, and software
engineering. Depending on complex business and technical
requirements at large scale, data engineers are expected to
continuously evolve data pipelines and processing models.
An integrated environment for data acquisition, storage, anal-
ysis, monitoring, visualization, and a scalable computing
environment in which data-driven applications and analytics
tools can be deployed is of interest to the data engineer-
ing field. Data analytics enables organizations to gain key
insights into the user experience using data pipelines. These
pipelines are a key component to continuously leverage the
evolving data-driven ecosystem in the ecosystem.

Historically, data engineering has its roots in the trending
topic of Big Data, when the Hadoop project code was first
released in 2006 [41]. Hadoop became popular by providing
distributed Big Data storage and processing capabilities. The
main systems consisted of four main modules: Hadoop core,
Hadoop Distributed File System (HDFS). Map-Reduce [42],
and Yet Another Resource Negotiator (YARN) [43]. After
the introduction of Hadoop, many Apache projects emerged
that built their core functionalities on top of Hadoop and
from which the Hadoop ecosystem evolved. At the same
time, Hadoop is still relevant today and continues to be used
as the core foundation for many data engineering projects.
In parallel with this movement, many organizations today
rely on similar design principles and advanced algorithms
on distributed systems to process data storage, messaging,
management, and compute functions on multiple servers in
parallel.

The movement and processing of data can be achieved by
creating streaming pipelines or data pipelines. In data pipelin-
ing, multiple data processing modules are chained together
and the output of each module is used as input to the next
module. Data engineering toolboxes enable organizations to
process huge amounts of data reliably and quickly while
gaining access to better, cheaper, and more accessible data
analytics software and services. On the other hand, each
newly introduced technology or component within a data
engineering pipeline brings its own configuration, protocols,
metrics, and tools, adding complexity to the overall platform.

Today’s challenges and requirements for a data engineering
solution include processing millions of tasks per second,
latency in the order of sub-milliseconds, stateful computa-
tion (via functions that store data across processing items or

34451

lE E E ACCGSS E. Zeydan, J. Mangues-Bafalluy: Recent Advances in Data Engineering for Networking

Data Ingestion
(message queues,
buffers, etc)

¥ @ @

Data Storage Visualization
(sQL, NoSQL, etc) (web, mobile app,

Data Monitoring &

B Iz "o

s 8

Data Management -

Orchestration -m-

FIGURE 1. A high level illustration of the individual modules of a general data engineering platform to support the entire

lifecycle of Al/ML.

events), and ensuring fault tolerance (e.g., by checkpointing
state to recover state and positions in the stream). Most
toolboxes are designed for scalability and are deployed in
distributed environments where aspects of data distribution,
replication, and coordination become important differentia-
tors. At the same time, much of the software is becoming
commoditized through open source software and packages,
while the supply of data engineering solutions from cloud
providers such as Microsoft, Amazon, and Google is increas-
ing. As the data toolbox matures and the data engineering
ecosystem blossoms, innovative solutions such as Online
Analytical Processing (OLAP), scalable machine learning
analytics will become more tangible to larger communities
and enterprises.

B. OVERVIEW AND TUTORIAL OBJECTIVES

Fig. 1 shows an overview of the different modules of a
general data engineering platform. It mainly consists of six
modules: Data Connect, Data Ingest, Data Analysis, Data
Storage, Data Monitoring & Visualization, and Data Man-
agement & Orchestration. Note that the connections between
each module are only loosely represented and there may be
multiple interfaces between these modules depending on the
use case. Therefore, there may be multiple pipelines based on
Service Level Agreements (SLAs) or non-functional require-
ments. One pipeline may be suitable for real-time notifica-
tions, while another may be more suitable for more relaxed
requirements. Furthermore, in some scenarios, such as IoT
networks, raw data (e.g., temperature, humidity) collected via
the Data Connect module can be integrated with the Data
Visualization component either via mobile applications or
web user interfaces for direct visualization in a dashboard.
In other scenarios, further data analysis and processing using
recent advances in AI/ML algorithms may be required (e.g.,

34452

in the case of high quality prediction, statistical analysis or
root cause analysis [44]), which takes place between the Data
Connection and Data Visualization modules.

In other scenarios that require high reliability of data (e.g.,
in Ultra Reliable Low Latency Communications (URLLC)
services of 5G networks), the Data Ingestion and Data Anal-
ysis modules (for ultra-low latency real-time event process-
ing) need to be embedded in the data engineering pipeline.
More details on the modules and the corresponding dis-
tributed computing frameworks/landscapes available today to
run each of these modules are provided later in the paper.
In addition to the open source frameworks, we have also listed
vendor-specific tools/frameworks for each module whose
main advantage over in-house setup is the ease of set-up and
maintenance support for the data engineering applications.
On the other hand, cost can be considered as one of the
main disadvantages when these applications are deployed on
a large scale with vendor-specific tools.

The main contributions of this paper can be summarized as
follows:

o Our goal is to provide a comprehensive and thorough
overview of the recent advances and major technologies
used in the context of data engineering.

o The paper categorizes the various modules of a gen-
eral data engineering platform into Data Connect, Data
Ingest, Data Analysis, Data Storage, Data Monitoring
& Visualization and Data Management & Orchestra-
tion. This allows for easy understanding and compari-
son of studies within each area of the data engineering
landscape.

o Our goal is to link the capabilities of the data engineer-
ing ecosystem with a possible link to future telecom-
munications systems. Unlike previous work on data

VOLUME 10, 2022

E. Zeydan, J. Mangues-Bafalluy: Recent Advances in Data Engineering for Networking

IEEE Access

engineering, this paper also explores the necessary link
that needs to be established between recent advances
in data engineering and traditional telecommunication
ecosystems in the context of network management and
orchestration.

o The paper provides a comprehensive discussion of chal-
lenges, gaps and future directions in the convergence of
data engineering and network management and orches-
tration, and also identifies research directions that arise.

o To drive research in data engineering solutions for
future network management and orchestration solutions,
we also discuss possible solution methods for each of the
above challenges.

The remainder of the paper is arranged as follows.
Section II introduces Data Connection frameworks and the
possible data sources. Section III presents frameworks for
Data Ingestion. Section I'V discusses the latest frameworks for
Data Processing and Analysis. Section V presents the latest
frameworks for Data Storage. Section VI presents frame-
works for Data Monitoring and Visualization. Section VII
presents frameworks for Data Management and Orches-
tration. Section VIII discusses the relationship of data
engineering projects with data science frameworks and
AI/ML platforms used in the industry. Section IX gives
an overview of network lifecycle management and orches-
tration. Section X provides an overview of standardiza-
tion efforts in network management and orchestration and
how they can be related to data engineering frameworks.
Section XI gives an overview of data engineering use
cases in telecommunication networks. Section XII provides
the gap analysis, challenges and future directions. Finally,
Section XIII presents the conclusions of the paper.

Il. DATA CONNECTION FRAMEWORKS

The data connection serves as a trigger to connect to a data
source, which can be either in a local file, on the web,
on a mobile/IoT device, in a metastore table, or in a data
store. Data sources can be in various forms, such as static
data sources from files, databases (MySQL, MongoDB, etc.),
network/server/storage or clickstream (web stream) logs,
data taken from online resources, streaming on-demand data
sources from third-party Application Programming Interfaces
(APIs) or frameworks. This stage can be configured to trans-
fer data into a Data Ingestion module. The connection frame-
works are especially important for telecommunication service
providers to enrich the already existing data with third party
sources.

A. AVAILABLE TOOLS

Representational state transfer (REST)-APIs are mainly used
to import data from many third-party APIs into the Big Data
processing cluster. It benefits from the ideas of stateless
servers and structured access to resources. An API gateway is
a software component and acts an entry point into a system.
It is responsible for allowing multiple APIs, backend systems

VOLUME 10, 2022

or microservices to be accessed reliably and securely by end
users. Kafka Connect, which is part of Apache Kafka [45],
is used to enable data flows between Kafka and various types
of systems such as message queues, Hadoop, Spark, Flink,
TensorFlow, databases, object stores or flat files. It supports
pluggable connectors (which are essentially jar files that can
be downloaded from Confluent Hub for example). Apache
Flume [46] is a service for efficiently collecting, aggregat-
ing and moving large amounts of data in a distributed and
reliable manner. GraphQL* is a query language for APIs
and designed as an alternative to REST-API that allows a
variety of different frameworks to connect from the client
side during client-server communication. The advantage of
GraphQL is that it prevents over- and under-fetching of data
compared to REST-APIs. Falcor’ is another open source
library used to retrieve data that may reside in a client’s
memory or over the network on the server. Apache NiFi° is
mainly used to automate data movement between different
systems. It provides a web-based user interface for creating,
monitoring or transforming (e.g., converting Comma Sepa-
rated Values (CSV) files into individual JavaScript Object
Notation (JSON) records) data streams.

1) VENDOR SPECIFIC TOOLS

Amazon’s API Gateway (for connecting to devices), Azure
Event Hub and Data Gateway (a proxy that provides
on-premise access to data) and Google Cloud Platform
(GCP)’s Cloud Dataflow, other connector platforms such as
FiveTrain,” Stitch,® Matillion® are some example tools and
frameworks for data connectivity.

B. DATA SOURCES TO CONNECT

In telecommunication operators, there are various sources
of information from which data can be retrieved for further
analysis by data engineering frameworks. Generally data is
available in three different systems: Information Technology
(IT), network and application systems.

« IT systems data is collected by various IT systems such
as Customer Relationship Management (CRM) systems,
billing systems or customer care services. Some exam-
ples are basic customer, account, and user profile and
characteristics information, billing data, business con-
sumption data, social media data and marketing/sales
department promotions/campaigns, etc.

« Network systems data (from both wired and wireless
networks) includes network equipment data, Call Detail
Records (CDRs), eXtended Data Records (XDRs),
Machine-to-Machine (M2M) data, traffic data (both
signalling and payload data), Operations Support Sys-
tems (OSS) data (network events (outages, alarms),

4http://spec.graphql.org/, accessed December-2021
5https://netﬂix.github.io/falcor/, accessed December-2021
6https://nifi.apache.org/, accessed December-2021
7https://fivetram.com/, accessed December-2021
Shttps://www.stitchdata.com/, accessed December-2021
91'1ttps://WWW.matillion.com/, accessed December-2021

34453

IEEE Access

E. Zeydan, J. Mangues-Bafalluy: Recent Advances in Data Engineering for Networking

network performance data, etc.), voice, SMS, network
service data, user equipment (UE) mobility and loca-
tion updates, quality-of-service (QoS) parameter data
collected from access, transport and core networks
(e.g. from Access and Mobility Management Function
(AMF), NG-RAN, Authentication, Authorization and
Accounting (AAA), Home Subscriber Station (HSS)
servers, etc.). Some of the typical data sources in mobile
networks are also described in [47].

o Application/service data is data from products and
services (e.g., online mobile payments, online music
and e-wallet applications or vehicle tracking, power
grid information and health services, other value-added
services, etc.) provided by telecommunication opera-
tors that contain user data (e.g., user access modes,
addresses, timestamps, business preferences, consump-
tion habits, customer care agent’s data). Note that the
underlying structures of this data are complex (either
unstructured (text, images, videos), structured or semi-
structured), so targeted data engineering pipelines for
different data types are required depending on the use
case.

Ill. DATA INGESTION FRAMEWORKS
Along with the advent of 5G, IoT and mobile sensor devices,
powerful messaging platforms are needed that can ingest
and cache all traffic for later processing. To reliably pub-
lish and subscribe to events, highly available, fault-tolerant
ingest pipelines are required that can serve as the backbone
of the streaming data infrastructure. To realize this, data
ingest frameworks enable replication and partitioning of data
across nodes in the cluster. The data ingestion module acts
as an intermediary or multi-tenant data hub that connects
incoming data from different data sources to diverse sinks
to ensure that data is not lost during this movement. The
source systems can be any vendor application, database or
event. Data Ingestion is generally used to move data between
external systems and Big Data clusters or data lake (e.g.
based on Hadoop) for batch or stream processing (e.g., for
filtering and mapping operations). A stream is an unbounded
and continuously updated data set. In general, it consists of
sequences of key-value pairs that are ordered, replayable, and
fault-tolerant. Streaming data can be injected into clusters in
real-time or near real-time. When loaded the data can be used
for later processing (e.g., with Apache Spark) or storage (e.g.,
with HDFS).

When communicating during data ingestion, two types of
message delivery patterns can occur [48]. One is queuing and
the other is streaming.

A. QUEUING

In queuing, the order is not important because all events
from the message queue are transferred from the device/user
to a system. Some examples are payments and transac-
tion processing, where they are mostly used for mission
critical systems. Message queues provide asynchronous

34454

communication protocols where the sender and receiver do
not need to interact with the message queues at the same time
and are common features of data ingestion frameworks. Plat-
forms and protocols such as RabbitMQ [49], IMS, AMQP
and others enable asynchronous data integration between
multiple systems by acting as a central hub. They are best
suited for message queuing applications, such as real-time
transaction services with zero tolerance to data loss. There-
fore, consistency and durability are the most important fea-
tures of these systems. On the other hand, these systems
may suffer from scalability issues during peak loads (e.g.,
RabbitMQ is not designed as a distributed system). This is
also true for web service/API based architectures due to their
synchronous communication [50], [51].

Apache Kafka [45], on the other hand, is a popular and
widely used framework for real-time processing of stream-
ing data and is best suited for managing data pipelines to
move large amounts of data between different systems. As a
common event bus that decouples producers and consumers,
it can handle hundreds of thousands of events per second,
is scalable and widely used in the industry (used by many
companies such as Twitter, Netflix, etc.). Therefore, integra-
tion with other technologies and frameworks in creating data
pipelines has also become easy. For example, data sharing is
possible with many interfaces including file-based systems,
real-time messaging, REST web service, Structured Query
Language (SQL) or Not Only SQL (NoSQL) databases, data
lakes or data warehouses. In addition to simple data sharing,
messaging and integration, it can also be used for data storage
and processing. However, Kafka is not suitable for storing
and processing large files such as images and videos as a
whole. To ensure the reliability of streaming requests, Table 1
provides the three different consistency guarantees available
for data ingestion or stream processing. Note that Mes-
sage Queuing Telemetry Transport (MQTT), a lightweight
publish-subscribe messaging transport protocol, provides a
real-time and reliable messaging service and has also defined
similar QoS levels. QoS level 0, level 1, and level 2 are at most
once, at least once, and exactly once respectively. QoS level
0 acts as a best-delivery mechanism, QoS level 1 waits for
the receiver’s PUBACK packet and retransmits it if it is not
received, and QoS level 2 sends a sequence of four messages
to guarantee exactly once reception.

B. STREAMING

Stream processing engines/platforms (such as Spark Stream-
ing, Apache Flink) enable strictly ordered and exclusive mes-
sage passing while allowing computational logic to be applied
to message streams [52]. In a streaming-based communi-
cation pattern, the ordering of events is important so that
behaviour can be analyzed based on the sequence of ordered
events. Streaming is most suitable for stateful applications
and OLAP-oriented use cases (e.g. BI, dashboards, ML, etc.).
Some examples are user behaviour analysis, anomaly detec-
tion and web traffic log analysis. In streaming, the loss of
data can be tolerated in some parts as long as the correct

VOLUME 10, 2022

E. Zeydan, J. Mangues-Bafalluy: Recent Advances in Data Engineering for Networking

IEEE Access

ordering of events is maintained. This is because stream
processing systems provide fault tolerance and retries by
rewinding the stream and replaying each event from the point
of failure or occurrence of an error [53]. Apache Storm [54] is
a distributed stream processing framework designed for both
batch and distributed streaming data processing. Libraries of
processing frameworks such as Spark Streaming (an exten-
sion of Spark’s API [55] for stream processing), Apache Flink
(using DataStream API for bounded (finite size)/unbounded
(infinite in size) streams) also have data ingestion capabil-
ities. Spark Streaming uses a micro-batch architecture for
continuous data processing that can ingest data from Apache
Flume, TCP websockets, or Kafka producers. Spark relies on
exactly-once processing to ensure correctness.

Apache Pulsar'® has recently emerged as a competing
technology to Kafka. Pulsar has similar features to Kafka
and acts as a distributed pub-sub messaging system with
some differences in architecture, performance, and features.
Pulsar can also integrate with full-fledge stream processing
frameworks like Spark and Flink. On the other hand, Pulsar
offers more flexibility as it uses a layered design compared
to the monolithic design of Kafka. For example, Kafka uses
Zookeeper (with plans to remove it in future releases with
a new controller metadata quorum) and the Kafka broker
itself (a two-tier architecture that tightly couples storage
and serving), while Pulsar requires three distributed systems:
Zookeeper, Apache Bookkeeper (three-tier architecture), and
also RocksDB for certain storage tasks. The computations are
performed on a broker in one tier and the stateful storage
is managed in another tier (Bookkeeper). Therefore, Pulsar
aims to separate serving and storage in different tiers and
provide both queuing (messaging) and streaming capabilities
in a single system. To achieve this, Pulsar offers four types
of subscriptions, depending on the application’s ordering and
consumption scalability requirements:

1) Exclusive subscription: Only individual consumers

may subscribe.

2) Failover subscription: Multiple consumers may sub-
scribe to a single topic.

3) Shared subscription: Messages are delivered to mul-
tiple consumers in a round-robin fashion. This allows
the number of consumers to scale beyond the number
of partitions.

4) Key_Shared subscription: Multiple consumers can
join the same subscription and message delivery will
be shared among consumers that have the same key.
It allows higher scaling as well as order guarantees at
the key level.

For messaging/streaming applications, exclusive and failover
subscription modes are most suitable for scenarios where
partition level order guarantees are needed, while queuing
applications can use shared and key shared subscriptions [56].

10https://pulsar.apzu:he.org/, accessed December-2021

VOLUME 10, 2022

C. USE CASES AND REQUIREMENTS

During data ingestion, data enrichment, filtering, aggrega-
tion, transformation, etc. can also be performed for better
use in sinks. Stream-based architectures have been shown to
provide a better architectural foundation for many use cases
in the industry including the use case for fraud detection [57].
In the telecommunications domain, the authors in [37] have
provided several use cases for the application of streaming.
Within the traditional telecommunication landscape, there
are several components within the OSSs, Business Support
Systems (BSSs), and OSS-BSS integration modules. The
OSS/BSS landscape covers various functionalities across
mediation, billing, CRM, e-business, data warehouse, ser-
vice assurance, provisioning, etc. [58]. Therefore, the data
ingestion frameworks described in this paper (such as Apache
Kafka) can be used in various ways in these OSS, BSS and
OSS-BSS integration development projects, e.g. in critical
business applications such as payment or fraud detection
applications.

Application requirements may vary depending on real-time
(less than 10 ms), near-real-time (less than a few minutes),
or high-throughput (processing data on the order of PB/day
in a single cluster). At the same time, data ingestion can
be performed with different components: Batch processing
jobs managed by data orchestration engines can be used
for complex processing and deep analytics. On the other
hand, streaming jobs (e.g., Spark Streaming, which con-
sumes data from Apache Kafka streams) can be used for
fast feedback and anomaly detection, sync-async, publish-
subscribe, change data capture, or REST services that expect
data for the data cluster. Various changes can be made in the
data ingestion frameworks to meet these different application
requirements. For example, for applications that require low-
latency, the write-once-read-multiple times (WORM) model
can be used, where a dataset generated or copied from
the source can be used multiple times later for different
analyses [41].

When ingesting data streams, it should be possible to query
the data as soon as it enters the system to enable immediate
actions and insights. For this reason, various preprocessing
analytics such as cleansing, profiling, aggregation or enrich-
ment of the dataset can improve query response time. In the
WORM model, querying can be faster if there is an additional
cost in data entry, for example if each map-reduce job is
entered before the analytic queries. Some of the fast query
systems like Apache Druid [59], HiveQL [60] are based on
the principle of additional cost incurred in data ingestion. For
this reason, before executing queries, each data segment must
be ingested using some map-reduce ingestion jobs. This is
also related to the mutation rate requirements of data. For data
coming from transaction applications, extensive writes must
be performed via Online Transaction Processing (OLTP)
(which incurs additional costs) and for data coming from
OLAP systems, extensive reads can be performed but only
small writes.

34455

IEEE Access

E. Zeydan, J. Mangues-Bafalluy: Recent Advances in Data Engineering for Networking

In the telecommunication industry, there are many use
cases where open source or proprietary/vendor-specific
frameworks for data ingestion are already in use, e.g.
in monitoring, middleware, event hub platforms, and busi-
ness applications (billing, supply chain management, BSS,
B2B products, etc.). Communication of these various enti-
ties in a large enterprise via message brokers has certain
advantages over REST-based APIL In fact, there can be
data ingestion issues when scaling applications over REST-
APIs. As the application grows and more services are added,
complex relationships between services arise, requiring API
connections to be remapped. This also delays the workflow
development and implementation process. Moreover, due to
the synchronous communication structure of REST-based
API’s, when there is an influx of data, i.e., sudden burst
requests, some of the services may operate slowly or even
be unavailable, affecting the reliability of whole applica-
tion [50]. For this reason, message queuing (especially for
streaming applications) can be more robust compared to
REST APIs and scale with the requirements of each appli-
cation [51]. In the case of microservices based architecture,
the ability to use pub/sub systems may be an appropriate
way to inform microservices of the potential events (request)
that may require a reply from the corresponding receiver
(response).

D. OTHER AVAILABLE TOOLS

In addition to the Apache Kafka and Apache Pulsar stream-
ing/messaging tools described above, there are other data
ingestion frameworks that can work at scale [61]-[65].
Logstash and Beats are the core components of Elastic Stack
that are used for ingesting data from any data source and
transferring it to Elasticsearch [61]. Apache Heron is a
real-time stream processing engine that has proven itself at
Twitter for big data [62]. Apache Gobblin!! is a distributed
data integration framework that simplifies data integration
for both streaming and batch data ecosystems. It is used
to extract, transform, and load large amounts of data from
various sources, such as databases, REST APIs, onto Hadoop,
and also simplifies data ingestion, organizational replica-
tion, and lifecycle management. Apache RocketMQ!? is a
distributed messaging and streaming platform. Redis Pub-
Sub [63] is an implementation of the messaging system pro-
vided by Redis. Apache Sqoop [64] is used to import/export
data from/to MySQL databases to/from HDFS in specific file
formats. Apache Camel [65] is an open source integration
framework designed as message-oriented middleware that
provides interfaces for the Enterprise Integration Patterns.
A good comparison of some of the most recent message
queuing systems (Kafka, RabbitMQ, RocketMQ, ActiveMQ,
and Pulsar) can be found in [66]. A curating list of existing
streaming frameworks and applications can also be found
in [67].

1 1https://gobblin.apache.org/, accessed December-2021
12https://rocketmq.apache.org/, accessed December-2021

34456

1) VENDOR SPECIFIC TOOLS

Amazon’s Kinesis Streams,'? (for buffering purposes and
works similarly to Kafka), Facebook’s Puma, Swift, and
Stylus stream processing systems [48], Google’s Cloud
Pub/Sub'* (data ingestion and messaging for event-driven
systems as well as streaming analytics), and Azure’s Event
Hubs,"> ToT Hub,'® Stream Analytics!” are the respective
data ingestion services offered by the IT and cloud giants.
Splunk'® collects and analyzes machine-generated data on a
large scale. As a messaging system, Oracle Enterprise Mes-
saging Service and IBM Websphere MQ are other examples
of event buses for processing asynchronous data streams.

IV. DATA ANALYSIS AND PROCESSING FRAMEWORKS
After data is ingested, it must be analyzed to gain insight so
that resources, services, or assets can be managed more effi-
ciently. The data processing and analysis phase ensures that
this is achieved through various tasks such as data transforma-
tion, enrichment, filtering/deduplication, mapping, cleansing,
updating state, joining, grouping, defining windows, aggrega-
tion, staging, integrity checking and combining streaming and
batch data. Data analysis and processing frameworks gener-
ally fall between data ingestion and data storage frameworks.
All data processing tools first consume data, then process
it, and finally produce results. Batch processing involves
processing large amounts of data, usually stored in data
lakes/warehouse. In this case, the data does not change much
or at all. Moreover, SLAs are loose in terms of processing
time for a given dataset.

In batch processing, the results are obtained slowly but
accurately. In stream processing on the other hand, the data
is constantly changing (e.g., Twitter or Facebook feeds or
weather sensor data in real-time) and is not stored in large
data warehouses. At the same time, SLAs are more rigid
and data processing should be done in real-time to serve
other processes, i.e., no shifts in data processing are allowed
as in batch processing. In streaming, the results can be fast
depending on the requirements, but sometimes they need to
be approximate because of the trade-off between low latency
analysis and efficient use of computational resources over a
distributed infrastructure. For this reason, the paradigm of
approximate computing is used in the literature for streaming
analytics, which allows trading output accuracy for computa-
tional power by analyzing only a subset of the input [68].

A. DATA ANALYTIC CATEGORIZATION
Data analysis can be categorized into four dimensions [71].

13https://aws.amazon.com/kinesis/, accessed December-2021
Mhttps;//cloud. google.com/pubsub/docs, accessed December-2021

15 https://azure.microsoft.com/en-us/services/event-hubs/, accessed
December-2021
16https://azureAmicrosoft.(:omlen—us/services/iot—hub/, accessed

December-2021
]7https://azure.microsoft,com/en—us/services/stream—

analytics/#overview, accessed December-2021
l8https://www.splunk.com/, accessed December-2021

VOLUME 10, 2022

E. Zeydan, J. Mangues-Bafalluy: Recent Advances in Data Engineering for Networking

IEEE Access

TABLE 1. Comparisons of three different consistency guarantees based on reliability requirements of the streaming request.

Consistency
Guarantees

Description

Example
Applications

At Least Once

—The message is pulled once or multiple times

and processed each time (likely duplicates are received).
—During transmission, it is not possible for message to be
dropped or lost, hence the receipt is guaranteed.

—No data is missed.

—Duplicate messages can be allowed and ignored after
further processing considering the timestamps of the records.
—Typical usage at scale

—Scaling service applications
—Tracking a user’s (or device)
location via cell phone (or vehicular) records.

At Most Once

—The message is pulled once (no duplicates are allowed),

hence the message may or may not be received.

—Applicable for use cases where possible missing data is tolerable
—Typical usage at scale

—Periodic sensor data (e.g. temperature,
humidity) sent in high frequency intervals.
—Scaling service applications

Exactly Once

—Message is pulled one or more times but processed once compared

to at least once (no duplicates are allowed).

—Like at least once, receipt is guaranteed, no missing data is allowed.
Hence, there is only one complete successful process.

—Especially useful for one-time processing scenarios such as where exactly
once processing is crucial even when a broker or instance of function fails.
—The complexity of the system increases with exactly

once transmission mode of operation which introduces latency.

—The benefits of exactly-once-processing should be

weight against the drawbacks of additional latency cost.

—Some data stream processing frameworks such as Flink Data Stream,
Spark Streaming can enable exactly once processing at the expense

of increased latency when there is deep pipelines and high volumes of input.

—Critical business infrastructure
—OLTP applications (Transactional
message streaming, billing systems,
payment processing, etc.)
—Mission-critical applications.
—Other guaranteed lossless event
processing applications (Image or video
upload and processing in cloud).

—Distributed transactions at scale is difficult.

o Descriptive analytics is used to understand what has
happened in the past, including the recent past [72].
In this analytics, the data is examined statistically.
Example: An alarm monitoring system has received an
unusually high number of alarms at a telecommunica-
tion provider’s network operation center. Using descrip-
tive analytics can help understand what is going on in
the infrastructure by using real data and corresponding
statistics (alarm timestamp, location, severity, etc.).

« Diagnostic analytics is used to understand why some-
thing happened in the past [73]. It is a step further
to descriptive analysis. For example, if many alarms
have occurred in a telecommunication system, diagnos-
tic analysis helps to understand the root cause of the
alarms, such as power failure or connection error.

« Predictive analytics is used to predict what will happen
or is most likely to happen in the future [74]. In a ML
system, the model is trained and later used for infer-
ence in production systems. For example, an increase in
alarms in network monitoring systems can be predicted
to take preventive measures much earlier before an out-
age occurs, e.g., in transport links.

o Prescriptive analytics is used to recommend actions
to influence outcomes [74]. It is another step further
in predictive analytics. For example, if we know that
alarms will increase due to a transport network failure,
network operators can enable redundant transport links
to route user traffic to a different routing path.

B. MODEL DEPLOYMENT
The frameworks developed in this module also complete the
full cycle of the ML process through tasks such as feature

VOLUME 10, 2022

extraction, distributed Graphics Processing Unit (GPU)-
based model training, model deployment, model serving, and
A/B testing. In practice, the models can be deployed in three
different ways [75]:

1) Offline deployment: The model is deployed in an
offline container and predictions are made ad hoc.

2) Online deployment: The model is deployed in an
online model serving cluster where clients can send
their prediction or batch requests over the network.

3) Library deployment: This case is similar to the online
deployment in a serving container, except that the
model is now embedded as a library and as another
service.

Table 2 summarizes the various choices for ML deployment.

C. STREAM PROCESSING ENGINES

One of the earliest versions of data analysis and process-
ing frameworks was based on the Hadoop’s Map-Reduce
paradigm. As the ecosystem continued to evolve, new and
more advanced versions of Map-Reduce emerged based
solely on batch processing, extending it to streaming applica-
tions as well. In streaming applications, data is continuously
generated from multiple sources and frequently updated.
Moreover, in most cases, the data sources send their infor-
mation simultaneously. Therefore, it is important to analyze
streaming data sources and derive, track, and interpret impor-
tant streaming data quality metrics. In streaming applica-
tions, each data must be accurately processed to preserve its
sequential order in time as well as its relationship with other
data sources. A complex job like streaming with multiple
input data streams and stages usually has many internal states

34457

I E E E ACC@SS E. Zeydan, J. Mangues-Bafalluy: Recent Advances in Data Engineering for Networking

TABLE 2. ML deployment options.

ML Deployment Platforms/ ML Deployment Platforms/
Options Frameworks Options Frameworks
—MLAflow, Kubeflow, (an t_;r (z)r;; };fc?}z;]teecture)
Platforms —-Seldon, Airflow, PyTorch yT y% transf P
Deployment (Open Source) —Cortex*, Metaflow, Model ——Lurbo-transiormers
B . (transformer)
—BentoML Customized
—Convert to ONNX
Model
—Kubernetes Deployments
Container (AWS EKS$¥, GCP GKE) ploy TensorFlow —TensorFlow serving [70]
Orchestration —Docker Swarm [69] Model —Convert to ONNX
—AWS (ECS, Fargate)
— Fas T : T
Dfata. __DVC, Wandb Any Model FastAPT + U\;1*corn
Versioning Deployment —Gunicorn
Le: ML to Deep . —Hummingbird
earning Conversion
MXNet
Model —Convert to ONNX
ONNX —ONNX Runtime (ORT)
Model —Convert to PyTorch model
—Convert to TensorFlow model

and performs more remote calls to other REST endpoints and
databases, e.g., for joining operations.

Streaming can occur in various forms, e.g., socket-based
streaming (connecting to a socket to get data), file-based
streaming (connecting to a file stream to get data), or data
ingestion tool-based streaming (e.g., connecting to Kafka or
Kinesis to get queued messages reliably (i.e., with acknowl-
edgements)). Note that analyzing and processing data in
real-time data enables organizations to make decisions proac-
tively, rather than reactively. Some of the applications of
streaming data include scenarios such as sending real-time
notifications to users via email or push notifications when
events change in their user account, sending sensor data in
vehicles, industrial equipment or machinery for predictive
maintenance purposes, tracking of geolocation of user phones
or vehicles for transportation and supply-chain purposes,
monitoring patients’ vital bodily functions for health pur-
poses, or collecting streaming data and create personalized
products and services for users of an online retail company.
For these various reasons, streaming data analytics is becom-
ing increasingly important for most industries.

Recently, many frameworks have also emerged that can
are suitable for batch (offline data) and streaming (real-time
events) analytics (Apache Spark [55], Apache Flink [76],
Apache Beam,?” etc.) while operating under a unified data
processing layer to perform common computations and
reduce data infrastructure complexity. These frameworks are
known for their extremely scalable data processing capabil-
ities that can analyze petabytes of data while extending to
hundreds of instances. They can also provide different levels
of abstraction. On the other hand, each of these frameworks
has its own strengths and weaknesses.

Apache Spark [55] is a distributed computing platform that
can run standard Extract-Transform-Load (ETL) processes
on Big Data in batch and streaming mode using a set of

27https://beam.apache.org/, accessed December-2021

34458

APIs. It is capable of processing jobs 10 times faster than
its Map-Reduce counterpart. The spark core API is able to
load data from different platforms (e.g. Kafka, Flink, Kinesis,
HDEFS, Amazon S3, Azure Blob, etc.) and write it back
to other platforms (e.g. Hadoop, Elasticsearch, Cassandra,
etc.) after processing the data. The Spark ecosystem is also
extensive and includes a number of libraries that can run on
top of the Spark core and can easily implement and support
various workloads and Spark programs such as BigDL [77]
(which supports inference, transfer learning, and distributed
training), TensorFlowOnSpark®® (which supports inference,
ML pipelines, and distributed training), Deeplearning4j*’
(which supports inference, transfer learning and distributed
training), and DL Pipelines’ (which supports large-scale
inference/scoring, transfer learning, multimodal training, ML
pipeline, and Spark SQL) for DL or Ray for Reinforcement
Learning [78], etc. It can also work on training a model online
using various techniques, including supervised, unsupervised
learning (to ensure that the model is stable) and for online
predictions or running model inference at run time. The core
abstraction in Spark is essentially a dataframe or dataset (in
the latest versions) that can be transformed to perform a
number of operations. Spark Streaming can support flat files,
TCP/IP data, Apache Kafka, Apache Flume [46], Amazon
Kinesis or Twitter, Facebook, and other social media plat-
forms as data sources.

Similar to Spark, Apache Flink [76] can be used for mul-
tiple operations and processes such as filtering, mapping,
or running multiple stream joins on real-time or streaming
data. Flink’s core APIs like DataStream API supports both
bounded and unbounded streams, while DataSet API supports
bounded data sets for batch use cases. DataStream APIs

28https://github.com/yahoo/TensorFlowOnSpalr, accessed December-
2021k

29https://deeplearningélj.org/, accessed December-2021

30https://github.com/databricks/spark—deep—learning, accessed
December-2021

VOLUME 10, 2022

E. Zeydan, J. Mangues-Bafalluy: Recent Advances in Data Engineering for Networking

IEEE Access

TABLE 3. Various options to select different types of window operations depending on use case.

Windows Types

Description

Time-driven Tumbling Windows

Windows

—There is no overlapping between
the windows, e.g. observe strict T
seconds intervals

Sliding Windows

—-Slide the window with the overlapping
time intervals, e.g. monitor activities in
the last T seconds

Session Windows

—Based on the activity, e.g. during
user session until pre-defined
time-out period where user

is inactive.

Data-drive
Windows

—Windows every N elements (count
window) and is only based on counts
of events and is data independent.

allows for large and more sophisticated operations compared
to DataSet APIs. Flink is designed to process streaming data
quickly and accurately with its stateful stream processing
capabilities.

D. WINDOWING OPERATION AND PARTITIONING

There are two main window types that can be applied to the
data stream (see Table 3). For streaming applications, time
spans are critical. The window concepts (tumbling, sliding
and session window) that are mentioned above are closely
related to the time characteristics, which are another impor-
tant concept for data engineering pipeline and frameworks.
In any data processing, the following key concepts of timing
are important:

« Event time: represents the time at which an event is
generated at the source of the system.

« Ingestion time: represents the time at which the event
enters dataflow.

o Processing time: represents the time when an event was
processed/observed in the system.

In an ideal scenario, the interval between event time and
processing time should be zero (real-time applications). How-
ever, this may not be the case for various reasons (e.g. network
congestion, software logic, etc.). Note that depending on the
use case, time characteristics may be important (e.g. fraud
detection, most billing applications).

Unlike Apache Spark Streaming which has time-based
window criteria, Flink provides more powerful window
semantics (both time- and data-driven window options) and
allows to work with data-based or custom window criteria.
Apache Samza [79], developed by Linkedin, is a stream
processing framework for real-time analytics and is well inte-
grated with Kafka. Apache Beam is used to build an execution
pipeline that can implement both batch and stream processing
under a unified programming model. For example, in the case
of model serving, multiple runners such as Spark or Flink can
be executed using Beam’s distributed processing backends.
So, in this respect, it is more of a software development kit
than a stream processing engine. Frameworks such as Apache

VOLUME 10, 2022

Livy3! enable a REST service for executing Spark jobs via
third-party applications.

In order to process large amounts of data, the data must first
be partitioned so that it can be processed in parallel. For this
reason, partitioning is a key concept. It can be done either
in memory or on storage disk to improve performance and
reduce cost. Most data processing frameworks perform par-
titioning in memory (e.g. Spark or Flink). There are several
ways to manage a partition in Spark or Flink. Some of them
are listed in the Table 4. Spark recommends 2-3 tasks per CPU
in a given cluster to keep the level of parallelism high. For
this reason, the recommended number of partitions in a given
system is simply the number of CPUs x[2 or 3].

E. QUERY-BASED ANALYSIS

Using SQL as a common interface for data has many advan-
tages. Query-based engines allow to build applications that
interact programmatically with metastore tables. Many differ-
ent systems provide an SQL interface for streaming and batch
data on different platforms. Originally developed approaches
such as Apache Hive [60], Apache Pig [80], Trino>? and
Apache Impala [81] are used to query large distributed batch
data with SQL-like syntax from Big Data storage systems
such as HDFSs. On the other hand, newer data processing
frameworks like Apache Spark SQL library (supports par-
tial SQL functionalities), Apache Drill [82] (supports writ-
ing SQL queries similar to MySQL, Microsoft SQL Server,
or Oracle), Apache Flink [76], Presto [83], Samza SQL [79],
Apache Kylin [84], Apache Pinot [85] are some examples that
are being used beyond these originally developed approaches
to query data across many dimensions and metrics, various
data sources including Hadoop clusters, NoSQL databases
(Hbase, MongoDB, Cassandra, etc.), file systems/formats
(CSV, Parquet, Avro, JSON, binary files, etc.), and cloud
storage platforms. The graph query languages Cypher [86]
and GQL?? (which are more declarative and easy to read
compared to SQL) are used for graph database queries. Kafka
Streams or ksqlDB [45] is a Java-based library designed to

31 https://livy.apache.org/, accessed December-2021
32https://trino.io/, accessed May-2021

3 https://www.gglstandards.org/, accessed December-2021

34459

IEEE Access

E. Zeydan, J. Mangues-Bafalluy: Recent Advances in Data Engineering for Networking

TABLE 4. Various ways to manage partitions in spark or flink.

Partition

Management Diessiiption

Partition

Management i e

Under this operation, the number
of partitions can be increased or
decreased. This is one ol Spark
feature (transactions.repartition(n)
where n is desired the number
of partitions) and is an expensive
operation since it executes [ull shuffle.

Repartitioning

Partitions elements in
a Round-robin manner to create
equal load per partition.
This is one of Flink’s feature
(stream.rebalance()).

Rebalancing
(Round-robin
partitioning)

avoids a full shuffle. This is one of Spark feature

This operation reduces the number of partitions and

Round-robin partitioning of elements,
to a subset of downstream operations.

from the in-built APIs.
This is one of Flink’s feature
(e.g. stream.partitionCustom(partitioner,())).

partitioning

Coalesce i 2 Rescaling T il
- (transactions.coalesce(n) where n is L T'his is one ol Flink’s feature
desired the number of partitions). (stream.rescale()
This operation uses a user-delined partitioner to
select the target task for each element in case ; a
" ey ¥ 3 : It broadeasts all elements into every partition.
Custom different performance is required

This is one of Flink’s feature
(stream.broadcast).

Broadcasting

Partitions elements randomly according 1o a
Random uniform distribution.

partitioning

ol the system (stream.shuffle()).

This is one of Flink’s feature to avoid mulfunctioning

provide streaming processing applications based on Kafka
in a fault-tolerant and distributed manner. It can provide
full-fledged stream processing capabilities that include con-
sumption of Kafka topics, provision of state information,
basic transformations, filtering, sliding windows, calls to
ML jobs, exactly-once processing, etc. Similarly, ksqlDB
allows processing of records/events using a SQL-like lan-
guage. On the other hand, Kafka Streams is not well-suited
for processing large amounts of data.

Apache Kudu [87] is designed for fast analysis of high
speed data (that is rapidly changing data), and can perform
queries over billions of rows and terabytes of data per second.
In addition, there are several ways to access query-based Big
Data frameworks, such as through a custom shell, a REST
interface, a web interface, or through transport protocols
such as Java Database Connectivity (JDBC)/Open Database
Connectivity (ODBC) drivers, database protocols (MySQL,
Postgres, Hive, etc.), and Remote Procedure Call (RPC)
with Thrift, Protobuf, JSON, XML and so on. Spark’s Thrift
server, for example, enables this functionality by turning SQL
queries into Spark jobs. Apache Arrow>* is a language inde-
pendent big data layout, enables in-memory analytics for fast
processing and movement of data. It essentially enables shar-
ing and serialization of high performance data and serves as
a communication interface. Apache Arrow provides bindings
between many components, e.g. reading a file in a given for-
mat (e.g., in Parquet data format) and converting it to another
format (e.g., Spark dataframe/dataset) for further processing
without conversion issues. Some other frameworks, such as
the Ray architecture [78], are based on Apache Arrow.

34https://arrow.apache.org/, accessed December-2021

34460

1) VENDOR SPECIFIC TOOLS

Google provides Big Data tools like DataFlow,* DataProc,
BigQuery (query engine for static datasets), Cloud AutoML,
etc. as a service to its customers. Amazon offers SageMaker
for ML, AWS Kinesis3® for real-time streaming, Amazon
Athena (based on Presto), and AWS Redshift Spectrum for
interactive query services and EMR. Microsoft offers Azure
Event Hubs.?” Databricks offers Databricks Unified Analyt-
ics Platform as a managed service. Dremio offers a cloud data
lake engine for Big Data queries.

V. DATA STORAGE FRAMEWORKS
Data storage is part of the data pipeline. Storage systems can
be divided into three different systems:

A. RELATIONAL DATABASES

Relational databases consist of constructs (e.g., tables and
rows) and constraints (e.g., primary keys and referential
integrity constraints) and provide both OLTP and OLAP.
For structured data, traditional relational/transactional
databases/systems such as MySQL, PostgreSQL are used for
persistence performance. In these systems, data related to
users (e.g. credentials data from frontend), production and
business systems can be stored. In these systems reading
data in the database is cheaper than writing data to the
database. On the other hand, (horizontal) scaling of these
datasets is a big problem, where with increasing table size or
many concurrent queries, important operators like grouping
or joining become slower (with bad time complexity).

35https://cloud. google.com/dataflow/, accessed December-2021
36https://aws.amazon.com/kinesis/, accessed December-2021

37https://azure.microsoft.comlen—us/services/event—hubs/,
December-2021

accessed

VOLUME 10, 2022

E. Zeydan, J. Mangues-Bafalluy: Recent Advances in Data Engineering for Networking

IEEE Access

B. DATA LAKES

Data Lakes have essentially evolved to complement data
warehouses, which in the 2010s were unable to support
semi-structured and unstructured data. Data lakes can store
more types and amounts of raw data than relational databases,
which have several scaling issues. They are based on unlim-
ited, cheap storage. Unstructured data such as text, docu-
ments, images, videos, etc., semi-structured data such as
web server logs, streaming data from IoT, etc., and data
with high variety, volume, and velocity are stored in Data
Lakes (e.g. in distributed storage systems (Hadoop clusters
HDEFS, Ceph [88]), NoSQL databases (such as MongoDB,
Apache Cassandra (inspired by Amazon DynamoDB [89]),
CouchDB [90], Hbase, CosmosDB), NewSQL databases
(such as MariaDB, MemSQL, VoltDB, InfluxDB, NuoDB)).
Depending on the data models, NoSQL databases can also be
divided into the following categories:

« Graph databases store data as nodes and the connec-
tions between the data are called links or relationships.
Graph data is used to create whole connections of data
that is representations of data elements and their mutual
relationships. In networks, for example, network ser-
vices can be represented as graphs to better focus on
the connections between network components. Graphs
are versatile and can model some systems better than
representations in tabular format. Graph databases (e.g.,
Neo4j [91], Apache Giraph’®) are used by analytics
engines to derive more insights, values and patterns
from networked behaviour. They are particularly useful
for mesh connections in a data lake. Apache Spark’s
API GraphX is also used for graphs and graph-parallel
computations. (Some use cases are social networks,
knowledge graphs, etc.),

o Key-value stores store data as a key-value pair
containing an attribute name (or “key’’) and a value
(e.g., for user profiling use cases). Some examples
are Memcached as an in-memory key-value store used
for read performance [92] and Redis server’? is an
in-memory key-value store that can work as a cache,
message broker, or database,

o Column-oriented databases store data as a set of
columns. (for analytical use cases). Some examples are
Cassandra [93] or Hbase [94],

o Document-oriented databases store data in formats
such as JSON or XML documents. Some examples are
MongoDB,4o Elasticsearch [61], Apache CouchDB.

Data Lakes are designed to be much cheaper, easy to write,
and store large amounts of data. However, it is difficult to
access/read data from Data Lakes because the data may not be
stored according to the analysis requirements and lacks con-
sistency/isolation features. They also have complex system
architectures due to multiple storage systems with different

38https://giraph.apache.org/, accessed December-2021
39https://redis.io/, accessed December-2021

40https :/lwww.mongodb.com/

VOLUME 10, 2022

semantics. On the other hand, recent advances in ML libraries
and data science ecosystem projects (e.g., TensorFlow) are
starting to be integrated into data lakes after data preparation.

C. DATA WAREHOUSES

Data Warehouses have been widely used since the 1980s to
prepare data for business analysis and decision making. They
are specifically designed for SQL analysis and BI that require
a well-defined schema, indexes, etc., for storage with strong
management features (e.g., Atomicity, Consistency, Isolation,
Durability (ACID) transaction support). Data Warehouses are
basically Massively Parallel Processing (MPP) databases that
can handle large amounts of data (usually structured). In a
ETL workflow, data is taken from an operational data system
or source such as a data lake, transformed, and placed into
a data warehouse so that a materialized view of the data
can be created for reports and BI. For analytics purposes,
data warehouses can be used to run queries (usually written
in SQL) over repositories of current and historical data to
gain insights. Data warehouses are useful for long-used data
that does not change or as repositories for more refined
forms of data (enriched, aggregated, etc.). Some examples of
data warehouse tools are Presto and Apache Hive, as well
as Google BigQuery, Amazon Redshift and Snowflake for
cloud native data warehouses and IBM, Oracle, Teradata for
on-premise data warehouses.

D. AVAILABLE TOOLS

The following are some examples of open source databases.
Apache Pinot [85] can be used as a real-time distributed
OLAP datastore and also provides fast OLAP queries on
large datasets with low latency. Apache Hudi*! is a storage
abstraction framework that helps enterprises build and man-
age petabyte-scale data lakes. Hudi enables features such as
upserts and incremental pulls to absorb data changes and
apply them at scale to Hudi Data Lakes. ClickHouse*” is
an open source OLAP column-oriented database, similar to
Druid and Pinot, designed to aggregate as much information
(on the order of several petabytes) as quickly as possible.
TimescaleDB*? is an open-source relational database for time
series data, intended for query-oriented workloads and based
on PostgreSQL.

Delta Lake** (from Databricks) is an open-source storage
layer. It mainly provides ACID transactions for Data Lakes,
Apache Spark and Big Data workloads/engines for interac-
tive, batch, and streaming queries. Databricks has recently
developed a new Lakehouse database paradigm that combines
the benefits of Data Warehouses and Data Lakes into a single
technology [95]. Iceberg® (from Netflix), recently released
by Netflix as open source, is a new table format for storing

41https://hudi.apache.org/, accessed December-2021
42https://github.com/ClickHouse/ClickHouse, accessed December-2021
43https://www.timescale.com/, accessed December-2021
44https://delta.io/, accessed December-2021

45 https://iceberg.apache.org/, accessed December-2021

34461

IEEE Access

E. Zeydan, J. Mangues-Bafalluy: Recent Advances in Data Engineering for Networking

large, slow-moving tabular and analytical datasets. Alluxio*®

provides a distributed storage system and distributed data
orchestration across hybrid clouds. For object metadata man-
agement, Hive metastore takes care of mapping from SQL
tables to files and directories in the storage component. The
Hive metastore service (a binary API based on the Thrift
protocol) is used to update metadata stored in Relational
Database Management System (RDMS) such as MySQL,
MariaDB or PostgreSQL.

1) VENDOR SPECIFIC TOOLS

Amazon offers S3 for low-cost storage in Data Lakes, AWS
Redshift for data warehousing and DynamoDB for database
purposes, Amazon Neptune (as a graph database), AWS Red-
shift and Amazon Aurora (as a relational database), and AWS
Glue for metadata management (similar to the Hive metas-
tore service). GCP also offers several storage options, which
are as follows: Cloud Storage (a service for storing objects,
i.e., immutable data), Cloud Spanner (NewSQL database
with unlimited scale, strong consistency and up to 99.999%
availability), BigTable (a scalable NoSQL key-value database
service for large analytic and operational workloads), Big-
Query (serverless multi-cloud data warehouse), Cloud SQL
(fully managed database service and can manage relational
databases such as MySQL, PostgreSQL), and Cloud Data-
store (NoSQL document database). Microsoft offers Azure
Blob Storage, Data Lake and Cosmos DB. Other proprietary
database solutions include MPP databases (Teradata, Ver-
tica), SAP HANA, InfiniteGraph or Tableau. For metastores
and their management, platforms such as DataHub, Alation
and Collibra can be used. There are also two categories of
solutions for Hadoop:

(i) Hadoop on-premise solutions are Cloudera Man-
ager, Mapr, IBM InfoSphere and Hortonworks. On the other
hand, due to the challenges of managing Hadoop systems
on-premises, most organizations have also invested in Data
Lakes in the cloud.

(ii) Hadoop in-cloud solutions. There are several reasons
for organizations to move to the cloud, including flexibility,
efficiency (performance, durability and cost), security, con-
sistency, easy access to Al platforms, reduced organizational
and engineering overhead, etc. Some examples of Hadoop
in-cloud solutions are Microsoft Azure HDInsight, Amazon
EMR, Google Dataproc, SAP Cloud Platform, Qubole.

E. PRACTICAL ASPECTS

Depending on the technical requirements, there are different
ways to select databases. In the enterprise database layer,
there can be a combination of NoSQL, in-memory, or rela-
tional databases may be present to take advantage of each
strength depending on the use case. For example, if the data
is unstructured, Data Lakes may be chosen; if the data is
structured and the workload is transactional, SQL databases
(in the case of single-node systems), newSQL databases

46www.alluxio.io, accessed December-2021

34462

(in the case of horizontal scalability), or NoSQL databases
can be selected. On the other hand, if the data is structured
but the workload is data analysis solutions such as MongoDB,
i.e. databases offering NoSQL services (in the case latency
requirements in milliseconds) or one of the data warehouse
solutions described above (in the case of latency require-
ments in seconds) can be chosen, depending on the latency
requirements.

There are also various data source formats used commonly
by some Big Data processing systems and platforms to store
data or exchange data. These include columnar data formats
such as Parquet and ORC as well as other various data formats
such as CSV, TXT, JSON, JDBS, Avro, binary files, etc.
Apache Parquet is an open file format for columnar data that
can be used in HDFS to store data along with its schema
information and enable various I/O optimizations (e.g., com-
pression), fast columnar analysis and aggregation. It is the
default data source for many Big Data processing frameworks
and platforms, including Apache Spark for analytics work-
loads. The open file format of Avro data storage is also used
in Apache Spark and Apache Kafka when (de)serializing
messages. The Avro file format is row-oriented (as opposed
to Parquet). It is a framework for serializing data and can
provide direct mapping to JSON, which improves the speed
and efficiency of data processing.

Data applications often access and use hot/warm storage
databases (e.g., Redis) for real-time access, while cold event
data is stored in lower-cost storage devices (e.g., cloud stor-
age, HDFS). Depending on the storage characteristics, there
are also different types of durability. In the persistent type,
the data is not lost even if the cluster fails completely. In
replicated type, the data is not lost even if a limited node
in the cluster fails and in transient type, the data is lost
in case of failures. In most data processing frameworks,
a sharded and persistent database is required that can provide
a control store database responsible for storing metadata
such as task specifications, task dependencies, or critical
system information to recover from failures (i.e., for fault
tolerance purposes). When a node in the cluster fails and
critical information is in danger of being lost, this datastore is
used to regenerate the data by re-executing the tasks required
for lineage-based fault tolerance. These specifications are
typically stored in a control store database (e.g., ZooKeeper
in the Hadoop ecosystem [96] or the global control store in
Ray [78], a cluster of Redis databases).

Finally, note that data storage can also be costly as data
accumulated over years. Therefore, it is desirable to store
more processed smart data than more large raw data, unless
required by regulation.

VI. DATA MONITORING AND VISUALIZATION
FRAMEWORKS

Monitoring and visualization of data plays an important role
in the world of telecommunications. With proper monitoring
and visualization, it is easy to uncover insights and patterns,
understand relationships between observations, or describe

VOLUME 10, 2022

E. Zeydan, J. Mangues-Bafalluy: Recent Advances in Data Engineering for Networking

IEEE Access

trends or seasonality in telecommunication data. Data visu-
alization is traditionally used for regular performance report-
ing to fully explain and present the results of data analysis
or the data itself. It can also serve as an interface for
users to run or compile analytics on data processing and
analysis frameworks (e.g., queries against loaded data) and
visualize the results. Many business decisions are made
on dashboard-based pipelines through daily monitoring and
interpretation of the data itself. Notification services and
alerts, monitoring dashboards using tools like Grafana*’ or
Kibana [61], business intelligence dashboards (drill downs,
top K results), ad hoc query clients/notebooks like Jupyter,
heatmaps and user feedback can all be done during the data
presentation or visualization stage.

Some of the open source tools and frameworks available
for data visualization are as follows. For exploring, visu-
alizing and discovering data through dashboard visualiza-
tion, Kibana from ELK stack [61] provides a free and open
user interface. Grafana is used as an analytics and monitor-
ing tool that allows to monitor infrastructure, applications,
and metrics by connecting to databases. Kiali provides [97]
dashboards, service mesh observability. Gephi*® provides an
open graph visualization platform. Dash*® is a production
Python framework for building web applications and data
visualization apps using Flask, Plotly.js, and React.js. Apache
Superset>® is an open-source visualization tool developed
by Airbnb that is used to visualize analytics results (with
chart types such as word counts, heat maps, boxplots, etc.).
Apache Superset can also be used for queries with Apache
Druid. Apache Druid [59] serves as an analytics database,
but can also be used as a dashboard for quick results on
complicated analytics tasks. As a data application framework,
Streamlit’! can be used to easily create ML and data science
web applications. Metabase’ is another open source tool for
business intelligence purposes.

To monitor data pipelines, entire infrastructure, or cloud
native applications, Prometheus [98], Datadog,’® Sentry>*
provide monitoring services for servers, databases, tools, and
cloud applications. One of the most popular cloud native
monitoring tools is Prometheus. Prometheus can identify
the applications to be monitored (either 3rd party or on-
premise) through its service discovery feature, which can be
scrapped through Exporters. The scraped data can be stored
in local storage to be queried with PromQL or visualized with
Grafana. Prometheus also allows sending alerts to various
notification systems such as email, chat systems, etc. based
on the configured alert rules.

47https://grafana.com/, accessed December-2021
48https://gephi.0rg/, accessed December-2021
49https://dash.plotly.com/, accessed December-2021
50https://supf:rsc:t.incubator.apache.org/, accessed December-2021
51 https://www.streamlit.io/, accessed December-2021
52https://github‘com/metabase/metabase, accessed December-2021
53https://www.datadoghq.com/, accessed December-2021
54https://sentry.io/welcome/, accessed December-2021

VOLUME 10, 2022

1) VENDOR SPECIFIC TOOLS

For reports and dashboard outputs, Tableau, Looker, and
Mode; for embedded analytics outputs, Sisense; for advanced
analytics outputs Thoughtspot, Outlier Analytics, Anodot,
Sisu; for building ML and data science web appli-
cation framework, Plotly Dash; for data visualization,
Google’s Cloud Datalab,> TIBCO Spotfire, MicroStrategy,
Zepl, SAP’s Lumira, Microsoft’s Power BI; for running
high-performance queries on petabytes of structured data to
create powerful reports and dashboards Amazon Redshift and
Vertica; and for monitoring applications and infrastructure in
the cloud, Amazon’s CloudWatch, Google’s StackDriver, and
Microsoft’s Azure Monitor can be used.

VIl. DATA ORCHESTRATION AND MANAGEMENT
FRAMEWORKS

The use and popularity of microservices and cloud/container
orchestration frameworks is increasing due to various ben-
efits such as service discovery or easy horizontal scaling.
There is no sign that the ecosystem of data engineering and
infrastructure is coalescing into a unified, manageable form.
Over time, new distributed databases, frameworks, platforms,
and libraries will be introduced into the ecosystem. Because
of this, data management frameworks can bring everything
together with suitable APIs as these systems evolve into more
complex structures day by day. For example, stream process-
ing jobs are more akin to microservices and thus require sup-
port for managing services and applications including cluster
management, debugging and continuous monitoring. Note
that approaches such as centralized management approaches
(e.g., scheduling) can create a bottleneck in the system that
can only provide a finite amount of throughput (i.e., in terms
of processing capabilities of tasks per second). Therefore,
the importance of automated and distributed resource man-
agement, scheduling, and orchestration is steadily increasing
in the modern data ecosystem. The main goal is to start or
manage computational resources, services or containers with
a single or a set of API calls to reduce operational costs and
complexity.

In data applications, all computations consume and
produce data which must be orchestrated in a data-aware
manner. Several open-source distributed frameworks are
available for distributed orchestration, seamless distributed
execution, workflow definition and execution, resource man-
agement, or resource-aware scheduling of clusters, data cen-
ters, or cloud environments. These frameworks are mainly
used with applications (e.g., Kafka, Hadoop, Elasticsearch,
Spark, etc.) and provide APIs for resource management,
orchestration, elasticity, high availability (or zero down-
time), fault tolerance, and scheduling. Traditional CRON jobs
and other similar solutions such as configuration files are
loosely coupled and do not allow users to formally define
dependencies. Recently developed workflow engines, on the
other hand, allow dependency graphs, proper execution order,

55 https://cloud.google.com/datalab, accessed December-2021

34463

IEEE Access

E. Zeydan, J. Mangues-Bafalluy: Recent Advances in Data Engineering for Networking

consolidated logs, expression of tasks using operators, and
use data pipelines/workflows as a code paradigm.

A. SCALING

The number of data sources that an organization can ingest
and process is growing much faster than the number of
resources for data engineering. In addition, the variance of
data traffic in production systems can be unexpectedly high at
certain times. For these reasons, the system should be scalable
without compromising throughput and latency. Scalability is
the ability of the system to provide a moderate performance
as the load increases (e.g., high volume, high throughput or
high velocity data). Scalability can refer to different dimen-
sions: Processing, Serving or Storage. A scalable architecture
means that the system should continue to function smoothly
even if 1 user or 1 million users access the application. For
systems, there are two ways to scale a database:

1) Vertical scaling (or Scaling up): is done by improving
the Central Processing Unit (CPU), Random Access
Memory (RAM), and storage capacity of the existing
machine in hardware or by optimizing algorithms and
application code in software. This eventually reaches
its limits when the amount of data on a single machine
Srows.

2) Horizontal scaling (or Scaling out): is done by adding
additional machines to the database cluster. Note that
requests in this case not only consume CPU, but also
require network resources. In this case, it is important
to shard the data so that a single query can be processed
on a single machine. Due to difficulties in horizontal
scaling with traditional SQL databases, NoSQL and
NewSQL databases with horizontal scaling options
have emerged. However, they lack strong consistency
guarantees and relational models (see Section V for
details).

The complexity of the scaling process depends on the type
of service that infrastructure provides. There are two types of
services:

« In stateless services, scaling is usually done based on
user traffic and on-demand, e.g., web server applica-
tions. Deploying and scaling stateless services is rela-
tively straightforward.

« Instateful services, consistency of user data across data
centers is critical for scaling, e.g., for scaling databases.
Deploying and scaling stateful services is more difficult
and complex because copies of the database need to be
managed in different data centers. A possible solution to
reduce complexity would be to partition the database and
enable different replication factors in different locations
so that the overall replication factor can be reduced. This
would also help reduce traffic between data centers.

B. PARALLELISM

To increase processing capacity, most data engineering
pipeline frameworks exploit the potential of parallelism.
Parallelism can be either over data or task selected according

34464

to the application. In data parallelism, input data is partitioned
to scale processing (e.g., in low-cost HDFS). In task par-
allelism, multiple tasks (CPUs) are executed over the same
data. In event processing, there are various forms of shuffling
and data exchange capabilities within parallel computing
frameworks. These mainly fall into the following categories:

« Forward or one-to-one: In this case, the data is pro-
cessed with the same node and there is no data exchange
between the nodes of the cluster.

« Broadcast: In this mode, data is broadcast to all nodes
because it must be used by the tasks running on each
node.

« HashKey: In this case, the data is collected/grouped by
key to elegantly distribute the data among the work tasks
of the nodes in a cluster.

+ Rebalance or random: In this case, random repar-
titioning is used when not much is known about the
data. The goal is to balance the distributions between
the nodes to increase the data processing capabilities of
the nodes.

C. MICROSERVICES AND DEPLOYMENT

Microservices and microservices-based architecture are some
of the recent trends that enable flexibility and scalability. Data
orchestration and management teams are adapting them to
run and manage distributed application components. Service
mesh architecture enables microservices to communicate
with each other. Typical types of communication between
microservices can be divided into three dimensions:

1) Event-driven based on platforms such as the mes-
sage/event bus,

2) Orchestration based on REST callouts using some
frameworks such as Apache Camel,

3) Orchestration based on some workflow engines like
Apache AirFlow.>®

In microservices architecture, different deployment patterns
are possible [99]:

1) All-at-once deployment: Making changes on top of
existing configurations, terminating the old version and
releasing the new version. So, the deployment is imme-
diate. This pattern is better suited for workloads with
low concurrency.

2) Blue/Green deployment: Allows traffic to be moved
to a new live environment (green) while the old pro-
duction environment (blue) is still kept warm. Later,
the transition to the new version can take place. This
pattern is better suited for workloads with medium
concurrency.

3) Canary/Linear Deployment: Deploying a small num-
ber of requests for a new software version to analyze
the impact on a small number or subset of users. Then,
full rollout can be done. This pattern is better suited for
workloads with high concurrency.

56https://airﬂow.apache.org/, accessed December-2021

VOLUME 10, 2022

E. Zeydan, J. Mangues-Bafalluy: Recent Advances in Data Engineering for Networking

IEEE Access

Kubernetes also has similar rollout deployment strategies
such as Recreate, Ramped, Blue/Green, Canary, A/B testing
and Shadow.>’

D. CI/CD AND IaC

Continuous Integration (CI)/Continuous Development (CD)
are terms that have been common in the industry for a
decade. Platform engineers and DevOps teams are contin-
uously developing infrastructure tools to improve engineer
productivity. At the same time, data applications should
also be flexible enough to be deployed by CI/CD platforms
for testing and development purposes. For data engineering
applications, integration can be done in three modes:

1) Data integration: This is related to data movement
patterns. It can take place either at the node level or
at the cloud level, and ETL is an example of this. Data
integration is challenging as it has to deal with hetero-
geneous data sources with different sampling rates and
data generation models.

2) Application integration: uses APIs such as REST,
SOAP, etc. between applications and their internal sub-
scriptions. In application integration, the amount of
data exchange is not as large as data integration.

3) Event integration: combines the benefits of applica-
tion and data integration, where a significant amount
of data is also exchanged when events are triggered
between applications.

Infrastructure as a code (IaC) enables scalable infrastruc-
ture deployment via standardized interfaces such as YAML or
JSON files. IaC can be implemented via containers (e.g. via
Docker, LXC [100]), container orchestration (e.g. via Kuber-
netes [101], Docker Swarm [69], Apache Mesos [102]) and
infrastructure provisioning (e.g. via Terraform). Two different
models for IaC or automation are:

1) Declarative model requires the user to define a desired
state to be provisioned by Kubernetes. The relationship
between the infrastructure and the application is declar-
ative. Applications make declarative requests to the
infrastructure (e.g., via YAML, a data serialization lan-
guage and easily understood by humans and machines)
with implementation details abstracted by the under-
lying framework (e.g., the Kubernetes cluster). One
of the main advantages of this model is that once the
plan is created, it is the responsibility of the framework
to develop and execute the work plan in a way that
is optimized for the complexity of the infrastructure.
This ensures the transition from the infrastructure as
code paradigm to the infrastructure as data paradigm.
Any new application can be easily enriched using the
declarative tag of the declarative YAML management
file.

2) Imperative model requires users to specify com-
mands or plans in a specific order to achieve and

57https ://github.com/ContainerSolutions/k8s-deployment-strategies,
accessed December-2021

VOLUME 10, 2022

maintain a desired state, such as the service provided by
Apache AirFlow. Although this model provides flex-
ibility, imperative models have scaling issues as the
number of components increases and complexity grows
exponentially.

E. AVAILABLE TOOLS

For highly reliable distributed coordination of multiple
machines in a cluster, distributed key-value stores such as
Apache Zookeeper [96], etcd,”® Consul®® provide reliable
data stores for distributed system access. They can per-
form functions such as leader elections, fault tolerance for
machine failures, network configuration automation, and ser-
vice discovery. To ensure strong consistency and replication,
consensus algorithms and protocols such as Raft consensus
algorithms and Paxos protocols are used to determine the
order in which data is stored and when it becomes visi-
ble to users. Data management tools such as Deequ®® are
particularly useful for dealing with corrupt or bad data in
large datasets. MLflow [103], is an open source ML life-
cycle platform, is used to manage the E2E ML lifecycle so
that model-based experiments and quality metrics can be
managed, tracked, and reproduced. Kubeflow [104] provides
a data automation framework for Kubernetes clusters and
enables connectivity with a variety of databases and services.
This enables a highly modular design. Weights & Biases®!
is another related developer tool for ML. These ML lifecy-
cle management frameworks act as CI/CD tools in the ML
domain.

Some of the most popular systems for defining workflows
and programmatically scheduling jobs/tasks are Apache
Mesos [102] and Apache YARN [43] (for running the cluster
and monitoring executed jobs, e.g. Cloudera/Hortonworks
run Spark jobs using YARN), Apache AirFlow (provides
workflow-level abstraction for building data pipelines using
Directed Acyclic Graphs (DAGsS)), Dagstelr62 (for data
orchestration), Prefect® for automating data flows and creat-
ing, executing and monitoring millions of data workflows and
pipelines, Spotify’s Luigi,®* LinkedIn’s open source sched-
uler Azkaban,% and Apache Oozie [105] (for distributed
coordination and scheduling of workflows in Hadoop clus-
ters), Apache TEZ [106] (for building complex directed
acyclic graphs of tasks to process data), Apache Ambari®
(provides a management interface), Kubernetes [101] (pro-
vides high flexibility as the dominant container orchestration
framework), OpenShift(’7 (provides a web console to run

58https://etcd‘io/, accessed December-2021
59https://www.consul.io/, accessed December-2021
60https://github.com/awslabs/deequ, accessed December-2021
61https://Www.vvandb.corn/, accessed December-2021
62https://dagster.io/, accessed December-2021

63 https://www.prefect.io/, accessed December-2021
64https://github.com/spotify/luigi, accessed December-2021
65 https://azkaban.github.io/, accessed December-2021
66https://ambari.apache.org/, accessed December-2021
67https://WWW.opensl'lift.com/, accessed December-2021

34465

IEEE Access

E. Zeydan, J. Mangues-Bafalluy: Recent Advances in Data Engineering for Networking

tasks directly), Yunikorn® (resource scheduler for container-
ized systems), and Docker Swarm. Apache Calcite [107] is
a dynamic data management framework and is used to as
an intermediary between applications and data stores and
data processing engines. Amundsen® (from Lyft), Meta-
cat’" (from Netflix), DataHub’! (from Linkedin) provide
both metadata management and data discovery options to
improve the productivity of data professionals interacting
with data. Some of these tools (such as Kubernetes) are also
important tools for managing and deploying containers (e.g.,
container lifecycle and resources, or facilitating application
development through container orchestration) in the context
of network operations and management in 5G networks.

Some common JaC and automation tools that can help
eliminate the risk of human error, increase the speed of
code development speed (by reliably building, testing, and
deploying software), and reduce costs are Ansible,’”> Chef”3
and Puppet’* for configuration management, Terraform’>
(infrastructure deployment orchestration tool) and Jenkins,”®
GitHub Actions’’ as part of the CI/CD chain. These tools
have significantly improved the way applications and work-
flows are deployed and managed within the infrastruc-
ture through configuration (installing packages, configuring
servers, and deploying applications to the infrastructure) and
orchestration of the infrastructure. Great expectations pro-
vides data quality, documentation, profiling and testing.”®
Finally, the literature also provides an excellent curated
list of data pipeline frameworks, libraries’® and workflow
engines.

1) VENDOR-SPECIFIC TOOLS

Amazon offers AWS Elastic Beanstalk, Amazon ECS (as a
container orchestration framework), and AWS CloudForma-
tion for infrastructure provisioning and IaC tool, CodeDe-
ploy for deployment, CodePipeline for unit and integration
testing, CI/CD pipeline, Microsoft provides Azure Resource
Manager (ARM) and Pipelines for the deployment and man-
agement service and CI/CD Pipeline over Azure, TestPlans
for unit and integration testing, Google provides Google
Composer as a managed Apache Airflow service on GCP

6Shttps ://github.com/apache/incubator-yunikorn-core, accessed

December-2021
69https://WWW.amundsen.io/, accessed December-2021
70https://github‘com/N etflix/metacat, accessed December-2021
71https://github.(:omllinkedin/datahub, accessed December-2021
72https://www.ansible.com/, accessed December-2021
73https://www.chef.io/, accessed December-2021
74https://puppet.com/, accessed December-2021
75 https://www.terraform.io/, accessed December-2021
76https://www. jenkins.io/, accessed December-2021
77https://docs. github.com/en/actions, accessed December-2021

78https ://github.com/great-expectations/great_expectations, accessed
December-2021

79https://github.com/pditommaso/awesome-pipeline, accessed
December-2021

80https ://github.com/meirwah/awesome-workflow-engines, accessed

December-2021

34466

and Google Kubernetes Engine (GKE),%! Deployment Man-
ager for infrastructure automation, Cloud Build for deploy-
ment, unit and integration testing, CI/CD pipeline, Puppet
Enterprise also offers Puppet as configuration management,
HashiCorp offers Terraform for deploying and managing any
cloud, infrastructure or service. Pulumi provides a modern
Infrastructure as Code for building, deploying, and managing
infrastructures in any cloud. For visibility and observability
of data pipelines, Unravel, Fiddler and Acceldata can be used.
For data modeling and analytical engineering workflow, dbt
(Data Build Tool) and LookML can also be used to transform
data into data warehouses more efficiently.

Considering all the above descriptions, starting from data
connection to data orchestration, Table 5 shows the summary
of characteristics of open source frameworks in the data
engineering pipeline and the corresponding related works.
In addition, some of the most important tools and their con-
nection to the components of the data engineering pipeline
framework are described in Fig. 2.

VIIl. RELATION WITH DATA SCIENCE FRAMEWORKS
With the advent of DL and new computational workloads,
scaling and distributed computing are becoming increasingly
important in AI/ML. Data Engineering also helps data science
developers build distributed computing frameworks so that
they can focus on developing their own AI/ML algorithms
instead of dealing with the intricacies of distributed com-
puting. On the other hand, AI/ML based platforms build on
Data Science libraries play an important role. For example,
in a processing pipeline, data scientists work on defining
and preparing the model, and data engineers implement the
aspects that serve the model. For this reason, the ability
to interact with AI/ML models (export, import, etc.) from
data science tools is important. In the ecosystem, there are
several open source platforms for AI/ML. Model training and
online prediction, inference layers can be done through these
special projects developed for a number of different important
workloads.

A. DATA SCIENCE FRAMEWORKS

Some of these related Data Science projects and tools can
be summarized as follows: For building Machine Learning
applications, Spark MLIib (Apache Spark’s scalable machine
learning library) [110], statistical modeling libraries (scikit-
learn (machine learning in Python) [111] and statsmodel®*),
Apache MADIib (Big Data Machine Learning in SQL) [112],
Aerosolve®> (a machine learning package designed for
humans), Mahout®® for developing scalable, performant ML
applications and Knime®’ as an open-source platform for data
analytics.

81 https://cloud.google.com/kubernetes-engine, accessed December-2021

84https://www.statsmodels.org/stable/index.html, accessed December-
2021

85 https://github.com/airbnb/aerosolve, accessed December-2021
86https://mahout.apache.org/, accessed December-2021
87https://WWW.knime.com/, accessed December-2021

VOLUME 10, 2022

E. Zeydan, J. Mangues-Bafalluy: Recent Advances in Data Engineering for Networking

IEEE Access

TABLE 5. Characteristics of open-source frameworks in data engineering for networking and corresponding related works.

Frameworks

Characteristics

Related Works

Data Connection

— API service to receive data from its sources.
— Used to put data into temporary storage
places (e.g. queues, databases)

Kafka Connect, Flume
NiFi, Falcor
REST APIs, GraphQL

Data Ingestion

Act as distributed pub-sub messaging system
Enables ingestion of data into cluster

Manage data (transformation and enrichment)
Messaging system (asynchronous and in real-time)
Avoids overwhelming the data pipeline

Spark Streaming, Gobblin
RabbitMQ, Heron
Kafka, Pulsar
Storm, RocketMQ
Flink DataStream

Analyze data in batch, interactive, streaming or real time
Model/Inference/Prediction Serving
Distributed data structures (RDDs, DataStreams and DataSets)

Map-Reduce, Tez
Spark, Flink
Samza, Beam

Continuous log stream processing (parsing, joining, augmenting)
Real-time application performance monitoring
Generate new derived data as the results of queries

from logs, metrics, web applications, data stores

Logstash, Splunk
Timber, Prometheus
Sentry, Fluentd*
Filebeat, Heka, Fluent Bit

— Enables query capabilities over big data
(e.g. Hadoop cluster), NoSQL databases and cloud storage

Provide OLAP capability to big data
Supports SQL (or a subset) functionality
Streaming, batch and hybrid modes

Hive, Pig
Spark SQL [55], Presto [83]
Flink SQL [76], Drill [82]
Kylin [84], Arrow
Pinot [85], Samza SQL

Execute search engine over big data

Elasticsearch, Solr [108]

Processing
Data Processing
Log
& Analytics
Analytics
Query
Search
Analysis

Classification, Clustering, Regression,
Deep Learning, Distributed Model Training.
Distributed Reinforcement learning, Hyperparameter search

TensorFlow, Deeplearning4j
Spark MLIib [55], PyTorch [109]
BigDI, RLIib

Data Storage

Graph databases
In-memory and analytics databases
Distributed storage systems

Neo4j, Giraph
Redis, ClickHouse
HDFS [41], Ceph [88], Hbase [94]

Data Visualization
and Monitoring

1D, 2D and 3D visualization
Temporal and spatial analysis
Monitoring pipelines, dashboards, alerts and notifications

Kibana, Grafana
Superset, Druid
Graphite*, Dash

Management,
Orchestration
and Scheduling

Resource management, defining and scheduling workflows/tasks

and services across cluster, data center and cloud
—Container orchestration, auto-scaling

YARN, MESOS, AirFlow
Kubernetes, Docker Swarm
YuniKorn, LXC

Data Store

Da onne Data Ingest
kafka. Sporf(z
Connect ”

Streaming
/-\ @o BB
3, "V {C] _-;'-_T '
BRabbit

(‘ HERON
Bkafka

e~ ZXPULSAR
APACHE
STORM’
Graph
API
Apache Flink
‘®‘ RocketMQ

Processing
.Neoqj | 578 spaik’ @
{3 @ samza 3 Flink
I_ . B,
X - gstash =7
R4 £ Splunk> Beats
o P H- ’ Prometheus ‘S&SENTRY
e redis fluentd —
- _presto.i=" RS
ClickHouse & =
ARROW (P Apache Pig
& pinot » "
il
S - - elasticsearch SOU",%
@ ceph |
o B O PyTorch i
EHsE A g pLay y lib
1 . B ocxw
TensorFlow nlgm] SpC:ArL,ED

Data
Managament

' CEREED
Y AR\
kibana -
W5 MESOs
Apa_che
Grafana Airflow
Superset kubernetes
druid e

»

YUNIKORN

@ LXC

m plotly | Dash

FIGURE 2. Some key data engineering tools and their connection to the components of the data engineering framework.

To build and train models with DL, libraries and frame-
works such as TensorFlow (an E2E open source machine
learning platform) [113], Deeplearning4j (DL for Java),

VOLUME 10, 2022

on C) [114], PyTorch

Torch (an open-source machine learning library based

(an open-source machine learn-

ing framework that accelerates the path from research

34467

IEEE Access

E. Zeydan, J. Mangues-Bafalluy: Recent Advances in Data Engineering for Networking

prototyping to production deployment) [109], Chainer [115],
a Python-based DL framework that aims for flexibility and
intuitiveness over neural networks, Sonnet®® a library built
on TensorFlow 2.0 to provide simple, composable abstrac-
tions for ML research, BigDL [77], a distributed DL frame-
work for Apache Spark, Apache Singa [116], which focuses
on distributed training of DL and machine learning mod-
els, Apache MXNet [117], an open-source DL framework
suitable for flexible prototyping in research and production,
Deeplearning.scala,? for building complex neural networks,
Sparkflow,” an implementation of TensorFlow on Spark,
Theano [118], Caffe [119], Keras [120], PaddlePaddle,”!
ONNX’? to support DL model creation and deployment,
Microsoft’s Cognitive Toolkit (CNTK)?? for distributed DL
and more recently Ludwig,®* JAX® and Trax”® are used.

For developing Reinforcement Learning applications,
Ray provides (a fast and simple framework) RLIib for
building and running distributed, parallel, scalable reinforce-
ment learning-based applications [121], Stable Baselines®’
to produce a set of improved implementations of rein-
forcement learning algorithms based on OpenAl Baselines,
Garage”® to develop and evaluate reinforcement learning
algorithms, Coach,” a Python-based reinforcement learning
framework that includes implementations of many state-of-
the-art algorithms, Tensorforce, % a TensorFlow library for
applied reinforcement learning, ChainerRL, a deep reinforce-
ment learning library that includes several state-of-the-art
deep reinforcement algorithms in Python with Chainer [115]
(a flexible DL framework), OpenAlI [122]’s Gym, Retro and
Neural MMO frameworks (environments for training agents
with reinforcement learning, e.g. DotA as an application),
Unity’s ML agents, Microsoft’s Project Malmo and Deep-
Mind’s Lab and Control Suit (e.g., 3D learning environ-
ment, RLax library,'! AlphaGo as an application) are also
developing their own new distributed reinforcement learning
algorithms to be implemented or building their own infras-
tructure/tools for their applications to achieve the required
flexibility and performance.

For Distributed Training frameworks such as
Horovod [123] along with TensorFlow, Keras, PyTorch, and

88https://github.com/deepmind/sonnet, accessed December-2021

89https://github.com/ThoughtWorksInc/DeepLea.rning.scala, accessed
December-2021

90https://github.com/liff;aomic/sparkﬂow, accessed December-2021

9l https://github.com/PaddlePaddle/Paddle, accessed December-2021

92https://onnx.ai/, accessed December-2021

93 https://docs.microsoft.com/en-us/cognitive-toolkit/,
December-2021

94https://github.com/uber/ludwig, accessed December-2021

95 https://jax.readthedocs.io/en/latest/notebooks/quickstart.html, accessed
December-2021

96https://github.com/google/nrax, accessed December-2021

97https://stable—baselines.readthedocs.io/en/master/index.html, accessed
December-2021

98https://github.com/rlworkgroup/ garage, accessed December-2021

99https://github‘com/N ervanaSystems/coach, accessed December-2021

1oohttps://tensorforce.readthedocs.io/en/latest/, accessed December-2021

101https:// github.com/deepmind/rlax, accessed December-2021

accessed

34468

Apache MXNet, Distributed TensorFlow, for Model Serving
(takes the trained model and sends predictions or recom-
mendations to specific applications) tools/frameworks such
as Clipper [124], which is used for low-latency prediction
serving systems for ML when integrated with client systems,
TensorFlow Serving, TorchServe,!02 Ray Serve, or Seldon!03
can be used depending on use case that requires low-latency
model deployment for large-scale prediction services. For
Hyperparameter Search (either via manual search, grid
search, Bayesian optimization, evolutionary optimization or
random search), Advisor!* (which is an open source imple-
mentation of Google’s Vizier) is used for the hyperparameter
tuning system for black-box optimization, Hyperopt [125]
and Tune'® are used for distributed hyperparameter opti-
mization and scalable hyperparameter tuning, respectively.
For NLP, tools such as spaCy [126], Hugging Face [127],
AllenNLP [128] and more recently GPT-3 [129] can be used.

1) VENDOR-SPECIFIC TOOLS

Proprietary software such as SAS, Datatron, ModelOp, etc.
can also be integrated with various products and services
for ML and model serving purposes. Some companies like
Cloudera, Databricks, Dataiku, Domino Data Lab, etc. have
also been offered data science workbenches/platforms as ML
service.

B. MACHINE LEARNING PLATFORMS IN INDUSTRIAL
ENVIRONMENTS

Several startups and cloud companies offer E2E ML tools and
platforms, including IT and cloud giants Google, Amazon
and Microsoft. The following is an overview of ML platforms
used in industrial environments:

o Uber uses Michelangelo [75] as its internal ML-as-a-
service platform. It consists of open-source components
such as HDFS, Kafka, Spark, Samza, Cassandra with
libraries such as MLLib, XGBoost and Tensorflow.

« Airbnb uses Bighead, a combination of Zipline data
management tool, the containerized Jupyter notebook
service Redspot, and the Bighead library for data
pipeline abstractions, transformations, and data track
lineage.

o Netflix uses Metaﬂow,106 a Python-based framework
built on AWS, to handle model training and data man-
agement by running DAGs on an AWS Serverless
Orchestration platform.

« Lyft has open-sourced its cloud native platform called
Flyte,'?7 that can invoke machine learning and opera-
tions together, termed as ML operations (MLOps).

o Amazon offers SageMaker as a complete solution for
ML with the latest libraries such as TensorFlow, Keras,

102https://github.com/pytorch/serve, accessed December-2021

103 https://www.seldon.io/, accessed December-2021
l04https://github.com/tobegit’jhub/advisor, accessed December-2021
105 https://docs.ray.io/en/latest/tune.html, accessed December-2021
106https://metaﬂow.org/, accessed December-2021
l07https://lyft.github.io/ﬂyte/, accessed December-2021

VOLUME 10, 2022

E. Zeydan, J. Mangues-Bafalluy: Recent Advances in Data Engineering for Networking

IEEE Access

1l) Data 1) Data
Ingestion Connection
: : Service Management AlfML
| Policy | | Config || Intent | 2 Dchastition Non-RT RIC
Al o1
| MobilityMng | | aoSMng | Trained Model | | Iterfereence
IIl) Data Analysis &
Processing

FIGURE 3. A high-level illustration of the O-RAN architecture with RAN intelligent controllers (near real-time and
non real-time), control and distributed units, and mapping with data engineering pipeline components.

PyTorch, and MXNet and model deployment options in
the cloud or at the Edge.

o Microsoft uses Azure Machine Learning Studio which
supports a full range of frameworks including Ten-
sorFlow, Keras, PyTorch, MXNet scikit-learn, and
XGBoost.

o IBM uses Watson ML to support various frameworks
on both CPUs and GPUs in collaboration with its own
products.

o Databricks uses MLflow [103], an open source plat-
form for managing the lifecycle of ML which includes
four components: MLflow Tracking (for recording and
querying experiments), Projects (for packaging code and
running it on any platform), Models (for deploying ML
models across environments) and Model Registry (for
discovering, storing, annotating, and managing models
through a central repository).

« Intel Analytics Zoo,'%® which provides an E2E analytics
and Al platform (high-level pipeline APIs, integrated
DL models, etc.), is available as open source.

o Apple provides Overton [130] to build, monitor and
improve ML systems in production environments.

o Facebook uses FBLearner [131] as a ML platform to
automate tasks such as training on clusters and devel-
oping custom ML code.

« Google offers the Cloud AI Platform'” to develop
Al applications and run them both on GCP and
on-premises.

IX. NETWORK SERVICE MANAGEMENT AND
ORCHESTRATION OVERVIEW

Thanks to advances in network services, new applications
such as the tactile internet, holographic-type communications

108https://analytics—zoo.github‘io/O.Z.O/, accessed December-2021
109https://cloud. google.com/ai-platform, accessed December-2021

VOLUME 10, 2022

and teledriving are expected to emerge in the next decade.
Many of these E2E services also require high levels of
precision which has significant implications for the man-
agement of these networks and services. Managing and
maintaining distributed computing functions in a network
environment with elevated levels of service requirements
requires hundreds of operations at any given time. This makes
the human-centric and standard network service manage-
ment and operation solutions already used inadequate and
ineffective.

Therefore, automation of network management and ser-
vice deployment is critical and there is a need for unified
network Lifecycle Management (LCM) and orchestration
across multiple administrative and technological domains.
Network service orchestration enables network operators to
connect and configure systems and multiple network ele-
ments through a optimized workflow. This enables the deliv-
ery of optimal services to users and contributes to automation
by coordinating interactions and service flows across multi-
domain, multi-layer, multi-vendor networks. Approaches that
rely on intelligent automation of network operations (e.g.,
via the emerging field of Zero Touch network and service
management (ZSM) [132]) can make a big difference when
multiple network functions need to be owned, maintained,
and operated at scale throughout the network.

A. DIFFERENT ASPECTS OF NETWORK SERVICE LCM

Network service LCM addresses the necessary operations to
create, deliver, manage and orchestrate network services to
meet the diverse needs of end users and enterprises over net-
work infrastructures. The goal is to guarantee autonomic net-
work service assurance and dynamic service delivery. Some
of these operations include network functions deployment,
provisioning, onboarding, updating on the fly, storing, ensur-
ing zero downtime, demand-based scaling in an intelligent

34469

IEEE Access

E. Zeydan, J. Mangues-Bafalluy: Recent Advances in Data Engineering for Networking

and cost-efficient manner, supplying suitable infrastructure
resource orchestration, anomaly detection at run time. These
operations are achieved via software-based/virtualized net-
work functions or cloud native microservices deployed across
fog/edge/cloud infrastructure.

The ETSI-defined cross-domain E2E network service
LCM is divided into three main processes (see [133] and
references therein):

e Service on-boarding procedure is used to add new ser-
vice model to the E2E service management catalogue.
Some examples of service management include E2E
service orchestration (to control the service model and
maintain the service catalogue), domain orchestration
(to send alerts when changes are made to the catalogue
and to request missing entries in the catalogue), ZSM
integration fabric (to manage subscriptions, data gener-
ation and consumption) and ZSM data services (to store
data and provide data persistence).

o Service fulfilment procedure is used to manage E2E
service instances from instantiation to termination. The
following processes are provided for the provisioning
of E2E service instances. (i) Service instantiation (cre-
ates an E2E service instance), (ii) Service activation
(activates an E2E service instance), (iii) Service con-
figuration (modifies the configuration of an E2E ser-
vice instance), (iv) Service deactivation (deactivates an
E2E service instance), (v) Service decommissioning
(removes an E2E service instance and releases all its
resources), (vi) Update E2E inventory (keeps up-to-
date information about resources and domain service
instances).

o Service assurance procedure is used to ensure that E2E
service level requirements are met. The following pro-
cesses are provided to deliver E2E service assurance.
(1) Service assurance set-up (assures an E2E service),
(i) Service quality management (manages service qual-
ity), (iii) Service problem management (investigates
cross domain service problems), (iv) Service assurance
tear-down (defines procedures to tear down the collec-
tion of information).

B. MANAGEMENT PLATFORMS
In this section, we describe two of the most popular manage-
ment and orchestration platforms.

1) ONAP

Open Network Automation Platform (ONAP) project lever-
ages SDN and NFV technologies to improve network service
deployments and provisioning.!'? It is designed to provide
a unified framework for monitoring solutions to observe
and verify E2E SLAs and Key Performance Indicators
(KPIs). ONAP provides a scalable and distributed approach
to managing multi-site and multi-Virtualized Infrastructure
Manager (VIM) resources. This is achieved through the

11Ohttps://www.onap.org/, accessed February-2022

34470

components of the so-called Data Collection, Analytics
and Events (DCAE) module, which can be geographically
distributed across multiples sites and hierarchically inter-
connected. Data monitoring at different levels is usually done
with open-source software such as Prometheus, which can
distribute its functionalities across geographically separated
sites.

Synchronization messages and local processing results are
exchanged between different sites using a submodule called
Data Movement as a Platform (DMaaP). This submodule
supports both file-based and message-based data exchange
via the publish & subscribe paradigm.

2) OPEN SOURCE MANO

Open Source MANO (OSM) is a collaborative open source
project to develop an NFV Management and Orchestration
(MANO) stack that is conforms to the European Telecom-
munications Standards Institute (ETSI) NFV Information
Models and APIs.'!! The focus is on the Network Service
Orchestrator (NSO) part of ETSI MANO NFV Orchestra-
tor (NFVO). Network slice support, LCM of Network Slice
Instances (NSIs), monitoring capabilities including Virtual
Network Function (VNF) metrics collection are some fea-
tures of recent OSM releases. For deployment and manage-
ment, OSM can operate in two modes, namely Full E2E
Management (Integrated Modelling) and Standalone Man-
agement(Vanilla NFV/3GPP) [134].

X. NETWORK MANAGEMENT AND ORCHESTRATION IN
STANDARDIZATION

In recent years, several standards organizations, independent
alliances, and forums have been involved in developing stan-
dards for developing platforms that work with Al and ML.
In addition, zero-touch network management and orchestra-
tion frameworks, which are based on significantly simplify-
ing the tasks performed by human to manage and orchestrate
network slices, are currently being extensively researched by
standardisation bodies. Standards organizations such as Open
Radio Access Network (O-RAN), ETSI, The 3rd Genera-
tion Partnership Project (3GPP) are working on embedding
intelligence into emerging next generation architectures to
efficiently meet the diverse needs of communication network
users. In this subsection, we provide an overview of some of
the work that has been done in these SDOs to build a AI/ML
platform. A good overview of existing standardization efforts
related to Al for 5G systems as well as some of the identified
gaps in standardization, are also summarized in [135].

A. O-RAN’S Al/ML ARCHITECTURE

O-RAN alliance aims to define a next-generation radio access
network (RAN) infrastructure based on software-defined
technology and general-purpose hardware, driven by both
intelligence and openness at every layer of the RAN architec-
ture [136]. O-RAN currently offers an attractive solution for

1 lhttps://osm.etsi.org/ , accessed February-2022

VOLUME 10, 2022

E. Zeydan, J. Mangues-Bafalluy: Recent Advances in Data Engineering for Networking

IEEE Access

creating next-generation multivendor networks that embrace
the concepts of programmable, open, collaborative, and intel-
ligent communications. Therefore, Al and ML are the main
pillars for the realization of O-RAN.

O-RAN high-level architecture can be divided into two lay-
ers, namely Service, Management and Orchestration (SMO)
and radio access site as shown in Fig. 3 [137]. In the radio
access entities, there are RAN intelligent controllers (RICs)
(near real-time (near-RT), non real-time (non-RT)), (the verti-
cally divided control (CP) and user (UP) planes of the central
units (CU)) as well as open interfaces that interconnect the
O-RAN nodes. Both near-RT and non-RT controllers are
introduced to extend the existing network functions with
more embedded intelligence within the O-RAN architecture.
Near-RT RIC is interfaced with a centralized unit control
plane (CU-CP) for transmission of signals and configuration
messages and centralized unit user plane (CU-UP) for data
transmission and can be used for control loops on the order of
ms time scale. Non-RT RIC is interfaced with near-RT RIC
via interface Al (for policy management and coordination)
and to the CU-CP, the Distributed Unit (DU) and the Radio
Unit (RU) via interface O1 and can be used for control loops
on the time-scale in the order of greater than 500 ms [138].
In addition, applications (xApps/rApps) are introduced to be
hosted either on the near-RT RIC or on the non-RT RIC
depending on how sensitive the applications are to control
processes.

In the architecture, different interfaces (O1, Al and E2)
are used depending on the results of the AI/ML algorithms,
the actions and the actors. For example, the O1 interface is
used to configure Control and Data Units and near-RT RIC
for fault and performance management. A1 interface enables
non-RT RIC to provide RAN optimization functionalities to
near-RT RIC functions. These functionalities include policy
management, ML model management, or data enrichment.
The E2 interface is used for communication between near-RT
RIC and centralized/distributed units of RAN in the O-RAN
architecture. AI/ML algorithms can run on top of near-RT
RIC (e.g., xApps for energy, resource or beamformer opti-
mization, traffic steering) or the non-RT RICs (e.g., rApps
for RAN automation applications such as network deploy-
ment, optimization, frequency band selector). These algo-
rithms can also be reconfigured based on data availability,
control timescales, network load, and overall mobile operator
requirements.

Data pipeline generation via O-RAN architecture: To
enable automated and intelligent network functions, O-RAN
architecture has been standardized to include three types
of control loops (categorized by the time sensitivity of the
required decision-making process) and AI/ML dedicated
nodes. The first control loop is responsible for scheduling at
the Transmission Time Interval (TTI) level and operates on a
time scale of TTI ms or above. The second control loop oper-
ates in the near-RT TIC and operates within the range between
10-500 ms and above. The third control loop operates in
the non-RT RIC and makes decisions at a time greater than

VOLUME 10, 2022

500 ms (e.g., for policy and orchestration purposes). These
control loops can also operate in parallel. Offline/online train-
ing and inference can be supported via O-RAN components
such as SMO, non-RT and near-RT RICs.

In line with recent developments in data engineering,
a mapping can be made between the components of O-RAN
and the existing data engineering ecosystem. The O1 inter-
face is used for data collectors and preprocessing entities
within the service and management orchestrator (e.g., within
the Open Network Automation Platform (ONAP) [139]). The
Ol interface can be used to transmit RAN metrics associ-
ated with the performance of the RAN nodes to the SMO.
In addition, non-RT RIC placed in the SMO can enable RAN
optimizations using the collected RAN metrics and contex-
tual (external) data. The SMO can later control the RAN and
apply configuration changes. Fine-grained data collection is
performed via the E2 interface, to enable near-RT control and
optimization of RAN elements.

Data collectors and preprocessing entities may use the
previously defined data connection frameworks described in
Section II. The Virtual Event Streaming (VES) collector in
O-RAN!'? is used as a telemetry collection interface and
supports data gathering from O-RAN. Subsequently, the col-
lected data can be shared with non-RT RIC using the data
ingestion frameworks described in Section III.

AI/ML models trained in AI/ML platforms can later be
queried by non-RT RIC via batch processing or Big Data
query engines. Regular AI/ML workflow including model
training, inference and updates, batch data processing, big
data query generation processes and policy-based guidance
of applications/features can be performed using the data anal-
ysis and processing frameworks defined in Section IV. Note
that in the O-RAN architecture AI/ML model training can
be hosted in the non-RT RIC, while ML model inference
can be located either in the non-RT RIC or in the near-RT
RIC when supervised/unsupervised ML/DL approaches are
used. If reinforcement algorithms are used, ML training and
inference host can be colocated either in the non-RT RIC or
in the near-RT RIC. The subjects of the action are near-RT
RIC, CU, DU and RU units. The goal of this analysis can
be predictions, alarms or suggested actions in the event of
unknown network conditions (e.g., SLA violation prediction,
predictive maintenance of a RAN instance, energy optimiza-
tion for coverage maximization.)

When near-RT is subject to an action, the ML infer-
ence results or policies/intents can be transferred via the
Al interface to near-RT RIC, where near-RT RIC can apply
streaming, real-time, or interactive analytics to the dataset.
Appropriate configurations can then be applied to control or
data units via the E2 interface which establishes communica-
tion between the lower RAN modules (RU, CU and DU) and
the near-RT RIC and is used for time-sensitive control of the
RAN components.

112https:// github.com/o-ran-sc/smo-ves, accessed March 2022.

34471

IEEE Access

E. Zeydan, J. Mangues-Bafalluy: Recent Advances in Data Engineering for Networking

1) Data Connection

Input Data__Inpuf Input Data _ Situa

L ion& Other Ihput | Knowledge & Input Orchestrator
/ (Ops) (BSS) Contekt Data Dath Model Data Policies In;:u;T1 Data,
| Data Ingestion | '
T
1
X 1l) Data Ingestion
Normalization
e T e e i Fe et i et T T P i e
1 1 1 1 1 1

Il) Data Analysis & Processing——————{V/) Data Storage

FIGURE 4. Overview of the ETSI ENI reference points and the architecture and mapping to the components of the data

engineering pipeline.

For performance monitoring, performance data from the
ML models deployed either in near-RT or non-RR RICs can
be linked to the data visualization and monitoring frame-
works. By monitoring these relevant performance metrics,
decisions can be made such as whether or not a model re-
training is required. These update decisions can be triggered
by either a rule-based policy (e.g., threshold-based) or by
using trend analysis approaches.

B. ETSI'S Al/ML ARCHITECTURE

ETSI has several specification groups working on embedding
intelligence into network services and management infras-
tructures. ETSI’s Industry Specification Group (ISG) ZSM
aims to develop a new horizontal and vertical E2E archi-
tectural framework designed for closed-loop 100% automa-
tion and optimized for data-driven AI/ML algorithms [132].
An extensive list of requirements for zero-touch management
that contains more than 170 topics on autonomic manage-
ment is already defined by the ETSI ZSM group. [140].
In ETSI’s ISG NFV, the AI/ML platform will eventually be
considered as part of the MANO stack. The ETSI Technical
Committee (TC) Core Network and Interoperability Test-
ing (INT) is investigating the Generic Autonomic Network
Architecture (GANA) for the purposes of autonomic net-
working [141]. Similarly, the ETSI Experiential Networked
Intelligence (ENI) group is working on the application of
Al in telecommunication networks to help operators manage
infrastructure and provide more resilient services offered to
end users and has also recent published standards [142].
Experiential learning is learning through experience. The
ETSI ENI architecture uses Al techniques and policies driven
by context awareness and metadata so that the services pro-
vided can be adapted to environmental conditions, user needs

34472

and business goals. The main goal is to develop a control loop
based on the “observe-orient-decide-act™ model.

Fig. 4 shows an overview of the ENI architecture and
reference points and their corresponding mappings with the
presented data engineering components. API broker in the
middle is an optional functional block and acts as a gateway
(i.e. translator) and maps the data connection framework of
the data engineering pipeline. Within the ENI system, there
are several function blocks that mainly represent the manage-
ment and application components that are connected to the
semantic bus. These functional blocks can be implemented
as part of the data analysis and processing and data storage
framework of the data engineering pipeline. For example,
situation awareness blocks are used to detect events and
behaviors in the ENI system and its environment. In the case
of high traffic and large amounts of information, the corre-
sponding streaming application used in the data analysis and
processing framework is an important differentiating factor.
The policy management functional block allows users to cre-
ate and edit policies so that consistent and scalable decisions
can be made about the system behaviour. The model-driven
engineering block uses a set of domain models that abstract
all concepts related to managing objects in the ENI system.
Therefore, both the policy management functional block and
the model-driven engineering block can be mapped to the data
storage framework in the data engineering pipeline. A com-
prehensive overview of ETSI ENI on using Al techniques for
network management and orchestration can also be found in
the references [143], [144].

C. ITU MACHINE LEARNING PIPELINE
International Telecommunication Union (ITU)’s FG-ML5G
group is working on ML pipeline [145]. Fig. 5 shows an

VOLUME 10, 2022

E. Zeydan, J. Mangues-Bafalluy: Recent Advances in Data Engineering for Networking

IEEE Access

111} Data Analysis &
Core Network (CN) Processing Management
ML Subsvstem
Pipeline 2

| e

§oic g uv i
| | Storage

e B e b

User Access Network
Equipment (AN}
| | | |
|
1} Data Connection | |
11} Data Ingestion
— e
e
ML

) Data Analysis & Processing pjpeline 1

Visualization I

11} Data Ingestion

Control Plane

FIGURE 5. High-level architecture in an IMT-2020 network and mapping to data engineering pipeline components.

example realization of the high level architecture in an
IMT-2020 network and the corresponding mapping. In this
pipeline of Fig. 5, there are several nodes for creating ML
pipelines:

« source (represented by SRC) is a node that generates

data to be used as input to the ML function.

« collector (represented by C) is a node responsible for

collecting data from SRC.

« pre-processor (represented by PP) is a node used for

pre-processing the data

« model (represented by M) is a ML model used for pre-

diction (note that training of the model is performed in
a sandbox (not shown in Fig. 5)).

« policy (represented by P) represents the control mecha-

nism for improving the operation

« distributor (represented by D) is responsible for dis-

tributing the ML results to the corresponding sinks

« sink (represented by C) is the target node of the ML

output where the action is performed (for inference
purposes).

Note that in Fig. 5, some subsets of nodes (e.g., PP, M, P,
D) are inside the ML pipeline and are not shown. In Fig. 5,
latency-sensitive applications use “ML pipeline 17, while
latency-tolerant applications use “ML pipeline 2. Inputs
from UE are processed by the ML pipeline represented by
arrows 1-> 2-> 4-> “ML pipeline 2, to make predictions
for the Core Network (CN) (e.g., MPP-based ML applica-
tions). In the ML pipeline arrows represented by 5-> 4->
“ML pipeline 2”-> 6, the inputs of CN (as well as some
combinations of UE inputs) are combined to make some
predictions in the CN so that these actions can be performed
by management functions (e.g., actions such as Self Orga-
nizing Network (SON)-level decisions at CN or closed-loop
decisions about resource allocations in the network). In the

VOLUME 10, 2022

ML pipeline arrows represented by 1-> 3-> “ML pipeline
1”->7, the inputs of UE are used for latency sensitive applica-
tions in the access network, where model hosting and serving
are also performed. When mapped to the corresponding data
engineering pipeline frameworks, the connection of SRC
to collector (represented by C) is via the data connection
module, where collector can be selected from data ingestion
framework and ML pipeline 1 & 2 falls into the category of
data analysis and processing frameworks.

D. 3GPP NETWORK DATA ANALYTICS FUNCTION

The architecture framework for SG management and orches-
tration is specified in 3GPP. TS 29.520 in R-16 is the stan-
dardization effort of 3GPP for 5G network automation using
ML and data analytics. Within the latest approved 5G spec-
ification in 3GPP (Release 15), 3GPP identifies two main
building blocks responsible for data analytics [146]:

1) NWDAF (Network Data Analytics Function) col-
lects data from core network functions and provides
network data analytics services to other Network Func-
tions (NFs) of the 5G Core which are subscribed as
NWDAF consumers [147]. The NWDAF offers two
services (called Nnwdaf services). The first is called
Nnwdaf _EventsSubscription service, which allows NF
service consumers such as PCF, OAM to subscribe or
unsubscribe to various analytics events provided by the
NWDAF. The second is called Nnwdaf _AnalyticsInfo
service, which is used by NF consumers to request and
receive specific analytics from the NWDAF. Hence,
through a service-oriented interface Nyydqf, other NFs
can access analytics information. In 3GPP Rel. 15,
Policy Control Function (PCF) and Network Slice
Selection Function (NSSF) are envisioned as possible
consumers of network data analysis. For instance, PCF

34473

IEEE Access

E. Zeydan, J. Mangues-Bafalluy: Recent Advances in Data Engineering for Networking

: 3GPP DAM Ill) Data Analysis & Processing :
[Mgmt Function Centralised Tracing/MDT !
[(e-g. Network MDAF L) SON Mah:gemm I
| Slicing) |
| | Service Based Management | :
:) Data Connection interfaces jjj pata ingestion I
r _____________________________ 1
| IIl) Data Analysis & Processing 1
|
| e oo [pcr | | NWOAF | psiacannection
| | | | [Nnwcet i Bt Ingestion:
Next Servi d Control interf;

] | ervice Based Control interfaces
Generation 1 AMF |
RAN (NG-RAN) | N2 |
+ UPF I
T L | NG :
! |

5G Core Network (5GC)

FIGURE 6. Functional framework of the 3GPP 5G system to support management and network data analytics
services and mapping to the components of the data engineering pipeline.

may use this data to adjust QoS parameters, or NSSF
can use the slice-level load data for slice selection.
Some relevant use cases defined in 3GPP TR 23.791 are
related to service experience prediction, load analysis,
UE behaviour and pattern prediction, etc.

MDAF (Management Data Analytics Function) is
responsible for providing management data analytics
services. The analytics results generated with the Oper-
ation, Administration and Management (OAM) data
can be used by other management functions such as
C-SON (Centralized SON) to recommend appropriate
actions to network operators.

2)

Finally, Fig. 6 shows the functional framework for the
management and network data analytics services in 3GPP
5G systems and the corresponding mapping to the defined
components of the data engineering pipeline. Data connec-
tion and data ingestion modules are located within Service
Based Management and Control Interfaces. Note that both the
NWDAF and the MDAF provide data analytics. Data analysis
and processing frameworks can be deployed in NWDAF and
MDAF, while data ingestion frameworks are deployed as
part of the service-based management and control interfaces.
Using data visualization and monitoring tools (e.g., Grafana,
Kibana), graphical dashboards can be used to provide charts
and notifications on the current operational status of each
monitored source as well as analytical results.

E. OTHER ACTIVITIES AND SUMMARY
There are also other industry alliances in GSMA, 113
BDVA,!'# and TM-Forum!!® that are also working on

113 https://www.gsma.com/artificialintelligence/applied-ai-forum/,
accessed December-2021

1]4https://www.bdva.eu/sites/default/fi1es/AI—Position—Statement—
BDVA-Final-12112018.pdf, accessed December-2021

115 https://www.tmforum.org/ai-data-analytics/, accessed December-2021

34474

specifications of Al in larger domains including telecommu-
nications and their corresponding gap analysis.

In summary, recent advances in the standardization bodies
have brought their own ideas and proposals for shaping the
possible integration options of the AI/ML platform with the
network infrastructure. On the other hand, recent technologi-
cal advances in data engineering are progressing rapidly and
the novelties and new functionalities of each framework in
data engineering have not yet been sufficiently explored in the
telecommunications standardization bodies. Similarly, a clear
separation of data engineering pipelines within the proposed
architectures has been neglected.

X1. DATA ENGINEERING USE CASES IN NETWORK
MANAGEMENT AND ORCHESTRATION

There are several use cases in the telecommunications indus-
try where the data engineering frameworks described above
can be applied. Some of the relevant use cases are also
discussed within the standardization bodies as well as the
alliance organization in ETSI [1], 3GPP [2], ITU [3], GSM
Association (GSMA) [4]. Some descriptions of them are as
follows.

e« ETSI ENI document [1] has classified use cases in
four different dimensions: (i) infrastructure manage-
ment (energy optimization using Al, handling planned
peak events), (ii) network operations (intelligent fron-
thaul management and orchestration, radio coverage
and capacity optimization), (iii) service orchestra-
tion and management (closed-loop (autonomic) fault-
management, autonomic performance management,
context-aware service experience operation, intelligent
network slicing management) and (iv) assurance (net-
work fault identification and prevention, assurance of
service requirements)

VOLUME 10, 2022

E. Zeydan, J. Mangues-Bafalluy: Recent Advances in Data Engineering for Networking

IEEE Access

o ITU document [3] has compiled more than 30 use-cases
and their requirements. The use cases are divided into
five categories: (i) Network slice,service, (ii) User plane,
(iii) Applications, (iv) Signaling management, (v) Secu-
rity. The requirements are divided into three categories:
(i) Data collection, (ii) Data storage and processing,
(iii) ML applications.

o GSMA report [4] has detailed typical seven different
use cases for intelligent autonomous networks in China:
(1) Al for network planning and deployment, (ii) Al for
network maintenance and monitoring, (iii) Al for net-
work optimization and configuration, (iv) Al for service
quality measurement and improvement, (v) Al for net-
work energy saving and efficiency improvement, (vi) Al
for network security protection, (vii) Al for operational
services.

Data engineering solutions can help provide closed-loop
automation, self-organizing, self-healing, self-decision mak-
ing and self-optimizing network solutions for a variety of
problems in network management and orchestration, network
planning and design, network construction, network opti-
mization, and network operations. The scope of data engi-
neering solutions can be diverse in wireless, fixed networks,
core networks and data centers. For example, considering
that about 2000 parameters need to be optimized in 5G net-
works [148], network automation using the recent advances
in data engineering and data science becomes crucial factor
to bypass the human-based optimization process. In [11],
[149], several novel use cases for (wireless) network design
using DL and Al capabilities are presented. Below are some
examples where data engineering frameworks can enable or
influence their functionalities:

« Using data connection frameworks, providing API

gateways for network providers,

« Using data ingestion frameworks, real-time monitor-
ing applications for hardware (routers, switches, other
network devices), software and security (threat dis-
covery and mitigation, DDoS, etc.), data distribution
(multimedia distribution (IPTV, content delivery ser-
vice, etc.), text messaging service, chatbots (for quick
access to inquiries and information (e.g., known faults,
etc.))), OSS/BSS-related functionalities (providing real-
time information (inventory/assets) to supply retail
stores as part of supply chain management, billing ser-
vices, network fault ticket management, network alarm
management),

« Using data processing and analytics frameworks,
leveraging AI/ML algorithms for CDR processing for
churn analysis, real-time alarm correlation to iden-
tify and predict network faults, root cause analysis
for network faults, preventive maintenance, anomaly
detection, Customer 360 (tracking and analyzing user
behaviour/needs and their interactions with channels),
inventory/asset tracking as part of B2B products, rec-
ommender systems, network analytics, contact trac-
ing, fraud detection, traffic flow prediction, intelligent

VOLUME 10, 2022

network and service slices management and configu-
ration, intelligent initial access and handover at RAN,
context-aware service experience optimization, intelli-
gent carrier management SD-WAN, SLA path adapta-
tion for network delays, intelligent software rollouts,
energy optimizations with Al, policy-driven IP-managed
networks, intelligent fronthaul management and orches-
tration, service requirement assurance, federated learn-
ing for privacy awareness, transmission optimization,
opportunistic data transmission in vehicular networks,
predictive power management, automated scaling of
VNFs, automated deployment of network service slices,
automated site design based on coverage and capacity.

o Using data monitoring and visualization frame-
works, visualization of transport network equipment to
enable data-driven infrastructure decisions, visualiza-
tion of service mesh topology to monitor traffic flow and
metrics display.

Finally, note that each of the frameworks or their intercon-
nected versions in the Table 5 can be deployed at different
levels of the network depending on the requirements of use
cases. These levels can be divided into three levels:

o In node level operation, data is collected, processed
or analyzed at individual nodes (e.g., at UEs or device
level) and no network connection is established. This
is useful for data security and privacy, reducing latency
and complexity (since the data is processed at the device
level). However, since the processing is done at the node
level, performance limitations in the analysis results are
expected.

« Innetwork level operation, data is collected, processed
and analyzed within a single domain of the network
(e.g., at RAN or in the core network). This increases data
diversity because the data catalogue contains data from
multiple nodes in that domain. (e.g., from AMF, User
Plane Function (UPF), etc. in the 5G core domain) lead-
ing to better performance optimizations. On the other
hand, data security/privacy and delays are some of the
drawbacks of network level processing.

o On the other hand in global level operation, data col-
lection, processing and analysis are done with complete
knowledge of the data sources in the network in differ-
ent domains (e.g., E2E network service management).
One main benefit of this approach is high performance.
On the other hand, there are some issues related to global
data integration and deployment cost in this way of
operation.

XIl. GAP ANALYSIS, CHALLENGES AND FUTURE
DIRECTIONS

Most telecommunication companies today require more com-
prehensive solutions that address both the complexity of their
infrastructure and the intense needs of their users. Since data
engineering technologies are younger compared to traditional
telecommunication services and products, a few telecommu-
nication infrastructure providers are aware of the capabilities

34475

IEEE Access

E. Zeydan, J. Mangues-Bafalluy: Recent Advances in Data Engineering for Networking

of data engineering solutions. However, there is a growing
number of use cases and a growing community and interest
in early and rapid adoption of data engineering tools and
technologies in the telecommunications world. Some early
case studies have highlighted some of the existing gaps
and challenges in the adoption of Big Data analytics in the
telecommunication industry [150]-[155]. As telecommuni-
cation providers try maintain their status quo, they are at risk
of being left behind with their products and services in a
rapidly changing ecosystem. In this section, we explore the
potential gaps, challenges, and future directions in the adop-
tion of data engineering approaches in the telecommunication
industry.

A. GAP ANALYSIS

Our survey results show that there are several gaps between
developments in the world of data engineering and telecom-
munications. These can be summarized as follows:

(i) Data engineering framework deployment risks: It
is critical for telecommunication infrastructure and service
providers to understand the advantages and disadvantages
of the technologies currently in use and the emerging
cutting-edge technologies in the data engineering world.
There are stringent requirements for operational efficiency,
availability, reliability, robustness, and stability of telecom-
munication networks when systems are deployed in pro-
duction environments. For this reason, the risks associated
with the potential deployment of these emerging technologies
within a mature and traditional telecommunications infras-
tructure must be fully assessed. For example, in the case
of deploying ML models, the inherent randomness of ML
systems may make it difficult to achieve reproducible results
or workflows across different experiments [156], which may
affect the reliability of the overall deployment process of the
data engineering pipeline.

There are several industry players such as Nokia, HPE,
Juniper, etc. that already offer network solution products
(mostly in the wireless area) that leverage BDA as listed in
Table 3 of [32]. However, most of the newer products are not
very mature and not fully tested in production environments.
Therefore, most of the new AI/ML-based technologies, e.g.,
advances in DL based neural network architectures, have not
yet been tested in real-world applications for telecommunica-
tion applications. (This is due to their low Technology Readi-
ness Levelss (TRLs)), which makes it difficult to assess their
potential adoption. One way to monitor failures or potentially
problematic scenarios in data engineering/science projects
and their use in production is to monitor their adoption in
other industries so that they can be intelligently adopted in
the telecommunication domain. For example, some of the
challenges described in [156] in developing pipelines for data
management, model learning, verification and deployment in
various domains such as computer vision, human-in-the-loop
neuropathology, etc. may also be useful for telecommunica-
tion operators. TRL assessments of some of the most impor-
tant and representative Al technologies, as listed in [157], can

34476

help telecommunication operators better understand the state
of the art of a particular technology when planning to adopt
it in telecommunication infrastructure. The integration and
scaling issues raised in [158] when deploying AI/ML in a
cross-organizational context (e.g., between a hospital and a
service provider) may be useful for telecommunication oper-
ators when integrating AI/ML platforms into their vertical
industries [159], [160].

For this reason, it will be valuable for telecommunication
providers to have first-hand knowledge of the shortcomings
of these platforms, recognize the weaknesses of these sys-
tems, adopt the good parts of the most needed frameworks,
and learn from past experiences. This will allow them to
adapt to the changing landscape of data technology with less
operational and technical complexity.

(ii) Operational costs: Introducing new features and capa-
bilities related to emerging use cases within the telecommu-
nication infrastructure is attractive but at the same time can be
costly due to operational expenditures. For example, IT and
cloud giant Google has shown that deploying ML-enabled
systems real world incurs huge ongoing maintenance costs
due to a variety of tasks such as configurations, data col-
lection, feature extraction, data verification, analytics tools,
machine resource management, process management tools,
serving infrastructure and monitoring in addition to creation
of ML code [161]. Moreover, operations units and network
engineers working on the day-to-day operation of telecom-
munication networks should have additional skills such as
data modeling, software engineering and system design, ML
libraries, etc. On the other hand, data engineers, data scien-
tists, and ML engineers working in the telecommunication
world should acquire domain expertise in the functioning of
the legacy systems so that accurate modeling of these systems
using the data landscape is possible.

(iii) Support for services: Traditional telecommunication
infrastructures and vendor-based solutions are mature tech-
nologies with advanced enterprise support in case of service
outages or activation of new features. On the other hand,
many enterprises also rely on “microservices’ because they
are highly flexible and can be easily developed to meet
dynamic business needs. Microservices based design requires
constant communication between the various components of
these services to keep them in sync with each other.

On the other hand, the data engineering ecosystem is
still young and rapidly evolving. Hence, some open source
technologies developed within the data engineering ecosys-
tem may have a larger community and advanced ecosys-
tem compared to vendor-based data analytics solutions. For
example, Big Data technology providers such as Cloud-
era/Hortonworks or MapR offer support services and sub-
scription service models for their open source toolboxes.
However, deploying these open source data engineering tech-
nologies as a telecommunication service may require exten-
sive support from internal teams such as OSS or CRM
departments of telecommunication providers. The authors
in [162] have shown that providing reliable data science

VOLUME 10, 2022

E. Zeydan, J. Mangues-Bafalluy: Recent Advances in Data Engineering for Networking

IEEE Access

services (e.g., when simply combining open data from dif-
ferent open APIs) can pose several software engineering
challenges to enterprises.

(iv) Performance guarantees: Mobile and fixed net-
works have different SLA guarantees, as mobile networks
consist of RAN, transport and core networks. For exam-
ple, RAN is prone to interference and complex propaga-
tion environments that can lead to unpredictable outcomes.
Therefore, in different network scenarios and conditions,
algorithms within different layers in the protocol state (e.g.,
in the RAN domain, L3 algorithms (load balancing, mobility
and session management, etc.) and L1/L.2 algorithms (power
control, link adaptation, scheduling, etc.)) aim to improve
telecommunication-specific KPIs collected from various data
sources (flows, logs, streams, databases, etc.) and bring
network conditions to a steady state.

At the same time, in the world of data engineering, other
KPIs such as scalability, latency (which measures how close
the system is to delivering streaming and messaging in real
time, for example P95 latency of less than 5 ms means that
95% of all data processing requests should complete in less
than 5 ms), input rate (how much data flows from a system
like Kafka or Pulsar in one second), processing rate (which
indicates how fast data analysis can be performed), etc. For
example, if the input rate is greater than the processing rate,
the system lags behind, so scaling within the cluster must
be done to handle the greater data load. For this reason,
data engineering and telecommunication-specific KPIs are
interrelated. However, there is currently no standard way to
combine network-specific KPIs with data engineering KPIs.
The specification of the common KPIs and the resulting
necessary SLAs remains an open research area, depending
on the different data-related use cases in such an integrated
production system.

(v) Customized functionalities: Some of the custom
demands from the telecommunication world would be diffi-
cult to implement in the data engineering ecosystem, as the
convergence of these requirements may be different. There-
fore, some use case may require more effort and invest-
ment. Some examples that require complex functionalities in
telecommunication world are response time less than 1 ms
and reliability of above 99.99999% in connected autonomous
solutions (e.g., drone delivery systems, drone swarms, etc.),
guaranteed microsecond delay jitter in industrial automation
and robotics solutions [163], [164], data rates up to 100 Gbps
for highly mobile hotspots [165].

(vi) E2E ML lifecycle management: Due to exponential
use of AI/ML technologies in software and hardware systems,
the development and deployment of ML systems currently
tends to be rushed, isolated from real-world environments,
and without the context of larger systems or broader products
into which they are to be integrated for deployment [156].
For this reason, current ML project lifecycle processes and
guidelines do not follow clearly defined processes and test-
ing standards that facilitate the development of high qual-
ity and reliable results. This is also true for development

VOLUME 10, 2022

in the telecommunications sector, which relies on AI/ML
technologies.

In a typical telecommunications system, typical concerns
such as data, experimentation or model management, deploy-
ment, reproducibility, and testing & monitoring should be
considered depending on the ML platform. In a ML project
lifecycle management as described in [166], all business
requirements and goals of the project must be defined first
before the project starts. After the business requirements
are co-decided and the project objectives are defined, data
collection and preparation phase follows. Then come the
feature engineering and model training stages (in the case
of DL, these are grouped under the term model training)
and model evaluation are performed during the AI/ML train-
ing process. After the best model is selected, the model
deployment, model serving, model monitoring, and model
serving stages need to be executed sequentially. Depend-
ing on which execution stage, different feedback must also
be provided to the previous stages. For example, in train-
ing phase, model evaluation stage provides feedback to the
model training, data collection & processing, and even to
goal definition stages. Similarly, model maintenance can
provide feedback to the model training and data collection
& processing stages. A lean Machine Learning Technol-
ogy Readiness Levels (MLTRL) framework for developing
and deploying robust, reliable, and responsible ML systems,
as proposed in [156], can also be used in a telecommunica-
tions engineering project.

(vii) Data collection and preprocessing: The data col-
lection/gathering must be continuous to keep resulting ML
model up-to-date and compatible with practical infrastruc-
ture and systems [167]. Most ML models must function in
dynamic data environments in production. For this reason,
“concept drifts” (i.e. the degradation of model performance
due to less similar data in production on which the model
was trained) are likely and can affect the accuracy and reli-
ability of the model over time. Therefore, building robust
ML models in a changing mobile environment is different
and requires active (continuous) learning. For this reason,
continuous training has been proposed as part of the MLOps
practice to re-train the production model [167], [168] fre-
quently as new data becomes available or model performance
degrades.

Uniform and homogeneous data collection from all com-
ponents of the network (NFV, IoT, 5G, etc.) and the data
discovery process remain a significant gap between practice
and ongoing efforts in both standardization and framework
development. Not all vendor-provided functionality can be
standards-compliant or has clear interfaces for acquiring data
for analytics services. At the same time, obtaining real data
can be time consuming and complex, especially when it
comes to obtaining the accurate data set from a variety of
sources (data streams, logs, databases, etc.) and extracting
useful information from it. Data may be dirty, not easily
accessible (e.g., proprietary) or not available at certain times
within production systems. In addition, the frequency of

34477

IEEE Access

E. Zeydan, J. Mangues-Bafalluy: Recent Advances in Data Engineering for Networking

sampling the system and temporally stationary conditions
of distribution over the sampled data are also critical to
data collection and must be investigated depending on the
application.

In parallel with data collection, data stored in Data Lakes
needs to be cleaned and categorized as it may be incom-
plete, not correctly normalized or labelled, and noisy. These
data should also be prepared for further analysis in the data
engineering pipeline applications (e.g., in data processing
and analysis frameworks for AI/ML algorithms). Some of
the preprocessing activities are handling missing data (impu-
tation of missing values for numeric and categorical data),
data scaling, e.g. min-max scaler, standard scaler, max abs
scaler, robust scaler, power transformer, quantile transformer,
normalizer, etc.,!'® outlier data, transforming data types,
dimensionality reduction, identifying numerical and categor-
ical features, encoding categorical features, feature engineer-
ing/selection, sampling tasks, to name a few are other missing
dimensions in the current data engineering architectures for
network management and orchestration. These aspects are
critical as missing values or incorrectly populated datasets
can lead to inconsistent analysis results.

As a general rule, less than 1% missing data is trivial to
handle, 1-5% missing data can be manageable, 5-15% miss-
ing data requires sophisticated methods to handle, and more
than 15% can seriously affect any kind of interpretation [169].
Some of the most popular solutions are either removing the
data (which leads to information loss and biased assessments)
or using some advanced imputation techniques and maximum
likelihood methods [170]. Multiple imputation using chained
equations (MICE) [171] and factor analysis of mixed data
(FAMD) [172] are some of the commonly used imputation
techniques for hybrid missing data sets (e.g., in both categori-
cal and continuous data). Recent developments and solutions
using DL such as DataWig (which trains a neural network
based classifier to predict the missing values) can also be
used for scenarios with many missing observations [173].
As the authors note in [174], while there are many approaches
that deal with missing values, they are mostly designed for
matrices only. However, in many real-world applications, the
data is not only available in numeric format, but may also
be in textual form or as an image. Another main problem
with the above traditional approaches is that rare values that
are common in heavy tailed real-world datasets cannot be
accurately identified with the trained models [175].

In particular, mobile data collected from network devices
is often subject to redundancy, loss, mislabeling or class
imbalance, and thus needs to be preprocessed before it can
be used directly for training. Compared to traditional ML, DL,
methods that process missing values in batch mode, telecom-
munication systems are more dynamic and more missing data
is received in less time per second due to the nature of net-
works and wireless communication infrastructure. Therefore,

1 16https://scikit—learn.org/stable/modules/classes.html#module—
sklearn.preprocessing, accessed: July 2021

34478

special care must be taken when processing dynamic and fast
telecommunication traffic.

(viii) Model training with real data: The goal of model
training is to optimize and rapidly converge model parame-
ters to optimal and consistent values given a set of training
data. However, developing a model to meet specific product
requirements may require combinatorial search for parame-
ters, variables, etc., which can become difficult as the model
becomes more complex. Training models for production sys-
tems can be costly due to a lack of either data or properly
labeled data (especially for supervised trained models that
require data augmentation, e.g., labeling large amounts of
data, experts experience). In such scenarios, simulated data
can be used to train the models, but the gap between practice
and theory, i.e. the lack of adequate knowledge transfer from
simulation to real conditions, can be a major problem.

Training requires observing a wide range of scenarios
and in the case of network management and operations,
generating different network configurations and scenarios
that can potentially disrupt network operations for training
purposes. For example, in reinforcement learning applica-
tions, the agent must interact with the environment as it
tries different actions and receives feedback to improve the
outcome based on its actions. During this process, the agent
makes several mistakes while learning which requires a large
number of steps to converge to an optimal or near-optimal
solution. For this reason, the training of the agent is not
performed in the real infrastructure, since errors can have
serious consequences for the networks (failures, false alarms,
downtime, etc.). Instead, a simulator can be built that mimics
the real network environment, and the agent is trained offline
in this simulator environment. However, the simulator must
meet high fidelity requirements because the real network may
be different from the network used for training. Moreover, the
agent cannot operate appropriately if the discrepancy between
the real and simulated environments is large [176].

In the case of ever-changing mobile network environments,
models of ML should have the ability to learn continu-
ously (active learning discussed in Section XI. B bullet no.
(xviii)) or perform transfer learning [177]. Transfer learning
can accelerate the training process when the conditions in
the mobile network change significantly. Basically, transfer
learning aims to reduce the amount of training data required
to learn a task, by reusing the feature extraction layers learned
on other datasets [177]. In other words, it enables the rapid
transfer of knowledge from pre-trained models to other types
of datasets. Transfer learning can be used to improve the
performance of models that learn with limited data. For exam-
ple, if software viruses are spreading rapidly in the network,
the anomaly detection model or antivirus software detection
model built into the network equipment should be able to
respond to these attacks in a timely manner with the limited
information available.

In transfer learning, a model learnt in a particular envi-
ronment (e.g. cellular Base Stations (BSs) operating at
low-bands, < 1 GHz) can be transferred and adapted to

VOLUME 10, 2022

E. Zeydan, J. Mangues-Bafalluy: Recent Advances in Data Engineering for Networking

IEEE Access

another network node operating in a different environment
(e.g. cellular BSs operating at mid-bands (1-6 GHz) or
high-bands (> 20 GHz)). This is technically referred to as
frequency-based transfer learning in [178]. When the system
dynamics in the environment change, e.g., due to a device
malfunction, a different, previously unknown terrain, differ-
ent frequencies, etc., the result is a completely different data
set than the one previously used for training. Therefore, the
previously trained model must be trained again in this new
scenario/at this new frequency, which is inefficient because
all these datasets must be acquired again.

Transfer learning approaches applied in wireless com-
munication aim to tune the existing models with a small
amount of data in the changed environment [179]. For exam-
ple, frequency-based transfer learning transfers the models
trained on different frequencies to the target frequency, while
scene-based transfer learning transfers the models trained
on different scenes to target scenes that use the same fre-
quency [178]. The authors in [178] also showed that both
frequency-based and scene-based transfer learning models
can predict path loss with small errors by using limited data
of the new environment and learning the regularities between
path loss and scenario information in detail.

(ix) Model deployments in real-world environments:
Comprehensive monitoring of system behavior and taking
automatic actions (without direct human intervention) are
crucial for higher system reliability in the long run. On the
other hand, deploying models in production is still not
an easy task. There are pre-deployment, deployment, and
non-technical challenges during the deployment and during
the operation of ML models in practice [180]. According
to the authors in [181], the main challenges are mainly
related to model integration (operational support, code and
model reuse, software engineering anti-patterns and mixed
team dynamics), model monitoring (feedback loops, outlier
detection, custom design tools) and model updating (concept
drift and continuous delivery). Note that in a production
environment dozens or hundreds of models may be running
simultaneously. Therefore, the developed ML models should
be monitored, alerted and automatically recovered in case of
failures to achieve a certain service level goal.

Depending on the area where improvements are needed
in terms of intelligence, use case requirements and
static/dynamic characteristics of the environment, the update
frequency of the ML model may also vary. For example,
choosing an optimal threshold in auto-encoder-based neural
networks (e.g., in anomaly detection applications) is impor-
tant to achieve a good trade-off in certain metrics such as
precision and recall [182]. Thus, if a new training/validation
dataset is created frequently, the optimal threshold and the
corresponding model must also be updated frequently to cope
with changes in the state of outside world. In the case of
dynamic network environments (e.g., RAN algorithms using
L1 to L3 transmission parameters, modulation and coding
schemes, resource allocations, etc.), the model and corre-
sponding hyperparameters should also be updated frequently

VOLUME 10, 2022

(fast time scales on the order of seconds/milliseconds),
as the ML models can degrade or exhibit biases and user
behaviour may change over time [183]. In network opti-
mization, the model update frequency can be on the order
of hours/days/weekly (e.g. hyper-parameters for SONs algo-
rithms). However, for network design, this update frequency
can be on the order of weeks/months (e.g., when deploying
new cell in a given geographic region) (see Figure 1 of [183]
for more information on the main areas of performance
improvement). For this reason, depending on the scenario
considered, an appropriate feedback loop for the deployment
of the model is also required to achieve good and timely
results.

As frequency of ML model usage in a service provider
increases, many models need to be supported either sequen-
tially or concurrently by a model server. Several deployment
options are available, such as A/B testing (one set of data
is used by one model and the remaining is used by another
model) [184], ensembling (combine multiple models to get a
stronger model) [185] or cascading [186] (make predictions
based on a model (e.g., detect anomalies within the infrastruc-
ture or find the root case). Depending on the requirements and
the complexity of the deployment pattern, different options
for the selection of algorithms, architectures, tools, etc. need
to be defined. For example, unsupervised learning algorithms
may offer lower latency and cost savings at the expense
of performance degradation in data analysis and processing
compared to supervised learning algorithms. As an alternative
solution, the developed ML models for production systems
can also be embedded in the operating system kernel and
provided as a system service.

(x) New architecture for event driven applications: Tra-
ditional telecommunication systems and their legacy applica-
tions are based on an application architecture that are using
APIs [187]. A common gap in the traditional telecommu-
nication network architectures is that they were not origi-
nally designed for event-driven applications, although recent
efforts on Service Based Architecture (SBA) in the 5G core
network have shown some tendencies towards their deploy-
ment [188]. On the other hand, data-driven architectures for
telecommunication systems are based on using huge amounts
of data and transferring them to a AI/ML platform for large
scale analytics [14]. However, this may disregard some of the
already existing application capabilities, such as enterprise
integration capability or agility. For this reason, a balance
is needed between a data-driven architecture (which special-
izes in transferring large amounts of data between applica-
tions) and an application architecture (which ensure that the
functionality of one application is executed in response to a
request from another application).

The general approach in the industry is to move to state-
ful, event-driven and event-time-aware processing using the
concepts of events, streams, producers, and consumers. Many
industries have already started to move from a monolithic
architecture to a microservice architecture for scalability
and maintainability reasons [189]. Event-Driven Architecture

34479

IEEE Access

E. Zeydan, J. Mangues-Bafalluy: Recent Advances in Data Engineering for Networking

(EDA) has already proven itself in the cloud and IT commu-
nities and will become the software architecture paradigm of
choice in the telecommunication domain in the coming years.
Together with the introduction of the concept of SBA in the
5G core [190], it is expected that it will soon be used in the
architecture of mobile networks.

An event is a change of state or an update in the system.
EDA uses a sequence of events to trigger and control com-
munication between microservices (i.e., decoupled services).
It is particularly suitable for applications based on microser-
vices interconnected by fast asynchronous events [191]. In an
event-driven system, there are collections of independent
services between which there is no direct coupling. The data
schema is the only dependency between them. This increases
the resilience (since failures in a service do not escalate) and
extensibility (easy addition of new independent services to
the existing systems, e.g., notification service) of the sys-
tems. Therefore, an EDA can successfully provide stream-
ing, Pub/Sub, and Push patterns, while web services with
REST/HTTP, API gateways, cronjobs, RabbitMQ, Kafka or
data at rest with a Data Lake cannot. As a result, enterprises
are starting to adapt to EDAs or event sourcing.

There are several ways in which events captured in
real-time can be useful for data analysis (e.g., by correlating
events with other introduced features, recent incidents, etc.).
For example, in most streaming frameworks (e.g., Spark
Streaming), window operations are performed as each mes-
sage is received by the streaming processing framework (i.e.,
in processing time). However, the exact way to customize
window operations is to support more advanced event time
windows and perform computations based on event time, i.e.,
when the event was created [53]. Another good example
of the application of EDA in telecommunication systems
would be Network Management System (NMS), where crit-
ical events can be quickly responded in order to mitigate the
problems in the network. The general workflow associated
with EDA for this example could be as follows: (i) NMS
detects an anomaly and publishes an AnomalyDetected event
(i1) The Root Cause Service subscribes to the event, processes
it and computes the location and root cause of the anomaly
(iii) The Root Cause Service then publishes the RootCause
event (iv) The Region Support Service subscribes to this event
and sends a notification to personnel in that region explaining
the root cause of the problem.

(xi) Ecosystem integration: Telecommunications net-
work technologies are becoming more complex with each
passing decade than previous generations. In 5G networks,
for example, URLLC, Enhanced Mobile Broadband (eMBB)
and massive Machine Type Communications (mMTC)
type communications require specialized technologies
(e.g, Massive MIMO [192], coordination algorithms (Carrier
Aggregation (CA), Coordinated Multi-Point (CoMP) trans-
mission/reception [193], Single Frequency Networks [194],
Multi-Connectivity), new spectrum (high frequency bands
(>20 Ghz) such as from millimeter and terahertz (THz)
wavebands to visible light), Device-to-Device [195], dynamic

34480

network slicing [196], network virtualization [197], Edge
Computing [198], integrated satellite-terrestrial communi-
cations [199], [200], intent-based networking [201], etc.)
that need to be embedded in telecommunication networks.
As services become more complex (e.g., with dozens of
microservices interacting with each other), management and
orchestration operations also become more complex and
costly.

To tackle this complexity in the management and control
plane of the telecommunications infrastructure, there are sev-
eral automation tools that can manage the network service
management lifecycle (e.g., Open Source MANO (OSM),!!”
Open Network Automation Platform (ONAP),'"® Cloud-
ify,!'! etc.). However, they also require complex MANO
procedures. For this reason, specialized skills (e.g., net-
work virtualization, cloud services, etc.) are required to fully
exploit their application potential and seize the opportunity
to develop new and innovative value-added services. At the
same time, these new technologies also bring their own spe-
cific challenges and obstacles when it comes to integration
with data engineering frameworks. Therefore, the tools and
libraries selected from the data engineering ecosystem should
be well integrated with the broader telecommunication infras-
tructure systems based on the use cases and requirements. The
support of the data engineering ecosystem or community for
high quality tools and adoption of the latest technologies into
the telecommunication infrastructure are also crucial in this
process.

(xii) Licensing: In parallel with ecosystem integration, the
licensing gaps for hybrid deployment types need to be further
explored. Many of the open source tools for data engineering
are licensed under Apache 2.0, which does not imply vendor-
specific licensing. On the other hand, legacy telecommuni-
cation infrastructures are based on various vendor-specific
equipment. Avoiding vendor dependency helps enterprises
to develop their own customized services and explore new
opportunities and business goals. The gap between the inter-
play of open source and vendor-locked systems deployments
is an ongoing issue and needs to be further explored.

(xiii) Synchronization aspects: In a traditional telecom-
munication system, one task may orchestrate multiple calls
to internal or external services. Telecommunications systems
require strict synchronization between multiple components
of the data engineering platform and the telecommunications
infrastructure. If synchronous orchestration of services fails,
the entire service flow fails. Some of these synchronization
requirements also arise during data collection, model and
hyperparameter updates when multiple actions need to be per-
formed by the AI/ML platform between the interconnected
network domains (e.g., joint actions performed on both the
core network and the transport networks). For example, after
the data connection and ingestion phases are completed, the

]”https://osm‘etsi.org/, accessed: December-2021
1lghttps://www.onap.org/, accessed: December-2021
llghttps://cloudify.co/, accessed: December-2021

VOLUME 10, 2022

E. Zeydan, J. Mangues-Bafalluy: Recent Advances in Data Engineering for Networking

IEEE Access

extracted and transformed data must be continuously syn-
chronized with the original data sources. However, since data
sources can be heterogeneous and change dynamically over
time, a data source may be out of sync and out of date at
the time of integration. This can lead to discrepancies in data
schema and definition and cause problems in synchronizing
these heterogeneous data sources. The development of such
solutions for telecommunication networks in the field of data
engineering is still an open research area.

(xiv) Lack of rigorous methodology in networking:
Throughout its evolution, networking has evolved both scien-
tifically and through trial and error and configuration based
deployments in real systems. As a result, there are complex
interaction patterns among the components of telecommu-
nication networks. For example, in most cases, the net-
work is designed to be distributed and each node (router,
switch, gateway, etc.) overlooks only a portion of its envi-
ronment. This also makes it difficult to apply conventional
approaches/algorithms from computer vision or Natural
Language Processing (NLP) (which also use standardized
datasets such as the MNIST (Modified National Institute of
Standards and Technology) database for handwritten digits
or the ImageNet database, etc.) for direct comparisons of
learning or inference algorithms to the complex networking
systems. Therefore, a more rigorous and scientific approach
is required when designing AI/ML systems in the area of
complex and large-scale telecommunication systems.

(xv) Hybrid approach to data operations: Note that all
of the above analytics frameworks including data collection,
data analysis, data monitoring, data visualization, etc. can be
performed either at the device, network or global level as
described in Section XI. However, depending on the use case,
a hybrid approach may also be required, comprising a flexible
and distributed analytics architecture where some necessary
data processing is performed at the device level and/or some
partial processing is performed at network the level.

Distributing some of the functionalities of these frame-
works across these levels can help improve network perfor-
mance by reducing bandwidth overhead or network latency
(which can be helpful for real-time applications). In [202], the
authors have shown the benefits of such a hybrid approach to
reduce the cost of data communication while ensuring that the
accuracy of decision making for IoT networks does not sig-
nificantly decrease. A flexible placement strategy of different
data analytics modules that can be dynamically selected,
combined or switched to achieve the best I/O performance
is also explored in [203]. The benefits of data orchestration
of use case-based analytics for 5G scenarios are proposed
in [204].

In the case of such a hybrid approach, a different data anal-
ysis setup can be created for different use cases (e.g., mMTC,
eMBB or URLLC in 5G network slices). In a network slicing
setup where data flow over the industry outside the indus-
trial site (e.g., a factory) is not desired, the edge computing
paradigm can be enabled. In this edge computing setup, for
example, Al-based image processing for quality inspections

VOLUME 10, 2022

can be performed at the edge instead of in cloud servers to
reduce traffic and eliminate critical I/O performance bottle-
necks. On the other hand, other network slices can continue to
run their analytics modules on central servers. In the IoT data
processing scenario, computationally intensive data training
and inference generation can be performed at a global level
(e.g., in the cloud). At the same time, data generated locally
at the device level (e.g., from sensors) can be transformed and
aggregated locally to save transmission energy and increase
data protection while maintaining global accuracy as much as
possible.

Another example of functionality distribution is via feder-
ated learning. In federated learning, with limited interaction
between nodes in the network, local construction of AI/ML
models can be instantiated within a single component/node
of the network. At a later stage, these small models at the
individual distributed nodes can be sent back to a network
level coordinator to build a global model and view of the
network domain. Finally, the global models can be sent back
to the local devices/nodes to improve performance [205].

(xvi) Practical aspects versus system complexity:
Another problem that is usually overlooked in the design of
data systems is the increase of system complexity in practi-
cal systems, e.g. algorithms that are data hungry (increased
amount of data) and require high-computational (excessive
use of CPU, RAM or storage capacity in servers). Indeed,
deep neural network architectures require complex struc-
tures and in many cases provide powerful results (e.g., high
classification accuracy) that represent a trade-off between
accuracy and computational cost (e.g., computational cost
for inference, time for hyperparameter optimization). How-
ever, despite their high model performance metrics demon-
strated in particular in the fields of NLP and computer
vision, they also require a significant amount of computa-
tional resources and power (e.g. Convolutional Neural Net-
works (CNN) which rely on operators such as convolution,
rectified linear unit (ReLU), pooling and classification) and
larger systems such as multicore CPUs and GPUs for fast and
accurate performance computation [206].

For this reason, in some use cases, the deployment of deep
neural networks, especially on embedded and mobile devices
(e.g., training a complex image classification model using
local data on resource-constrained (in terms of energy and
capacity) mobile devices) may be either expensive or not
possible. Therefore, very deep neural networks may not be
suitable for these scenarios, as they would compromise some
performance metrics (e.g., accuracy). Instead, lightweight
architectures that are less suitable for complex tasks should
be chosen. This trade-off should be considered especially in
resource-constrained smart environments [207]. As a solu-
tion, some advanced techniques and toolboxes can be used
to deploy these complex DL models in mobile network
applications (e.g., while compensating for small performance
degradations) [10]. On the other hand, in some cases, e.g.,
when exploring tabular datasets, tree ensemble algorithms
such as XGBoost can outperform deep neural network models

34481

IEEE Access

E. Zeydan, J. Mangues-Bafalluy: Recent Advances in Data Engineering for Networking

in terms of accuracy, inference efficiency, and optimization
time, as shown in [208], which also needs to be considered
before increasing model complexity.

At the same time, note that adding new and more sophis-
ticated data components can also slow down the entire
process of data engineering pipeline in practical systems.
In addition, new systems or components may poorly represent
uncertainty, and may lack transparency and trust. Therefore,
it is important to weigh the technical pros and cons of the
benefits of purely research-based solutions when designing
the entire data engineering pipeline in practical real-world
systems.

(xvii) Cloud vs. on-premise infrastructure: When
designing a data engineering pipeline, the different deploy-
ment options (e.g., cloud (public), on-premise (private),
or hybrid cloud) and the corresponding trade-offs should be
thoroughly analyzed. First of all, there are several advantages
to using cloud services. For example, cloud services offer
high availability, easy scalability, resilience, cost reductions,
and easy accessibility when a product reaches a higher level.
On the other hand, building an on-premise infrastructure can
ensure that privacy, security and regulatory compliance for
mission-critical services.

From a cost perspective, iteratively processing data in the
data engineering pipeline (e.g., ML-based data analytics and
processing frameworks) and running applications 24/7 in
the cloud can be expensive compared to on-premise solu-
tions. For this reason, in some scenarios, enterprises may
be interested in taking advantage of both private and public
clouds. Hybrid options can leverage the different features and
characteristics of multiple platforms as well as traditional on-
premise resources. For example, if the data load in one of
the frameworks in the data engineering pipeline explodes,
additional public resources in the cloud can be helpful until
the data load levels drop back below a certain threshold.
Hybrid options can also be beneficial for high availability
and disaster recovery scenarios [209]. Day-to-day production
systems can be maintained on-promise while a backup or
recovery environment can be moved to the cloud to provide
agility in a disaster recovery scenario.

xviii) Computing resources for training in wireless net-
works: Wireless networks also have their own challenges,
such as uncertainties in the environment (e.g., dynamic chan-
nel, security, congestion, interference, connectivity, network
expansion, etc.), limited resources (e.g., transmit power, spec-
trum) or hardware constraints (e.g., computational power)
that make training models difficult [35]. Mobile data is
dynamic, distributed over a large geographic area, exhibits
changing patterns over time, and has inherent character-
istics associated with human mobility, location topology,
local culture (e.g. events, festivals), etc. For example, the
spatio-temporal behaviour of residents may differ signifi-
cantly depending on the time of day or week [210]. Some of
the devices (e.g., mobile devices) also have limited hardware
capacities and cannot train complex ML/DL models with
large datasets.

34482

In complex and large architectures and environments such
as 5G, powerful hardware and software are required to sup-
port both training and inference (as data volume and quality
become increasingly important) if intelligence is to be built
on top of the network infrastructure, as described in survey
paper [10] and the articles referenced therein. Therefore,
computational and time resources for training processes need
to be considered when learning with large datasets espe-
cially in wireless applications where patterns change over
time [210], [211]. When model training is performed with
large distributed datasets on central servers, additional com-
munication and storage costs are incurred and the solution
does not scale. An elegant solution is to perform model execu-
tion on distributed nodes while ensuring good performance on
local data and reducing the load on central servers (e.g., fed-
erated learning on wireless networks [212]). To stabilize the
training process and accelerate convergence, the optimization
process can also be updated as conditions change [213].

Finally Table 6 provides a summary of the gap analysis
described above.

B. CHALLENGES
In order to reap the benefits of integrating data engineering
ecosystem solutions at different layers of the telecommu-
nication network infrastructure for both telecommunication
providers and users, there are also some challenges that need
to be overcome. Some of the challenges in putting together a
data pipeline architecture are related to the following issues:

(i) Inter-working between different programming lan-
guages, tools, computation runtimes: Developers and data
engineers use a variety of tools and programming languages
(Python, Java, Scala, R, Julia, SAS, etc.). Using multiple lan-
guages often increases the cost of effective testing and leads to
difficulties in transferring responsibility to others. For exam-
ple, some message queuing systems such as RabbitMQ [49]
or Kafka [45] can be implemented in Java, some other data
modules such as Apache Spark are written and work best in
Scala programming language (there is also support for Java
and Python), most of ML algorithms are better supported by
the Python programming language and libraries, and user web
applications can be written in the C# programming language.

For this reason, the field of data tools and systems is
inherently heterogeneous, diverse and fragmented, as mul-
tiple workflows are involved in the process of creating data
engineering pipelines. Therefore, supporting multiple lan-
guages and decoupling the components of the data engineer-
ing pipeline can be critical to reducing the overall complexity
of the system and accommodating heterogeneity. Further-
more, it is desirable that entire layouts of existing frameworks
in a data engineering pipeline are language-independent and
provide software abstractions. In summary, integration with
other systems is an ever-growing area and requires overar-
ching tools when data connections between different frame-
works are required.

(ii) Choosing the right toolset: Big Data can be cate-
gorized under ““7 Vs”: volume, velocity, variety, variability,

VOLUME 10, 2022

E. Zeydan, J. Mangues-Bafalluy: Recent Advances in Data Engineering for Networking

IEEE Access

TABLE 6. Summary of the gap analysis.

Gaps (I)

Description (I)

Gaps (II)

Description (II)

(i) Data engineering
framework
deployment risks

Understand the advantages and
disadvantages of the technologies
currently in use and
the emerging cutting-
edge technologies in the
data engineering world.

(vi) End-to-end
ML lifecycle
management

Current ML project
lifecycle processes and
guidelines do not follow
clearly defined processes
and testing standards
that facilitate the
development of high quality
and reliable results.

(ii) Operational
costs

Introducing new features
and capabilities related to
emerging use cases
within the telecommunication
infrastructure is attractive
but at the same time
can be costly due
to operational expenditures

(vii) Data collection
and preprocessing

Collecting data and
building robust ML
models in a changing
mobile environment is
different and requires active
(continuous) learning.
Special care must
be taken when processing
dynamic and fast telecom traffic

(iii) Support for
services

Deploying open source
data engineering technologies
as a telecommunication service
may require extensive support from
internal teams such as
OSS or CRM departments
of telecommunication providers

(viii) Model training
with real data

Developing and training
a model to meet specific product
requirements may become
difficult and costly
as the model becomes
more complex and due to lack of
either data or properly labeled data

(iv) Performance
guarantees

There is currently
no standard way
to combine network
-specific KPIs with
data engineering KPIs

(ix) Model deployments
in real-world environments

Depending on the
requirements and the
complexity of the
ML deployment pattern, different
options for the
selection of algorithms,
architectures, tools, etc. need to be defined

(v) Customized

Some of the
custom demands from
the telecommunication world
would be difficult
to implement in the

(x) New architecture for

A balance between
a data-driven architecture
(that transfers large
amounts of data
between applications) and

functionalities . . event driven applications an application architecture
data engineering ecosystem,
(that ensures the
as the convergence of . .
. functionality of one
these requirements T -
. application is executed in response to a
may be different B
request from another application)
Gaps (III) Description (III) Gaps (IV) Description (IV)

(xi) Ecosystem
integration

The tools and libraries
selected from the
data engineering ecosystem
should be well
integrated with the
broader telecommunication infrastructure
based on the
use cases and requirements.

(xv) Hybrid approach
to data operations

Depending on the use case,
a hybrid approach is
required, comprising a
flexible and distributed
analytics architecture where
some necessary data processing is performed
at the device level and/or some partial
processing is performed at network the level.

(xii) Licensing

The gap between
the interplay of
open source and
vendor-locked systems
deployments is an
ongoing issue and
needs to be further explored

(xvi) Practical aspects
versus system complexity

Consideration of a
trade-off between
accuracy and computational cost
(e.g., computational cost
for inference, time
for hyperparameter optimization)
when deploying data
engineering solutions for
telecom specific use cases.

(xiii) Synchronization
aspects

The development of
synchronization solutions for
telecommunication networks in
the field of
data engineering is
still an open research area

(xvii) Cloud vs.
on-premise infrastructure

The different deployment options
(e.g., cloud (public), on-premise (private),
or hybrid cloud) and the
corresponding trade-offs should
be thoroughly analyzed
when deploying data
engineering pipelines.

(xiv) Lack of rigorous
methodology in networking

A more rigorous
and scientific approach
is required when
designing AI/ML systems
in the area of
complex and large-scale
telecommunication system

(xviii) Computing resources
for training in wireless network

Computational and time
resources for training
processes need to be

considered when learning
with large datasets especially
in wireless applications
where patterns change over time

veracity, visualization and value [214]. So, depending on
rhe use case and the different industry requirements, either
one or more of these Vs may be important. For URLLC

VOLUME 10, 2022

applications (e.g., telemedicine and autonomous driving)
velocity and veracity, for eMBB applications (e.g., remote
metering), volume, or for mMTC applications, veracity of

34483

IEEE Access

E. Zeydan, J. Mangues-Bafalluy: Recent Advances in Data Engineering for Networking

data may be important parameters to optimize when select-
ing the appropriate data engineering tools from a variety of
design solutions. At the same time, to manage the complex
workflows and the needs of different stakeholders demanding
various network services, a comprehensive list of tools, plat-
forms and frameworks should be used based on the different
characteristics of the data sources and the requirements of the
data processing.

For example, in data ingestion and transformation, Apache
Storm [54] can be used for high volume real-time data,
Apache Nifi can be used for medium volume real-time data,
and Sqoop can be used for batch data with low latency
requirements. In addition, extensive comparisons of some of
the latest message queueing systems (e.g., Kafka, RabbitMQ,
RocketMQ, ActiveMQ, and Pulsar) have shown that Kafka
can be used for higher throughput, RabbitMQ is more suit-
able for lower latency, while RocketMQ can provide both
low latency and high quality of service for applications and
services [66]. Some tools, such as Apache Druid, only allow
querying a single data set, so joining with multiple other data
sources is not possible. Since in such scenarios it is not an
optimal combine all data sources into a single data source,
e.g., due to the nature of the different services producing
data, other custom tools such as Presto can be used for these
purposes.

As another example, when developing a streaming appli-
cation, there is an inherent trade-off between data quality and
data speed. To provide a fault-tolerant and scalable system
with an exactly-once-guarantees, various platforms such as
Spark’s Structured Streaming and Delta Lake can be used. For
out-of-order data processing, Flink’s data stream processing
is an ideal candidate. Some OLAP solutions designed for
Big Data such as ClickHouse itself, are only designed for
fast queries over large data set and do not support real-
time record-by-record ingestion. Only after integration with a
streaming platform such as Kafka is real-time data streaming
possible, allowing ClickHouse to act as a message consumer.
Therefore, depending on the required reliability of the request
(either streaming or batch) and possible trade-offs in perfor-
mance, data engineers need to choose different tools.

Given all these different options, it can be difficult to find
a suitable set of tools for building a data pipeline. The choice
depends on numerous factors, such as the analysis results
of the pros and cons of the tools or the understanding of
their suitability for the use cases under consideration. Ideally,
the selected tools should not be tied to a specific vendor,
should be supported by a large community, should have clear
documentation, should be easy to integrate with the rest of
the platform, and should be independent of various software,
including cloud services and third-party vendors.

(iii) Support for containerization: There is a grow-
ing need for support for containerization to build flexi-
ble, service-oriented and cloud-native applications [215].
The general trend is to build services using infrastructures
such as Kubernetes clusters (to enable production-grade
container orchestration). A production system would run

34484

multiple machines, each with hundreds of containers that can
be restarted, rescheduled or terminated at any time. As an
example of a scale-out architecture, one container-based
microservice can be exposed with REST-APIs over Hyper-
text Transfer Protocol (HTTP), another container can be
accessed using Protobuf and gRPC, or another with real-time
streaming requirements can expose its microservice via web-
socket APIs. Therefore, using frameworks such as Kuber-
netes to deploy containers/microservices provides flexibility
in deployment, ease of automation, movement, and scaling.

On the other hand, although modern open source projects
such as Pulsar, Spark or Flink provide native support for
Kubernetes, there are still many components in the Hadoop
ecosystem that have not moved away from YARN or do not
provide standard support (e.g. Kafka). For example, auto-
matically resizing jobs in a container (scaling up/down, scal-
ing out/in) for stream processing jobs depending on lags or
other performance parameters is also currently a challenging
problem.

(iv) Lack of a unified framework for data processing
and analysis: In a general data engineering pipeline, online
and offline data processing are handled in separate pipelines,
each using different computing engines such as Kafka, Spark
Streaming, Flink, Hive, Map-Reduce, etc. However, this can
add maintenance overhead for enterprise development teams.
Inside telecommunication operator, there are a variety of data
analytics nodes and tools deployed in various sub-units to
perform customer experience management, service quality of
service management, revenue assurance, or user/marketing
analytics. On the other hand, it is a difficult task to inte-
grate all these separate analytics nodes with traditional sys-
tems (e.g., with data visualization/notification applications
for reporting, with network management and orchestration
tools for service automation) in a single framework.

In data engineering, some frameworks such as Spark or
Flink can provide a single, unified data engineering pipeline
solution for both online real-time and offline data. However,
to generalize application development, some other compu-
tational patterns such as distributed training, model serving,
streaming, distributed data processing, distributed reinforce-
ment learning, etc. need to be implemented as libraries in
addition to these frameworks. Although there are frameworks
that provide a unique set of abstractions and a unified APIs
for both batch and stream processing jobs, consolidating an
advanced data engineering pipeline cannot be achieved with a
single unified framework to perform general distributed com-
putation, online multi-stream processing, window operations,
stateful analysis or DL simultaneously.

For example, Kafka’s data ingestion benefits may
outperform Spark Streaming data ingestion framework, while
additional data processing such as multi-stream joins or
generating additional features for online and offline data
can be more effortlessly performed only with Spark and
not with Kafka. Similarly, adding support for some libraries
(e.g., a current DL framework) may be excluded from the
mainstream development process due to lack of resources,

VOLUME 10, 2022

E. Zeydan, J. Mangues-Bafalluy: Recent Advances in Data Engineering for Networking

IEEE Access

suitable use cases or interest in the community (e.g., because
industry needs are not yet mature enough) and because it
is very time-consuming to append a new framework to the
overall AI/ML stack.

(v) Use of multiple AI/ML frameworks: In many organi-
zations, it is common to use multiple systems and frameworks
for different workloads. For example, in data storage, a data
lake, many data warehouses, custom specialty databases for
graphs, streaming, time-series databases, etc. are common
practice. At the same time, some of the emerging areas like
DL are advancing very quickly and depending on the task at
hand, different DL frameworks can be more effective. While
it is easy to experiment with a new framework, it is very
expensive to add production support for each new DL library.
In cross-domain applications where many of these different
computational frameworks or patterns need to be combined,
serious challenges can arise. For example, in cases where
reinforcement learning or some online learning applications
require processing data streams, training and deploying mod-
els which may exceed the limits of specific purpose integrated
systems. This, of course, increases complexity.

In practice, one way to overcome this problem is to find a
way to connect the different frameworks together to create
applications that are independent of any particular frame-
work. Another way is to build a new system from scratch
that can supports the functionalities of these frameworks with
simple APIs for new algorithms, creating general purpose
systems. However, these two ways have their own pros and
cons. For example, when merging different systems, it is not
efficient to move data between frameworks, which can lead to
additional overhead and inflexibility (e.g., inferences drawn
by the system cannot be updated frequently due to model
update difficulties). In addition, the learning curve of all these
different frameworks can be steep.

On the other hand, designing and developing a new system
from scratch and moving to a new general-purpose system
can require a great deal of engineering effort for new applica-
tion development processes. Despite these challenges, many
organizations of today are moving to develop their own inter-
nal data platforms consisting of a variety of open-source tools
and frameworks, rather than relying on closed proprietary
systems.

(vi) Data security and privacy: Legal compliance,
encryption, key management and data governance & integrity
are the main pillars of data security and privacy. If not man-
aged properly, a large data set distributed across an enterprise
can cause major headaches for data owners in terms of secu-
rity, authentication, authorization and information integrity.
With strict regulatory requirements (e.g., the GDPR (General
Data Protection Regulation) in Europe) preventing data from
being moved to the cloud, many organizations are looking
for and investing in tools that can allow only authorized
individuals to manage sensitive data on-premises. At the same
time, data sources cannot always be trusted, which can lead
to gaps in the system. For this reason, ensuring data security
is also crucial in model training and validation. The accuracy

VOLUME 10, 2022

and integrity of the data set must be ensured by avoiding data
collection from faulty or compromised network nodes/users
to protect against unfavorable data sets.

All data breaches must be detected as soon as possible.
For this reason, data stream processing is ideal for develop-
ing security applications that allow to respond immediately.
For example, in a typical enterprise, bots, scraper detection,
or access monitoring are importance requirements that can be
met with available stream processing platforms that provide
state management and checkpointing capabilities. Real-time
data should also comply with privacy regulations, similar
to data stored in data warehouses, data lakes, or traditional
data stores. Some companies such as Confluent are already
offering new connectors, such as the Privitar Kafka connector
which improves the value of streaming data assets without
compromising user privacy.'2 Data stream processors such
as Splunk DSP can also mask sensitive data.

(vii) Event streaming support: Traditional event stream-
ing in OSS uses various protocols such as Simple Network
Management Protocol (SNMP) for routers and service gate-
ways, gRPC and protobuf (Google binary protocol buffer) for
telemetry, or syslog events for soft switches for monitoring
purposes. However, these various vendor-specific protocols
also bring some challenges. Some of them are: Complexity in
real-time analysis, multiple data semantics & naming across
different device types and data sources. In BSS systems,
there are also various challenges related to different systems
for broadband, mobile and fixed services, technology stacks
(fiber, copper, 4G/5G, etc.), and other Value Added Services
(VASs). Several BSS system components need to be extended
to include services such as recommendations, augmented
reality, payment integration, etc. and integration with legacy
middleware components of CRM systems (ETL, Enterprise
Service Bus (ESB)) also needs to be done.

Together with data ingestion frameworks, these disparate
data streams can be normalized to a common schema facil-
itating real-time analysis and display of the global net-
work infrastructure. Moreover, data ingestion frameworks
can be used to achieve asynchronous communication between
components and interoperability between different service
providers of OSS and BSS systems. On the other hand,
streaming support for model serving purposes is an important
feature when selecting data processing frameworks. Although
most model serving applications are based on REST, it is
not desirable to use REST inside streaming applications and
make many calls outside the execution environment. For this
reason, new libraries (such as Flink Tensorflow [216]) are
gradually emerging that can support streaming model serv-
ing.

(viii) Architecture decisions: Various data architecture
decisions for streaming and batch processing involve trade-
offs, and organizations are willing to choose the one that
offers more flexible scaling, lower operational overhead with

120https://www.conﬂuent.io/hub/privitar/privitar—kafka—connector,
accessed December-2021

34485

IEEE Access

E. Zeydan, J. Mangues-Bafalluy: Recent Advances in Data Engineering for Networking

high availability and reliable performance. Some important
considerations when choosing a data architecture are scala-
bility, operability (which is more difficult with stream pro-
cessing jobs due to potential lags), bridging both offline
and online scenarios (especially useful for applications using
active learning) and ease of data access and movement capa-
bilities (due to the inherent semantics differences in the data).
Different data architectures are available depending on the
use case and SLAs. Table 7 summarizes the descriptions and
drawbacks of these different available architectures.

(ix) Operational complexity: Selecting data engineering
systems that can work in a single system reduces operational
complexity. However, there will not be a single platform,
system or compute runtime that can handle all the entire
underlying heterogeneous data engineering infrastructure.
This is because there are different data types (big data or small
data, graph or log data, etc.) and access patterns (streaming
or parallel) in the data landscape or ecosystem. Also, the
introduction of new technologies requires new, well-trained
people who can handle the sheer growth of the technology
stack.

However, managing and deploying data tools is getting
easier by the day. The latest data engineering tools greatly
abstract and simplify workflows, allowing data engineers
to focus on selecting the simplest and most cost-effective
solutions that deliver the greatest value to the business. As a
result, these incremental developments in the data tooling
landscape are expected to significantly reduce the operational
complexity of deploying future data architectures.

(x) Batch computing challenges: Most frameworks that
rely on batch data ETL using SQL or SQL-like functionality
can be difficult to integrate when complex logic is required
compared to simple low-level programming. Batch comput-
ing queries become problematic when resources are limited
because aggregations are not additive when new elements are
added to the computed results. As a result, batch computing
can also be inflexible and difficult to manage, which can lead
to errors.

When using third party solutions to improve efficiency,
utilization, and performance, some dependencies and ver-
sions (e.g., jobs that depend on Spark or Hive versions) can
be difficult to integrate due to heterogeneity in workloads
(e.g., analytic, transactional), infrastructure (e.g., cloud, on-
premises), deployments (e.g., Kubernetes, bare-metal nodes,
custom Platform as a Service (PaaS)) and data pipeline
environment, increasing operational overhead. To overcome
these challenges, frameworks such as Kubernetes with its
containerized approach can be used.

(xi) System stability: System stability depends on both
data consistency and the longevity of the systems used. If the
same data engineering pipeline cluster is used by multiple
use cases, the entire cluster may become unstable during
sudden traffic spikes. For example, a throughput-intensive
application may impact or slow down the data availability
of another application or service if the pipelines are not
adequately planned.

34486

Solving data consistency problems caused by multiple sys-
tems is a difficult engineering challenge. Data inconsistencies
can lead to data loss or duplication of data. Bringing these
events to a consistent state requires additional effort from
the data and operations engineering teams. As a platform
for data orchestration and management, the multi-tenancy
support in Kubernetes aims to enable such isolation and fair
resource sharing between multiple use cases so that their
workloads can be reliably shared in a single cluster. However,
this approach should also be extended to the E2E components
of the entire data engineering pipeline.

(xii) Data sharing: Many telecommunication service
providers struggle to understand and identify what data
should be shared, while ensuring regulatory compliance and
defining/understanding the standardized interfaces for data
sharing. Implementing a secure and distributed approach
to data sharing between different network nodes is critical.
In future networks, for example, many telecommunication
service providers will have to share part of their infrastructure
with each other. This will also force them to share critical
infrastructure-related information for better network manage-
ment and orchestration [218].

Traditional APIs used for data sharing can perform poorly
(a slow-working API can be a bottleneck for the service) or
converting legacy services to an API-based service can be
costly. Monolithic databases where every user retrieves the
data can lead to a single point of failure and scalability issues.
Big Data transfers can also have consistency issues due to the
longer duration of data transfers when data is shared.

To address these data sharing issues in a scalable way and
improve the quality of data sharing with third-party vendors
or internal departments of an organization, investments can
be made in building standardized interfaces for accessing rel-
evant data and event-based applications and architectures for
complex events. Another possible solution for data sharing
is to integrate the latest developments in blockchain-based
systems into telecommunication networks [219] so that intel-
ligence and data can be shared between the owners of the
individual network domains in a secure and reliable manner.

(xiii) Coexistence with non-AI/ML capable systems:
In a traditional telecommunications infrastructure, not all
deployed equipment will be intelligent. In some cases, the
Al/ML-enabled systems will need to interact with non-
Al/ML-enabled systems. For example, in some situations,
some of the UEs/edge devices may be used for model train-
ing while others act as normal mobile/edge devices. In this
scenario, the AI/ML platform should be able to distinguish
AIML-enabled nodes. This can help AI/ML nodes to par-
ticipate in distributed model training or model service and
ensure unexpected interventions (e.g., interference, traffic,
congestion, etc.) by non-AI/ML nodes.

Moreover, human-motivated actions or misleading
behaviours that can be performed on nodes not operated by
AI/ML may negatively affect the learning process of AI/ML-
enabled nodes. On the other hand, in some cases, especially
during the autonomous learning process (e.g., during the

VOLUME 10, 2022

E. Zeydan, J. Mangues-Bafalluy: Recent Advances in Data Engineering for Networking

IEEE Access

TABLE 7. Comparisons of architectural choices.

Ar(c)hlt.e cture Description & Advantages Drawbacks
ptions
—May cause maintenance
problems due to
two separate codebases
(one for streaming
and another for batch)
which may need
to be maintained
—Suggested by Nathan Maz and is utilized for consistency during
to support systems that require both software updates and
streaming and batch pipelines [217]. fixes together.
Lambda —The aim is to make streaming systems to aid —Increased complexity,
batch systems to be as close as cost as well as
possible to real-time. inaccuracy due to potential
—Enables reliable streaming pipeline establishments. loss or duplication of data.
—May cause system
integration and data
centralization difficulties.
—Not suitable for use
cases requiring
correct and
low-latency results.
—Suggested by Jay Kreps and addresses some of the challenges .
and limitations of Lambda architecture, —Req1‘1'1 res fasF stream
—Replay the data from a structure data source into a stream processing engine
) . . —Not efficient storage
(e.g turning tables into unbounded stream) to provide
Kappa s . s for large data sets
unified processing capabilities. N . .
s . . . —Less efficient processing
—Unifies both batch and streaming pipelines under a unified codebase e
. . capabilities for batch
and facilitates the use of batch and streaming data to .. .
drive business innovation. —Limited cloud native support
—Testing is difficult
since backend architecture
needs to be
—Promoted by AWS Lambda and one of the latest replicated locally
architectural trend which exploit serverless framework —Portability is difficult
to have an infrastructure and orchestrate data pipeline from one cloud provider
using configuration files. to another (needs
—More serverless platform examples substantial codebase change)
with Google Cloud Functions, Nuclio, Pivotal —Limited freedom for
Function Service, Azure Functions for resource management and
automated data science. application control
—Defines serverless events and functions as a service —Latency is high (cold
—Based on function model where each operation start is common issue)
Serverless is short-lived and does single operation —Problematic for long
Microservice | data —Significantly simplifies the infrastructure data pipeline running batch processing
compatible pipeline instantiation process and accelerates ML deployment cycle applications (serverless functions
by providing high elasticity via Cloud Provider. have time limitations)
—No manual configurations, e.g. on API Gateways, etc. —Limited language support
—Low cost since only pay what you need —Rapid function scaling
—Scalability is instant and handled by cloud providers. is problematic for
(Scale up and down based on traffic patterns) connection oriented data
——Cloud providers handle maintenance sources such as
—Deployment time is in milliseconds relational databases and
—Simplified and very fast application message brokers.
development process (easy —Standardized choices
Minimum Viable Products (MVPs) launch) —Complex configurations
—Issues with interfacing
with storage/databases
—Does not scale large well
—Custom code and services
—Deployment time is in seconds —High cost since containers
—Testing is very simple as the same container is in both always run
local and cloud environment —Scalability is handled by developers.
. —Agnostic to cloud provider —Developers need to constantly
Container ¢
based (easy to port the codebase) updatg the containers
P —Provides low latency security, etc. for maintenance purposes.
data pipeline . N . .
—Good options for long running batch processing —Slower development process
application deployments due to management
—Full resource and application control is possible and processing for
—Language support in unlimited setting up environment
—Lots of choices of frameworks and API mechanisms

VOLUME 10, 2022

34487

IEEE Access

E. Zeydan, J. Mangues-Bafalluy: Recent Advances in Data Engineering for Networking

exploration phase of reinforcement learning algorithms), the
actions performed by AI/ML-enabled devices are unreliable.
To avoid unexpected behaviour of telecommunication sys-
tems in this case, non AI/ML-enabled nodes can be used until
the learning process is successfully completed.

(xiv) Small dataset: One of the components for build-
ing a data engineering pipeline is the data storage ecosys-
tem, in which HDFS plays a key role. However, HDFS
also brings practical limitations in storing a large amount of
small data. For this reason, the size of files that need to be
stored in databases, or the amount of data that can be sent
to a web service that feeds the data into the database must
be adjusted accordingly via configuration parameters. As a
result, applications that rely on HDFS (e.g., Spark jobs) slow
down because the applications spend most of its time on I/O
operations instead of focusing on data processing or analysis
aspects. A possible solution to this problem in Hadoop would
be to store data in SequenceFile format where each small file
is stored in a larger single file.

(xv) Testing distributed systems: Testing a distributed
system with multiple components operating in spatially sepa-
rated locations is usually more difficult and complicated. In a
typical data engineering workflow used to develop a system,
determining where the system fails requires additional inves-
tigative work as the components involved in the data pipeline
grow larger. For a typical system, several proven types of
traditional software testing must be performed before the
system is put into production. Similar procedures can be used
when testing data engineering pipelines. These procedures
are: (i) unit testing (to test a small part or subset of the func-
tionality of a data engineering component), (ii) regression
testing (to reproduce the previously found bugs and fix), (iii)
integration testing (to test the system, when individual data
engineering components are integrated with each other), (iv)
E2E testing (to test full functionality of a data engineering
system in a staging environment) and (V) stress testing (to test
the scalability limits of the data engineering system on a large
scale, e.g., number of users supported, data traffic support,
number of commands executed, etc.).

(xvi) Lack of standardization: There are many
data-driven telecommunication use cases in the standardiza-
tion community, but no implementation details for real-world
telecommunication network environments (e.g., in 5G and
beyond). This can lead to significant challenges in building
robust data engineering pipelines when extending enterprise
building blocks. Although some strategies are presented
in [220], they are limited to procedures of BDA techniques in
IT with limited applications in the network domain. However,
extensive standardization efforts are needed to generalize
these concepts for used by a large community.

(xvii) Backlogged data pipelines: A common challenge
for all pipelines is the delays that occur in the ingestion
pipeline. Note that in telecommunication networks, espe-
cially in 5G and beyond mobile networks, SLAs are very strict
when time-critical AI/ML-based decision making processes
need to be made. Thus, if any component of the data pipeline

34488

fails, it can lead to serious SLA misses. In networks, for
example, the packet transmission times are on the order of
milliseconds and the inference time of the developed models
should be an order of magnitude shorter, otherwise there will
be overhead as traffic increases.

(xviii) Limited data availability: Unavailability of suf-
ficient data for AI/ML training and model building purposes
is a major challenge in almost all industrial use cases [221].
Every time new data emerges, it also brings new knowledge
and hence needs to be integrated into the training process.
This is also true for the telecommunication industry. At the
same time, recent advances such as semi-supervised learning,
federated learning or active learning can help to create larger
training datasets or to introduce new knowledge into the
training process.

For a good summary of existing ML approaches that work
with limited data see [222]. Among these algorithms, semi-
supervised learning aims to train ML models that use both
labelled and unlabeled data [223]. These methods use a large
amount of unlabeled data and proportional lack of labelled
data to achieve an optimal result. For example, the labelling
of unlabelled examples can be done by a semi-supervised
algorithm based on their proximity to known labelled exam-
ples. The main advantage of this approach is that it gener-
ates additional labelled data that can be used to train the
ML model. Therefore, semi-supervised learning is particu-
larly beneficial for scenarios where more training data is
needed.

The concept of federated learning aims to distribute the
copies of the ML algorithm to the distributed sites/devices
where the data is kept, perform the training iterations locally,
and finally send the computational results (e.g., updated
neural network weights) to the central repository to update
the main algorithm [212]. The main advantage is that the
data remains with the owner and the algorithms can still
be trained on the distributed data. Active learning aims to
reduce the amount of data required for human labelling [224].
In this learning method, a query-based strategy is used to
select the most informative examples that a human oper-
ator can label. Once new examples are labelled, the ML
model is updated based on the newly labelled examples
and this process is repeated to train the model and improve
performance.

In telecommunications, unlabeled instances can be
selected for active labeling. For example, when it is difficult
to obtain enough labelled network fault data to find the
root cause of faults in cellular networks, an active learning
strategy can be used [225], [226]. In semi-supervised learning
cases, auto-encoder based approaches can be used to find
the root cause of faults in cellular networks [182]. Finally,
federated learning in wireless communication allows each
UE to build local federated learning models based on their
local measurements and send them to BSs to build a global
federated learning model [227].

Finally Table 8 provides a summary of the challenges
described above.

VOLUME 10, 2022

E. Zeydan, J. Mangues-Bafalluy: Recent Advances in Data Engineering for Networking I E E E ACC@SS

TABLE 8. Summary of the challenges.

Challenges (I) Description (I) Challenges (IT) Description (II)
The field of data A large data
tools and systems set distributed across
(i) Interworking between 1s-1nherently heterogeneous, . . an enterprise can
. 2 diverse and fragmented, as (vi) Data security cause major headaches
different programming languages, . .
. N multiple workflows are and privacy for data owners
tools, computation runtimes . . . X
involved in the process in terms of security,
of creating data engineering authentication, authorization, privacy
pipelines. and information integrity.
It can be
difficult to find Traditional event streaming

in OSS rely on
of tools for various vendor-specific
building a data protocols which also
pipeline given different bring their own challenges.
use case requirements
There are still
many components in
the Hadoop ecosystem
that have not moved
away from YARN
or do not provide
standard support.

a suitable set (vii) Event streaming

support

(ii) Choosing the
right toolset

Different data architectures
(viii) Architecture need to be chosen

decisions depending on the use
case and SLAS

(iii) Support for
containerization

There will not
be a single platform,
system or compute

It is a difficult

(iv) Lack of a unified task to integrate

framework for data all scparate anglyllcs () Operat'lonal runtime that can
rocessing and analysis nodes with traditional complexity handle all the
P systems in a single . lvine h
framework entire underlying heterogeneous
data engineering infrastructure
Batch computing queries
In cross-domain applications become problematic when
where many different resources are limited
(v) Use of multiple computational frameworks or (x) Batch computing because aggregations are
AI/ML frameworks patterns need to challenge not additive when
be combined, serious new elements are
challenges can arise added to the
computed results.
Challenges (III) Description (III) Challenges (IV) Description (IV)

In a typical data
engineering workflow used
to develop a system,

If the same data
engineering pipeline cluster

is used by determining where the system
. - multiple use cases, (xv) Testing distributed . g A
(xi) System stability . fails requires additional
the entire cluster systems

investigative work as
the components involved in
the data pipeline grow
larger.
Many data-driven
telecommunication use cases
(xvi) Lack of in the standardization community,
standardization but no implementation
details for real-world
telecommunication network environments

may become unstable
during sudden traffic
spikes

Implementing a secure
and distributed approach
(xii) Data sharing to data sharing
between different network

nodes is challenging

In cases when
the AI/ML-enabled
systems will need

to interact with
non-Al/ML-enabled
system, the AI/ML
platform should be
able to distinguish

Delays that occur
in the ingestion pipeline
can cause problems
(xvii) Backlogged data in SLAs in telecommunication
pipelines networks when time-critical
AI/ML-based decision
making processes need

(xiii) Coexistence with non-
AI/ML capable systems

Al/ML-enabled nodes to be made.
The size of files
that need to be
Sf:etflelr;riif:?iefs’ Unavailability of sufficient
(xiv) Small dataset data that can be (xviii) Limited data tr:i‘crl:& fo;nﬁlinl\féel
sent to a web availability &

building purposes is

service that feeds .
a major challenge

the data into
the database must
be adjusted accordingly

VOLUME 10, 2022 34489

IEEE Access

E. Zeydan, J. Mangues-Bafalluy: Recent Advances in Data Engineering for Networking

C. FUTURE DIRECTIONS AND ROAD AHEAD

Today, we have enormously large datasets, increased com-
puting power (GPUs, cloud, etc.), extensive open source
software tools and increased industry investment as well as
a large community developing new data science/engineering
applications and services. Similarly, data applications are
attracting large scale number of users and the data engineer-
ing ecosystem has the potential to support a larger number
of users. The involvement of telecommunication industry in
data value chain would provide strategic business value to
telecommunication infrastructure and service providers. For
this reason, telecommunication providers are looking forward
to interacting with and benefiting from the data engineering
ecosystem more frequently as it is open source, royalty-free
and community-driven.

At the same time, there is still much to be done to develop,
deploy, enable operation, debug/test and extend the data
applications within the telecommunication infrastructure. It is
critical to identify the applications, services, and products that
will benefit most from transformations of data engineering
in the networks and IT organizations of telecommunications
providers. When designing a data engineering pipeline in an
enterprise based on use case requirements, both telecommu-
nication and data engineering experts should be consulted,
as their perspective on each use case is different and shared
ideas can be of great benefit.

Data infrastructure is already undergoing a significant
architectural change [228]. Traditional data warehouses are
moving from on-premise to cloud-based data warehouses to
increase scalability, wide expansion, flexibility and ease of
use (e.g. e-commerce data migration case to Google Big-
Query'?"), and next-generation Data Lakes are beginning to
include more ACID-like features and interactive SQL query
capabilities (e.g. Presto [83]). More flexible and consistent
Extract-Load-Transform (ELT) pipelines are taking the place
of traditional ETL processes, (e.g., dbt'??). In the area of
data management and orchestration, several hundred data
pipelines are orchestrated using dataflow automation tools
(e.g., with AirFlow, Dagster123).

Tools like Superset help provide self-service insights
(reports, dashboards, etc.) and are also accessible to
non-technical users. Our survey results shows that telecom-
munication providers can move beyond the traditional bound-
aries of telecommunication networks (e.g., RAN or OSS/BSS
operations, etc.) to reap the benefits of deploying data engi-
neering frameworks on an evolving data infrastructure. They
can leverage the power of data engineering systems deployed
in a distributed, scalable and optimized architecture for
their own business needs. This would also result in lower
Operating Expenditures (OPEX) and Capital Expenditures
(CAPEX), simplify network deployment and management,

121 https://cloud.google.com/blog/products/data-analytics/e-commerce-
data-warehouse-migration, accessed December-2021

122https://www. getdbt.com/, accessed December-2021
123 https://dagster.io/, accessed December-2021

34490

and ensure high customer satisfaction in addition to improved
value-added services.

For optimized network management and orchestration, the
coexistence of the data engineering frameworks described
above with traditional systems at different layers of the net-
work infrastructure is critical. The integration of the tools and
frameworks of the data engineering ecosystem should serve
as a complement to the traditional systems. For example,
if the deployed data processing and analysis framework is
not able to adequately handle the dynamic changes in the
network environment, existing non-Al/ML-based solutions
(e.g., predefined hand-crafted, and rule-based approaches
that do not consider model-based approaches and take reac-
tive actions based on human experience) can meet the new
requirements. This coexistence is also important for security
reasons. Enabling such hybrid approaches can help ensure
rapid response in production environments.

Typically, individual service technologies in the telecom-
munications world are implemented by multiple vendors
and devices running on their network are usually locked-in
and expensive. Compared to telecommunication infrastruc-
ture, the data engineering infrastructure is young, innova-
tive, and growing rapidly. Data engineering technologies
and platforms are evolving and improving at a rapid pace.
In addition, most of the innovative and disruptive technolo-
gies being developed in the data engineering community
are being released as open source. For this reason, telecom-
munication systems must be prepared to adopt and deal
with these new data engineering technologies rather than
remain in legacy systems that cannot take advantage of the
data.

For example, by starting with a simple, small E2E data
engineering pipeline in a production environment, rather than
working on a more complex data pipeline, can help to avoid
numerous mistakes, detect errors early, and solve integra-
tion issues with traditional telecommunication infrastructure.
In addition, AI/ML solutions do not have to found for every
task and every problem. In many cases, simple solutions such
as rule-based systems instead of ML systems can also help to
find an intermediate solution. These results can be used later
and iterated step by step to collect more data needed for more
complex data engineering solutions. Moreover, the function-
ality of the data engineering pipeline can be progressively
extended during this process through a series of iterations.
For new and untested frameworks, it makes sense for organi-
zations to use public cloud resources first (e.g., AWS, GCP or
Azure) and then move to on-premises resources once a stable
definition of workload pipeline is in place.

AI/ML algorithms are predicted to be integrated into
telecommunication networks in the next decade. There are
more and more number of use cases for real-time data, and
the systems that process this data should be mature for the
requirements of telecommunication systems. Network man-
agement and orchestration based on data engineering can
be used to track evolving traffic patterns, user behaviour,
etc., and take these trends into account in the planning and

VOLUME 10, 2022

E. Zeydan, J. Mangues-Bafalluy: Recent Advances in Data Engineering for Networking

IEEE Access

operational phases. It is important to choose a modular system
that can cover multiple use cases.

As a starting point, there is no need to reinvent the wheel,
as there is a good chance that an existing tool/framework can
support initial efforts to integrate AI/ML systems into the
telecommunication specific applications (both in IT and net-
work). Familiarity with the data engineering ecosystem and
tools/frameworks, diversity of expertise across technologies,
and integration skills in bringing disparate pieces together
into new telecommunication applications will be very useful
for network-focused product and service development teams.
Moving forward, a few useful questions to consider are:

o How easily can a new framework or approach be
integrated and tested on large scale in the telecommu-
nication infrastructure?

o How accurately can the impact of the new changes/
updates in the data engineering pipeline be measured in
telecommunication infrastructure to avoid system com-
plexity, poor resource utilization or degradation of the
KPIs for a particular service?

o Does the improvement of a framework in the pipeline
affect or degrade other components in the data engineer-
ing pipeline and telecommunication infrastructure while
keeping maintenance tasks at a low level?

o How does the addition of each framework in the
data engineering pipeline in an integrated environ-
ment impact an organization’s policy standards (e.g.,
data storage, compliance and regulations, security, net-
work, operations, management, data traffic flow, servers,
workloads, legacy applications, or reporting)?

« How quickly can the network engineers of the telecom-
munication world and the data engineers of the
data engineering world would be brought together to
accelerate the process?

XIll. CONCLUSION

The data engineering ecosystem will inevitably play an
important role in next generation network management and
orchestration systems. In this tutorial paper, we highlight the
recent advances in data engineering based networks to meet
the needs of network management and orchestration. We first
provide a comprehensive analysis of existing frameworks and
platforms, and then focus on recent standardization activities.
Finally, we discuss the gaps, challenges, and future directions
in building a data engineering-oritented networking system
for telecommunication networks. Our tutorial analysis shows
that data engineering frameworks can be used for a variety of
purposes, ranging from data ingestion to data visualization,
enabling telecommunication network operators to leverage
the data generated by their users, environment, or network
equipment.

REFERENCES

[1]1 Experiential Networked Intelligence (ENI) Use Cases, Standard ETSI GR
ENI 001, Version 1.1(2018-04), ETSI, 2020.

VOLUME 10, 2022

[2]
[3]
[4]
[5]

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Study of Enablers for Network Automation for 5G, document TR 23.791,
Version 16.2.0(2019-06), Release 16, 3GPP, 2020.

Machine Learning in Future Networks Including IMT-2020: Use Cases,
document Y.Sup55 ITU-T Y.3170-series, ITU, 2020.

GSMA. (2019). Al in Network Use Cases in China. Accessed: Mar. 2022.
[Online]. Available: https://bit.ly/3k812K7

Nokia. (2020). 5G Use Cases and Requirements. Accessed: Mar. 2022.
[Online]. Available: https://bit.ly/2H7mLI14

S. E. Elayoubi, M. Fallgren, P. Spapis, G. Zimmermann,
D. Martin-Sacristan, C. Yang, S. Jeux, P. Agyapong, L. Campoy,
Y. Qi, and S. Singh, “5G service requirements and operational use cases:
Analysis and METIS 1I vision,” in Proc. Eur. Conf. Netw. Commun.
(EuCNC), Jun. 2016, pp. 158-162.

J. Navarro-Ortiz, P. Romero-Diaz, S. Sendra, P. Ameigeiras,
J. J. Ramos-Munoz, and J. M. Lopez-Soler, “A survey on 5G usage
scenarios and traffic models,” IEEE Commun. Surveys Tuts., vol. 22,
no. 2, pp. 905-929, 2nd Quart., 2020.

G. Nguyen, S. Dlugolinsky, M. Bobék, V. Tran, A. L. Garcfia, I. Heredia,
P. Malik, and L. Hluchy, “Machine learning and deep learning frame-
works and libraries for large-scale data mining: A survey,” Artif. Intell.
Rev., vol. 52, no. 1, pp. 77-124, 2019.

Al and ML—Enablers for Beyond 5G Networks, SGPPP Technology
Board, Version 1, May 2021, doi: 10.5281/zenod0.4299895

C. Zhang, P. Patras, and H. Haddadi, “Deep learning in mobile and
wireless networking: A survey,” IEEE Commun. Surveys Tuts., vol. 21,
no. 3, pp. 2224-2287, 3rd Quart., 2019.

A. Zappone, M. Di Renzo, and M. Debbah, “Wireless networks design in
the era of deep learning: Model-based, Al-based, or both?”’ IEEE Trans.
Commun., vol. 67, no. 10, pp. 7331-7376, Oct. 2019.

Q. Mao, F. Hu, and Q. Hao, “Deep learning for intelligent wireless net-
works: A comprehensive survey,” IEEE Commun. Surveys Tuts., vol. 20,
no. 4, pp. 2595-2621, 4th Quart., 2018.

M. Usama, J. Qadir, A. Raza, H. Arif, K.-L.-A. Yau, Y. Elkhatib,
A. Hussain, and A. Al-Fuqaha, “Unsupervised machine learning for
networking: Techniques, applications and research challenges,” IEEE
Access, vol. 7, pp. 65579-65615, 2019.

B. Ma, W. Guo, and J. Zhang, ‘A survey of online data-driven proactive
5G network optimisation using machine learning,” IEEE Access, vol. 8,
pp. 3560635637, 2020.

P. V. Klaine, M. A. Imran, O. Onireti, and R. D. Souza, “A survey
of machine learning techniques applied to self-organizing cellular net-
works,” IEEE Commun. Surveys Tuts., vol. 19, no. 4, pp. 2392-2431,
4th Quart., 2017.

M. E. Morocho-Cayamcela, H. Lee, and W. Lim, “Machine learning for
5G/B5G mobile and wireless communications: Potential, limitations, and
future directions,” IEEE Access, vol. 7, pp. 137184-137206, 2019.

J. Xie, F. R. Yu, T. Huang, R. Xie, J. Liu, and Y. Liu, “A survey of
machine learning techniques applied to software defined networking
(SDN): Research issues and challenges,” IEEE Commun. Surveys Tuts.,
vol. 21, no. 1, pp. 393-430, 1st Quart., 2019.

Y. Zhao, Y. Li, X. Zhang, G. Geng, W. Zhang, and Y. Sun, “A survey of
networking applications applying the software defined networking con-
cept based on machine learning,” IEEE Access, vol. 7, pp. 95397-95417,
2019.

C.-X. Wang, M. D. Renzo, S. Stanczak, S. Wang, and E. G. Larsson,
“Artificial intelligence enabled wireless networking for 5G and beyond:
Recent advances and future challenges,” IEEE Wireless Commun.,
vol. 27, no. 1, pp. 16-23, Feb. 2020.

Y. Sun, M. Peng, Y. Zhou, Y. Huang, and S. Mao, “Application of machine
learning in wireless networks: Key techniques and open issues,” IEEE
Commun. Surveys Tuts., vol. 21, no. 4, pp. 3072-3108, 4th Quart., 2019.
M. Kulin, C. Fortuna, E. De Poorter, D. Deschrijver, and I. Moerman,
“Data-driven design of intelligent wireless networks: An overview and
tutorial,” Sensors, vol. 16, no. 6, p. 790, 2016.

H. Muccini and K. Vaidhyanathan, ““Software architecture for ML-based
systems: What exists and what lies ahead,” in Proc. IEEE/ACM Ist
Workshop Al Eng., Softw. Eng. Al (WAIN), May 2021, pp. 121-128.

B. Mao, F. Tang, K. Yuichi, and N. Kato, “Al based service management
for 6G green communications,” 2021, arXiv:2101.01588.

P. Casas, “Two decades of AI4NETS—AI/ML for data networks: Chal-
lenges & research directions,” in Proc. IEEE/IFIP Netw. Oper. Manage.
Symp. (NOMS), Apr. 2020, pp. 1-6.

34491

http://dx.doi.org/10.5281/zenodo.4299895

IEEE Access

E. Zeydan, J. Mangues-Bafalluy: Recent Advances in Data Engineering for Networking

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45
[46]

[47]

[48]

[49]

34492

H. Fourati, R. Maaloul, and L. Chaari, “A survey of 5G network sys-
tems: Challenges and machine learning approaches,” Int. J. Mach. Learn.
Cybern., vol. 12, no. 2, pp. 385-431, Feb. 2021.

J. Moysen and L. Giupponi, “From 4G to 5G: Self-organized network
management meets machine learning,” Comput. Commun., vol. 129,
pp. 248-268, Sep. 2018.

A. Asghar, H. Farooq, and A. Imran, “Self-healing in emerging cellular
networks: Review, challenges, and research directions,” IEEE Commun.
Surveys Tuts., vol. 20, no. 3, pp. 1682-1709, 3rd Quart., 2018.

S. Yu, X. Lin, J. Misic, and X. S. Shen, Networking for Big Data, vol. 2.
Boca Raton, FL, USA: CRC Press, 2015.

C. Benzaid and T. Taleb, “Al-driven zero touch network and service
management in 5G and beyond: Challenges and research directions,”
IEEE Netw., vol. 34, no. 2, pp. 186-194, Mar. 2020.

A.D’Alconzo, I. Drago, A. Morichetaa, M. Mellia, and P. Casas, “A sur-
vey on big data for network traffic monitoring and analysis,” IEEE Trans.
Netw. Service Manag., vol. 16, no. 3, pp. 800-813, Sep. 2019.

S. Verma, Y. Kawamoto, Z. M. Fadlullah, H. Nishiyama, and N. Kato,
“A survey on network methodologies for real-time analytics of massive
IoT data and open research issues,” IEEE Commun. Surveys Tuts., vol. 19,
no. 3, pp. 1457-1477, 3rd Quart., 2017.

M. S. Hadi, A. Q. Lawey, T. E. H. El-Gorashi, and J. M. H. Elmirghani,
“Big data analytics for wireless and wired network design: A survey,”
Comput. Netw., vol. 132, pp. 180-199, Feb. 2018.

D. Geng, C. Zhang, C. Xia, X. Xia, Q. Liu, and X. Fu, “Big data-based
improved data acquisition and storage system for designing industrial data
platform,” IEEE Access, vol. 7, pp. 44574-44582, 2019.

Y. Cui, S. Kara, and K. C. Chan, “Manufacturing big data ecosystem:
A systematic literature review,” Robot. Comput.-Integr. Manuf., vol. 62,
Apr. 2020, Art. no. 101861.

M. Chen, D. Giindiiz, K. Huang, W. Saad, M. Bennis, A. V. Feljan, and
H. V. Poor, “Distributed learning in wireless networks: Recent progress
and future challenges,” 2021, arXiv:2104.02151.

W. Inoubli, S. Aridhi, H. Mezni, M. Maddouri, and E. M. Nguifo,
“An experimental survey on big data frameworks,” Future Gener. Com-
put. Syst., vol. 86, pp. 546-564, Sep. 2018.

H. Zahid, T. Mahmood, A. Morshed, and T. Sellis, “Big data analytics
in telecommunications: Literature review and architecture recommenda-
tions,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 1, pp. 18-38, Jan. 2020.
H.-N. Dai, R. C.-W. Wong, H. Wang, Z. Zheng, and A. V. Vasilakos,
“Big data analytics for large-scale wireless networks: Challenges and
opportunities,” ACM Comput. Surv., vol. 52, no. 5, pp. 1-36, 2019.

W. Xia, P. Zhao, Y. Wen, and H. Xie, ““A survey on data center networking
(DCN): Infrastructure and operations,” IEEE Commun. Surveys Tuts.,
vol. 19, no. 1, pp. 640-656, 1st Quart., 2016.

A. A. Gebremariam, M. Usman, and M. Qarage, “Applications of arti-
ficial intelligence and machine learning in the area of SDN and NFV:
A survey,” in Proc. 16th Int. Multi-Conf. Syst., Signals Devices (SSD),
Mar. 2019, pp. 545-549.

T. White, Hadoop: The Definitive Guide. Sebastopol, CA, USA: O’Reilly
Media, 2012.

J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107-113, 2008.

V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino,
0. O’Malley, S. Radia, B. Reed, and E. Baldeschwieler, ‘“Apache Hadoop
YARN: Yet another resource negotiator,” in Proc. 4th Annu. Symp. Cloud
Comput., Oct. 2013, pp. 1-16.

S. E. Solmaz, B. Gedik, H. Ferhatosmanoglu, S. Soziier, E. Zeydan, and
C. O. Etemoglu, “ALACA: A platform for dynamic alarm collection
and alert notification in network management systems,” Int. J. Netw.
Manage., vol. 27, no. 4, p. €1980, Jul. 2017.

N. Garg, Apache Kafka. Birmingham, U.K.: Packt Publishing, 2013.

S. Hoffman, Apache Flume: Distributed Log Collection for Hadoop.
Birmingham, U.K.: Packt Publishing, 2013.

X. Cheng, L. Fang, and L. Yang, “Mobile big data based network intelli-
gence,” IEEE Internet Things J., vol. 5, no. 6, pp. 4365-4379, Dec. 2018.
G.J. Chen, J. L. Wiener, S. Iyer, A. Jaiswal, R. Lei, N. Simha, W. Wang,
K. Wilfong, T. Williamson, and S. Yilmaz, “Realtime data processing at
Facebook,” in Proc. Int. Conf. Manage. Data, Jun. 2016, pp. 1087-1098.
L. Johansson and D. Dossot, RabbitMQ Essentials: Build Distributed
and Scalable Applications with Message Queuing Using RabbitMQ.
Birmingham, U.K.: Packt Publishing, 2020.

[50]

[51]

[52]

[53]

[54]

[55]

(56]

(57]

(58]

(59]

[60]

(61]

(62]

(63]

(64]

(65]

(6]

(67]

(68]

(69]

(70]

(71]

(72]

(73]

(74]

(75]

A. E. Bagaskara, S. Setyorini, and A. A. Wardana, ‘‘Performance analysis
of message broker for communication in fog computing,” in Proc. 12th
Int. Conf. Inf. Technol. Electr. Eng. (ICITEE), Oct. 2020, pp. 98-103.
X.J.Hong, H. S. Yang, and Y. H. Kim, “‘Performance analysis of RESTful
API and RabbitMQ for microservice web application,” in Proc. Int. Conf.
Inf. Commun. Technol. Converg. (ICTC), Oct. 2018, pp. 257-259.

Y. Fu and C. Soman, ‘“‘Real-time data infrastructure at Uber,” in Proc. Int.
Conf. Manage. Data, Jun. 2021, pp. 2503-2516.

T. Akidau, S. Chernyak, and R. Lax, Streaming Systems: The What,
Where, When, and How of Large-Scale Data Processing. Sebastopol, CA,
USA: O’Reilly Media, 2018.
A. Jain and A. Nalya,
Packt Publishing, 2014.

M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave,
X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin, A. Ghodsi,
J. Gonzalez, S. Shenker, and I. Stoica, “Apache spark: A unified engine
for big data processing,” Commun. ACM, vol. 59, no. 11, pp. 56-65, 2016.
C. King, A. Higham, and S. Guo. (2020). Pulsar vs. Kafka—Part 1—
A More Accurate Perspective on Performance, Architecture, and
Features. Accessed: Mar. 2022. [Online]. Available: https://
bit.ly/3tCIgj6

T. Dunning and E. Friedman, Streaming Architecture: New Designs
Using Apache Kafka and MapR Streams. Sebastopol, CA, USA: O’Reilly
Media, 2016.

Hughes Network Systems. (2017). OSS/BSS Services. Accessed:
Mar. 2022. [Online]. Available: https://bit.ly/332K86U

F. Yang, E. Tschetter, X. Léauté, N. Ray, G. Merlino, and D. Ganguli,
“‘Druid: A real-time analytical data store,”” in Proc. ACM SIGMOD
Int. Conf. Manage. Data, Jun. 2014, pp. 157-168.

A.Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang, S. Antony,
H. Liu, and R. Murthy, ‘‘Hive—A petabyte scale data warehouse using
Hadoop,”” in Proc. IEEE 26th Int. Conf. Data Eng. (ICDE), 2010,
pp. 996-1005.

C. Gormley and Z. Tong, Elasticsearch: The Definitive Guide: A Dis-
tributed Real-Time Search and Analytics Engine. Sebastopol, CA, USA:
O’Reilly Media, 2015.

M. Fu, A. Agrawal, A. Floratou, B. Graham, A. Jorgensen, R. Li, N. Lu,
K. Ramasamy, S. Rao, and C. Wang, ‘‘Twitter heron: Towards
extensible streaming engines,”’ in Proc. IEEE 33rd Int. Conf. Data
Eng. (ICDE), Apr. 2017, pp. 1165-1172.

J. Carlson, Redis in Action. New York, NY, USA: Simon and Schuster,
2013.

K. Ting and J. J. Cecho, Apache Sqoop Cookbook: Unlocking Hadoop for
Your Relational Database. Sebastopol, CA, USA: O’Reilly Media, 2013.
C. Ibsen and J. Anstey, Camel in Action. Shelter Island, NY, USA:
Manning Publications, 2010.

G. Fu, Y. Zhang, and G. Yu, ‘A fair comparison of message queuing
systems,”” IEEE Access, vol. 9, pp. 421-432, 2021.

M. Zhang. (2020). A Curated List of Awesome Streaming (Stream
Processing) Frameworks, Applications, Readings and Other
Resources. Accessed: Mar. 2022. [Online]. Available: https://
github. com/manuzhang/awesome-streaming

D. L. Quoc, R. Chen, P. Bhatotia, C. Fetzer, V. Hilt, and T. Strufe,
“‘StreamApprox: Approximate computing for stream analytics,”” in
Proc. 18th ACM/IFIP/USENIX Middleware Conf., Dec. 2017, pp. 185—
197.

D. Merkel, ‘‘Docker: Lightweight Linux containers for consistent devel-
opment and deployment,”’ Linux J., vol. 2014, no. 239, p. 2, 2014.

C. Olston, N. Fiedel, K. Gorovoy, J. Harmsen, L. Lao, F. Li,
V. Rajashekhar, S. Ramesh, and J. Soyke, ‘‘TensorFlow-Serving: Flexi-
ble, high-performance ML serving,”” 2017, arXiv:1712.06139.

F. Balali, J. Nouri, A. Nasiri, and T. Zhao, ‘‘Data analytics,”” in
Data Intensive Industrial Asset Management. Cham, Switzerland:
Springer, 2020, pp. 105-113.

D. L. Olson and G. Lauhoff, ‘‘Descriptive data mining,”” in
Descriptive Data Mining. Singapore: Springer, 2019, pp. 129-130.

H. Cao, M. Wachowicz, C. Renso, and E. Carlini, ‘‘Analytics
everywhere: Generating insights from the Internet of Things,”” IEEE
Access, vol. 7, pp. 71749-71769, 2019.

P. S. Deshpande, S. C. Sharma, and S. K. Peddoju, ‘‘Predictive and
prescriptive analytics in big-data era,”” in Security and Data Storage
Aspect in Cloud Computing. Singapore: Springer, 2019, pp. 71-81.

J. Hermann and M. D. Balso. (2020). Meet Michelangelo: Uber’s
Machine Learning Platform. Accessed: Mar. 2022. [Online]. Available:
https://ubr.to/3upw6cL

Learning Storm. Birmingham, U.K.:

VOLUME 10, 2022

E. Zeydan, J. Mangues-Bafalluy: Recent Advances in Data Engineering for Networking

IEEE Access

[76]

[77]

[78]

[79]

[80]

[81

[82]

[83]

[84

[85]

[86]

[87]

[88]

[89]

[90
[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98

[99]

P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and
K. Tzoumas, “Apache Flink: Stream and batch processing in a single
engine,” Bull. IEEE Comput. Soc. Tech. Committee Data Eng., IEEE,
NY, USA, Tech. Rep. 4, 2015, vol. 36, no. 4.

J. J. Dai, Y. Wang, X. Qiu, D. Ding, Y. Zhang, Y. Wang, X. Jia,
C. L. Zhang, Y. Wan, Z. Li, . Wang, S. Huang, Z. Wu, Y. Wang, Y. Yang,
B. She, D. Shi, Q. Lu, K. Huang, and G. Song, “BigDL: A distributed
deep learning framework for big data,” in Proc. ACM Symp. Cloud
Comput., 2019, pp. 50-60.

P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang,
M. Elibol, Z. Yang, W. Paul, M. I. Jordan, and I. Stoica, “Ray: A dis-
tributed framework for emerging Al applications,” in Proc. 13th USENIX
Symp. Oper. Syst. Design Implement. (OSDI), 2018, pp. 561-577.

S. A. Noghabi, K. Paramasivam, Y. Pan, N. Ramesh, J. Bringhurst,
I. Gupta, and R. H. Campbell, “Samza: Stateful scalable stream
processing at LinkedIn,” Proc. VLDB Endowment, vol. 10, no. 12,
pp. 1634-1645, 2017.

C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins, “Pig Latin:
A not-so-foreign language for data processing,” in Proc. ACM SIGMOD
Int. Conf. Manage. Data, 2008, pp. 1099-1110.

J. Russell, Cloudera Impala. Sebastopol, CA, USA: O’Reilly Media,
2013.

M. Hausenblas and J. Nadeau, “Apache drill: Interactive ad-hoc analysis
at scale,” Big Data, vol. 1, no. 2, pp. 100-104, Jun. 2013.

R. Sethi, M. Traverso, D. Sundstrom, D. Phillips, W. Xie, Y. Sun,
N. Yegitbasi, H. Jin, E. Hwang, N. Shingte, and C. Berner, “Presto:
SQL on everything,” in Proc. IEEE 35th Int. Conf. Data Eng. (ICDE),
Apr. 2019, pp. 1802-1813.

A. Kylin. (2020). Analytical Data Warehouse for Big Data. Accessed:
Mar. 2022. [Online]. Available: http://kylin.apache.org/

J.-F. Im, K. Gopalakrishna, S. Subramaniam, M. Shrivastava, A. Tumbde,
X. Jiang, J. Dai, S. Lee, N. Pawar, J. Li, and R. Aringunram, “Pinot:
Realtime OLAP for 530 million users,” in Proc. Int. Conf. Manage. Data,
May 2018, pp. 583-594.

N. Francis, A. Green, P. Guagliardo, L. Libkin, T. Lindaaker, V. Marsault,
S. Plantikow, M. Rydberg, P. Selmer, and A. Taylor, “Cypher: An evolv-
ing query language for property graphs,” in Proc. Int. Conf. Manage.
Data, May 2018, pp. 1433-1445.

T. Lipcon, T. Lipcon, D. Alves, D. Burkert, J.-D. Cryans, A. Dembo,
M. Percy, S. Rus, D. Wang, M. Bertozzi, C. P. McCabe, and A. Wang,
“Kudu: Storage for fast analytics on fast data,” Cloudera, Palo Alto, CA,
USA, Tech. Rep. 1, 2015, vol. 28.

S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long, and C. Maltzahn,
“Ceph: A scalable, high-performance distributed file system,” in Proc.
7th Symp. Oper. Syst. Design Implement., 2006, pp. 307-320.

G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
Amazon’s highly available key-value store,” ACM SIGOPS Oper. Syst.
Rev., vol. 41, no. 6, pp. 205-220, 2007.

J. Lennon, Beginning CouchDB. New York, NY, USA: Apress, 2010.

A. Vukotic, N. Watt, T. Abedrabbo, D. Fox, and J. Partner, Neo4j in
Action, vol. 22. Shelter Island, NY, USA: Manning, 2015.

B. Fitzpatrick, “Distributed caching with memcached,” Linux J.,
vol. 2004, no. 124, pp. 72-78, 2004.

A. Lakshman and P. Malik, “Cassandra: A decentralized structured stor-
age system,” ACM SIGOPS Oper. Syst. Rev., vol. 44, no. 2, pp. 35-40,
Apr. 2010.

L. George, HBase: The Definitive Guide: Random Access to Your Planet-
Size Data. Sebastopol, CA, USA: O’Reilly Media, 2011.

M. Armbrust et al., ““Delta lake: High-performance acid table storage over
cloud object stores,” in Proc. Int. Conf. Very Large Data Bases (VLDB),
2020, pp. 1-14.

P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “ZooKeeper: Wait-free
coordination for internet-scale systems,” in Proc. USENIX Annu. Tech.
Conf., 2010, vol. 8, no. 9, pp. 1-14.

L. Calcote and Z. Butcher, Istio: Up and Running: Using a Service
Mesh to Connect, Secure, Control, and Observe. Sebastopol, CA, USA:
O’Reilly Media, 2019.

J. Turnbull, Monitoring With Prometheus. New York, NY, USA: Turnbull
Press, 2018.

Amazon Web Services. (2020). Serverless Application Lens—AWS
Well-Architected Framework. Accessed: Oct. 2020. [Online]. Available:
https://go.aws/3wx0Onca

VOLUME 10, 2022

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

Linux Containers. (2020). Infrastructure for Container Projects.
Accessed: Mar. 2022. [Online]. Available: https:/linuxcontainers.org/
B. Burns, J. Beda, and K. Hightower, Kubernetes: Up and Running: Dive
Into the Future of Infrastructure. Sebastopol, CA, USA: O’Reilly Media,
2019.

D. Kakadia, Apache Mesos Essentials. Birmingham, U.K.: Packt
Publishing, 2015.

M. Zaharia, A. Chen, A. Davidson, A. Ghodsi, S. A. Hong, A. Konwinski,
S. Murching, T. Nykodym, P. Ogilvie, M. Parkhe, F. Xie, and C. Zumar,
“Accelerating the machine learning lifecycle with MLflow,” Bull. IEEE
Comput. Soc. Tech. Committee Data Eng., IEEE, NY, USA, Tech. Rep. 4,
2018, pp. 3945, vol. 41, no. 4.

E. Bisong, “Kubeflow and kubeflow pipelines,” in Building Machine
Learning and Deep Learning Models on Google Cloud Platform. New
York, NY, USA: Apress, 2019, pp. 671-685.

M. Islam, A. K. Huang, M. Battisha, M. Chiang, S. Srinivasan, C. Peters,
A. Neumann, and A. Abdelnur, “Oozie: Towards a scalable workflow
management system for Hadoop,” in Proc. 1st ACM SIGMOD Workshop
Scalable Workflow Execution Engines Technol., 2012, pp. 1-10.

B. Saha, H. Shah, S. Seth, G. Vijayaraghavan, A. Murthy, and C. Curino,
“Apache tez: A unifying framework for modeling and building data
processing applications,” in Proc. ACM SIGMOD Int. Conf. Manage.
Data, May 2015, pp. 1357-1369.

E. Begoli, J. Camacho-Rodriguez, J. Hyde, M. J. Mior, and D. Lemire,
“Apache calcite: A foundational framework for optimized query process-
ing over heterogeneous data sources,” in Proc. Int. Conf. Manage. Data,
May 2018, pp. 221-230.

T. Grainger and T. Potter, Solr in Action. Shelter Island, NY, USA:
Manning, 2014.

A. Paszke et al., “PyTorch: An imperative style, high-performance deep
learning library,” in Proc. Adv. Neural Inf. Process. Syst., vol. 32, 2019,
pp. 1-12.

X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu,
J. Freeman, D. Tsai, M. Amde, S. Owen, D. Xin, R. Xin, M. J. Franklin,
R. Zadeh, M. Zaharia, and A. Talwalkar, “MLIlib: Machine learning in
Apache Spark,” J. Mach. Learn. Res., vol. 17, no. 1, pp. 1235-1241,
2016.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, A. Miiller, J. Nothman, G. Louppe, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay, ‘““Scikit-learn: Machine learn-
ing in Python,” J. Mach. Learn. Res., vol. 12, pp. 2825-2830, Nov. 2011.
J. M. Hellerstein, C. Ré, F. Schoppmann, D. Z. Wang, E. Fratkin,
A. Gorajek, K. S. Ng, C. Welton, X. Feng, K. Li, and A. Kumar,
“The MADIib analytics library: Or MAD skills, the SQL,” Proc. VLDB
Endowment, vol. 5, no. 12, pp. 1700-1711, Aug. 2012.

M. Abadi et al., “TensorFlow: A system for large-scale machine learn-
ing,” in Proc. 12th USENIX Symp. Operating Syst. Design Implement.
(OSDI), 2016, pp. 265-283.

R. Collobert, S. Bengio, and J. Mariéthoz. (2002). Torch: A Modu-
lar Machine Learning Software Library, Idiap. Accessed: Mar. 2022.
[Online]. Available: https://bit.ly/3iD2p2c

S. Tokui, R. Okuta, T. Akiba, Y. Niitani, T. Ogawa, S. Saito, S. Suzuki,
K. Uenishi, B. Vogel, and H. Y. Vincent, “Chainer: A deep learn-
ing framework for accelerating the research cycle,” in Proc. 25th
ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, Jul. 2019,
pp. 2002-2011.

B. C. Ooi, K.-L. Tan, S. Wang, W. Wang, Q. Cai, G. Chen, J. Gao, Z. Luo,
A. K. H. Tung, Y. Wang, Z. Xie, M. Zhang, and K. Zheng, “SINGA:
A distributed deep learning platform,” in Proc. 23rd ACM Int. Conf.
Multimedia, Oct. 2015, pp. 685-688.

T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu,
C. Zhang, and Z. Zhang, “MXNet: A flexible and efficient machine
learning library for heterogeneous distributed systems,” in Proc. Neural
Inf. Process. Syst., Workshop Mach. Learn. Syst., 2015, pp. 1-6.

J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu,
G. Desjardins, J. Turian, D. Warde-Farley, and Y. Bengio, ““Theano: A
CPU and GPU math compiler in Python,” in Proc. Python Sci. Conf.
(SciPy), Austin, TX, USA, 2010, vol. 4, no. 3, pp. 1-7.

Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” in Proc. 22nd ACM Int. Conf. Multimedia,
Nov. 2014, pp. 675-678.

34493

IEEE Access

E. Zeydan, J. Mangues-Bafalluy: Recent Advances in Data Engineering for Networking

[120]

[121]

[122]

[123]

[124]

[125

[126]
[127]

[128]

[129]

[130]

[131]

[132

[133]

[134]

[135]

[136

[137]

[138]

[139

[140]

[141

[142

[143]

[144]

[145

34494

F. Chollet, Deep Learning With Python, vol. 361. New York, NY, USA:
Manning, 2018.

E. Liang, R. Liaw, R. Nishihara, P. Moritz, R. Fox, K. Goldberg,
J. Gonzalez, M. Jordan, and 1. Stoica, “RLIlib: Abstractions for dis-
tributed reinforcement learning,” in Proc. Int. Conf. Mach. Learn., 2018,
pp. 3053-3062.

G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “OpenAl gym,” 2016, arXiv:1606.01540.

A. Sergeev and M. Del Balso, “Horovod: Fast and easy distributed deep
learning in TensorFlow,” 2018, arXiv:1802.05799.

D. Crankshaw, X. Wang, G. Zhou, M. J. Franklin, J. E. Gonzalez, and
I. Stoica, “Clipper: A low-latency online prediction serving system,” in
Proc. 14th USENIX Symp. Netw. Syst. Design Implement. (NSDI), 2017,
pp. 613-627.

J. Bergstra, D. Yamins, and D. Cox, “Hyperopt: A Python library for opti-
mizing the hyperparameters of machine learning algorithms,” in Proc.
12th Python Sci. Conf. Princeton, NJ, USA: Citeseer, 2013, p. 20.

Y. Vasiliev, Natural Language Processing With Python and SpaCy: A
Practical Introduction. San Francisco, CA, USA: No Starch Press, 2020.
T. Wolf et al., “HuggingFace’s transformers: State-of-the-art natural
language processing,” 2019, arXiv:1910.03771.

M. Gardner, J. Grus, M. Neumann, O. Tafjord, P. Dasigi, N. Liu,
M. Peters, M. Schmitz, and L. Zettlemoyer, “AllenNLP: A deep semantic
natural language processing platform,” 2018, arXiv:1803.07640.

T. B. Brown et al., “Language models are few-shot learners,” 2020,
arXiv:2005.14165.

C. Ré, F. Niu, P. Gudipati, and C. Srisuwananukorn, “Overton: A data
system for monitoring and improving machine-learned products,” 2019,
arXiv:1909.05372.

J. Dunn, “Introducing FBLearner flow: Facebook’s AI backbone,” Eng.
Blog, Facebook Code, Facebook, CA, USA, Tech. Rep. 1, 2016.
Zero-Touch Network and Service Management (ZSM) Reference Architec-
ture, Standard ETSI GS ZSM 002, Version 1.1.1(2019-08), ETSI, 2020.
(Mar. 2022). ZSM Architectural Framework for End-to-End Service
and Network Automation. Accessed: Mar. 2022. [Online]. Available:
https://bit.ly/3qykGSU

OSM End User Advisory Group. (2019). OSM Scope, Functionality,
Operation and Integration Guidelines. Accessed: Mar. 2022. [Online].
Available: https://bit.ly/3iz3Q1K

D. Soldani and S. A. Illingworth, “5G Al-enabled automation,” in Wiley
5G Ref: The Essential 5G Reference Online. Hoboken, NJ, USA: Wiley,
2019, pp. 1-38.

ORAN-Alliance. (2020). Operator Defined Next Generation RAN Archi-
tecture and Interfaces. Accessed: Mar. 2022. [Online]. Available:
https://www.o-ran.org/

O-RAN Working Group 2: AI/ML Workflow Description and Require-
ments. Alfter, Germany: O-RAN Alliance, 2019.

O-RAN Working Group 3: O-RAN Near-Real-Time RAN Intelligent Con-
troller Architecture and E2 General Aspects and Principles—V1.01,
2020.

ONAP. (2020). A Comprehensive Platform for Orchestration, Man-
agement, and Automation of Network and Edge Computing Services.
Accessed: Mar. 2022. [Online]. Available: https://www.onap.org/
Requirements Based on Documented Scenarios, Standard ETSI GS ZSM
001, Version 1.1.1(2019-08), ETSI, 2019.

Autonomic Network Engineering for the Self-Managing Future Internet
(AFI); Generic Autonomic Network Architecture; Part 2: An Architectural
Reference Model for Autonomic Networking, Cognitive Networking and
Self-Management, Standard ETSI TS 103 195-2, Version 1.1.1(2018-05),
2020.

Experiential Networked Intelligence (ENI) System Architecture,
Standard ETSI GS ENI 005, Version 1.1.1(2019-09), 2020.

Y. Wang, R. Forbes, C. Cavigioli, H. Wang, A. Gamelas, A. Wade,
J. Strassner, S. Cai, and S. Liu, “Network management and orchestration
using artificial intelligence: Overview of ETSI ENI,” IEEE Commun.
Standards Mag., vol. 2, no. 4, pp. 58-65, Dec. 2018.

L. Frost, T. B. Meriem, J. M. Bonifacio, S. Cadzow, F. da Silva,
M. Essa, R. Forbes, P. Marchese, M. Odini, N. Sprecher, C. Toche, and
S. Wood, “Artificial intelligence and future directions for ETSI,” ETSI,
Sophia Antipolis, France, ETSI White Paper #34 (2020-06), 2020.
Architectural Framework for Machine Learning in Future Networks
Including IMT-2020, document ITU-T R Y.3172 (2019-06), ITU, 2020.

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

R. Ferrus, O. Sallent, and J. Perez-Romero, ‘““Data analytics architectural
framework for smarter radio resource management in 5G radio access
networks,” IEEE Commun. Mag., vol. 58, no. 5, pp. 98-104, May 2020.
Architecture Enhancements for 5G System (5GS) to Support Network
Data Analytics Services, Standard TS 23.288, Version 16.1.0, 3rd Gen-
eration Partnership Project (3GPP), 2019.

A. Imran, A. Zoha, and A. Abu-Dayya, “Challenges in 5G: How to
empower SON with big data for enabling 5G,” IEEE Netw., vol. 28, no. 6,
pp- 27-33, Nov./Dec. 2014.

R. Li, Z. Zhao, X. Zhou, G. Ding, Y. Chen, Z. Wang, and H. Zhang,
“Intelligent 5G: When cellular networks meet artificial intelligence,”
IEEE Wireless Commun., vol. 24, no. 5, pp. 175-183, Oct. 2017.

I. Malaka and I. Brown, “Challenges to the organisational adoption of
big data analytics: A case study in the South African telecommunications
industry,” in Proc. Annu. Res. Conf. South Afr. Inst. Comput. Scientists
Inf. Technol., 2015, pp. 1-9.

M. I. Baig, L. Shuib, and E. Yadegaridehkordi, “Big data adoption: State
of the art and research challenges,” Inf. Process. Manage., vol. 56, no. 6,
Nov. 2019, Art. no. 102095.

H. Gacanin and M. Wagner, “Artificial intelligence paradigm for cus-
tomer experience management in next-generation networks: Challenges
and perspectives,” IEEE Netw., vol. 33, no. 2, pp. 188-194, Mar. 2019.
S. Mwanje, G. Decarreau, C. Mannweiler, M. Naseer-ul-Islam, and
L. C. Schmelz, “Network management automation in 5G: Challenges
and opportunities,” in Proc. IEEE 27th Annu. Int. Symp. Pers., Indoor,
Mobile Radio Commun. (PIMRC), Sep. 2016, pp. 1-6.

W. Xu, Y. Xu, C.-H. Lee, Z. Feng, P. Zhang, and J. Lin, “Data-cognition-
empowered intelligent wireless networks: Data, utilities, cognition brain,
and architecture,” IEEE Wireless Commun., vol. 25, no. 1, pp. 56-63,
Feb. 2018.

T. Zhang, K. Zhu, and E. Hossain, “Data-driven machine learning tech-
niques for self-healing in cellular wireless networks: Challenges and
solutions,” 2019, arXiv:1906.06357.

A. Lavin, C. M. Gilligan-Lee, A. Visnjic, S. Ganju, D. Newman,
A. G. Baydin, S. Ganguly, D. Lange, A. Sharma, S. Zheng, E. P. Xing,
A. Gibson, J. Parr, C. Mattmann, and Y. Gal, “Technology readiness
levels for machine learning systems,” 2021, arXiv:2101.03989.

F. Martinez-Plumed, E. Gémez, and J. Herndandez-Orallo, ‘“‘Futures of
artificial intelligence through technology readiness levels,” Telematics
Informat., vol. 58, May 2021, Art. no. 101525.

T. Granlund, A. Kopponen, V. Stirbu, L. Myllyaho, and T. Mikkonen,
“MLOps challenges in multi-organization setup: Experiences from two
real-world cases,” 2021, arXiv:2103.08937.

C. Papagianni, J. Mangues-Bafalluy, P. Bermudez, S. Barmpounakis,
D. De Vleeschauwer, J. Brenes, E. Zeydan, C. Casetti, C. Guimaraes,
P. Murillo, A. Garcia-Saavedra, D. Corujo, and T. Pepe, “5Growth: Al-
driven 5G for automation in vertical industries,” in Proc. Eur. Conf. Netw.
Commun. (EuCNC), Jun. 2020, pp. 17-22.

X. Li, A. Garcia-Saavedra, X. Costa-Perez, C. J. Bernardos,
C. Guimaraes, K. Antevski, J. Mangues-Bafalluy, J. Baranda, E. Zeydan,
D. Corujo, P. Tovanna, G. Landi, J. Alonso, P. Paixao, H. Martins,
M. Lorenzo, J. Ordonez-Lucena, and D. R. Lopez, “5Growth: An
end-to-end service platform for automated deployment and management
of vertical services over 5G networks,” IEEE Commun. Mag., vol. 59,
no. 3, pp. 84-90, Mar. 2021.

D. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips, D. Ebner,
V. Chaudhary, M. Young, J.-F. Crespo, and D. Dennison, ‘“Hidden techni-
cal debt in machine learning systems,” in Proc. Adv. Neural Inf. Process.
Syst., 2015, pp. 2503-2511.

J.-P. Joutsenlahti, T. Lehtonen, M. Raatikainen, E. Kettunen, and
T. Mikkonen, “Challenges and governance solutions for data science
services based on open data and Apis,” in Proc. IEEE/ACM 1st Workshop
Al Eng. Softw. Eng. AI (WAIN), May 2021, pp. 1-4.

M. Giordani, M. Polese, M. Mezzavilla, S. Rangan, and M. Zorzi,
“Toward 6G networks: Use cases and technologies,” IEEE Commun.
Mag., vol. 58, no. 3, pp. 55-61, Dec. 2020.

E. C. Strinati, S. Barbarossa, J. L. Gonzalez-Jimenez, D. Ktenas,
N. Cassiau, L. Maret, and C. Dehos, “6G: The next frontier: From
holographic messaging to artificial intelligence using subterahertz and
visible light communication,” IEEE Veh. Technol. Mag., vol. 14, no. 3,
pp. 42-50, Sep. 2019.

N. Rajatheva et al., ““Scoring the terabit/s goal: Broadband connectivity
in 6G,” 2020, arXiv:2008.07220.

VOLUME 10, 2022

E. Zeydan, J. Mangues-Bafalluy: Recent Advances in Data Engineering for Networking

IEEE Access

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

[181]

[182]

[183]

[184]

[185]

[186]

[187]

[188]

[189]

A. Burkov, Machine Learning Engineering Book, vol. 1. Quebec City,
QC, Canada: Andriy Burkov, 2020.

B. Derakhshan, A. Mahdiraji, T. Rabl, and V. Markl, ““Continuous deploy-
ment of machine learning pipelines,” in Proc. 22nd Int. Conf. Extending
Database Technol. (EDBT), 2019, p. 397—408.

Google Cloud. (2020). MLOps: Continuous Delivery and Automation
Pipelines in Machine Learning. Accessed: Mar. 2022. [Online]. Avail-
able: https://bit.ly/3tztmu2

E. Acurna and C. Rodriguez, “The treatment of missing values and its
effect on classifier accuracy,” in Proc. Meeting Int. Fed. Classification
Soc. (IFCS), 2004, pp. 639-647.

S. Garcia, J. Luengo, and F. Herrera, Data Preprocessing in Data Mining,
vol. 72. Cham, Switzerland: Springer, 2015.

M.J. Azur, E. A. Stuart, C. Frangakis, and P. J. Leaf, ““Multiple imputation
by chained equations: What is it and how does it work?”” Int. J. Methods
Psychiatric Res., vol. 20, no. 1, pp. 4049, Mar. 2011.

J. Pages, Multiple Factor Analysis by Example Using R. Boca Raton, FL,
USA: CRC Press, 2014.

F. Biessmann, T. Rukat, P. Schmidt, P. Naidu, S. Schelter, A. Taptunov,
D.Lange, and D. Salinas, “DataWig: Missing value imputation

for tables,” J. Mach. Learn. Res., vol. 20, no. 175, pp.1-6,
2019.
S. Schelter, F. Biessmann, T. Januschowski, D. Salinas, S. Seufert, and

G. Szarvas, “On challenges in machine learning model management,”
Bull. IEEE Comput. Soc. Tech. Committee Data Eng., IEEE, NY, USA,
Tech. Rep. 4, 2018, pp. 5-15, vol. 41, no. 4.

T. Rukat, D. Lange, S. Schelter, and F. Biessmann, ““Towards automated
data quality management for machine learning,” in Proc. ML Ops Work-
shop Conf. ML Syst. (MLSys), 2020, pp. 1-3.

M. Cutler, T. J. Walsh, and J. P. How, ‘““‘Real-world reinforcement learn-
ing via multifidelity simulators,” IEEE Trans. Robot., vol. 31, no. 3,
pp. 655-671, Jun. 2015.

S. J. Pan and Q. Yang, “A survey on transfer learning,” [EEE

Trans. Knowl. Data Eng., vol. 22, no. 10, pp.1345-1359,
Oct. 2009.
G. Yang, Y. Zhang, Z. He, J. Wen, Z. Ji, and Y. Li, “Machine-learning-

based prediction methods for path loss and delay spread in air-to-ground
millimetre-wave channels,” IET Microw., Antennas Propag., vol. 13,
no. 8, pp. 1113-1121, 2019.

C. T. Nguyen, N. Van Huynh, N. H. Chu, Y. M. Saputra, D. T. Hoang,
D. N. Nguyen, Q.-V. Pham, D. Niyato, E. Dutkiewicz, and W.-J. Hwang,
“Transfer learning for future wireless networks: A comprehensive sur-
vey,” 2021, arXiv:2102.07572.

L. Baier, F. Johren, and S. Seebacher, ““Challenges in the deployment and
operation of machine learning in practice,” in Proc. 27th Eur. Conf. Inf.
Syst. (ECIS), 2019, pp. 1-15.

A. Paleyes, R.-G. Urma, and N. D. Lawrence, “Challenges in deploying
machine learning: A survey of case studies,” 2020, arXiv:2011.09926.
H. D. Trinh, E. Zeydan, L. Giupponi, and P. Dini, “Detecting mobile
traffic anomalies through physical control channel fingerprinting: A deep
semi-supervised approach,” IEEE Access, vol. 7, pp. 152187-152201,
2019.

F. D. Calabrese, P. Frank, E. Ghadimi, U. Challita, and P. Soldati,
“Enhancing RAN performance with Al,”” Ericsson Technol. Rev., vol. 12,
no. 12, pp.36-46, 2019. Accessed: Mar. 2022. [Online]. Available:
https://bit.ly/3aDKJQB

A. Zheng, Evaluating Machine Learning Models: A Beginner’s Guide to
Key Concepts and Pitfalls. Sebastopol, CA, USA: O’Reilly Media, 2015.
G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” 2015, arXiv:1503.02531.

L. E. Lwakatare, A. Raj, J. Bosch, H. H. Olsson, and I. Crnkovic,
“A taxonomy of software engineering challenges for machine learning
systems: An empirical investigation,” in Proc. Int. Conf. Agile Softw.
Develop. Cham, Switzerland: Springer, 2019, pp. 227-243.

F. Belgasmi, R. Glitho, and C. Fu, “RESTful web services for service
provisioning in next-generation networks: A survey,” IEEE Commun.
Mag., vol. 49, no. 12, pp. 66-73, Dec. 2011.

G. Brown. (2017). Service-Based Architecture for 5G Core Networks,
Heavy Reading White Paper. Accessed: Jan. 2021. [Online]. Available:
https://bit.ly/30617nU

R. Laigner, M. Kalinowski, P. Diniz, L. Barros, C. Cassino, M. Lemos,
D. Arruda, S. Lifschitz, and Y. Zhou, ‘“From a monolithic big data system
to a microservices event-driven architecture,” in Proc. 46th Euromicro
Conf. Softw. Eng. Adv. Appl. (SEAA), Aug. 2020, pp. 213-220.

VOLUME 10, 2022

[190]

[191]

[192]

[193]

[194]

[195]

[196]

[197]

[198]

[199]

[200]

[201]

[202]

[203]

[204]

[205]

[206]

[207]

[208]

[209]

[210]

[211]

[212]

[213]

Technical Specification Group Services and System Aspects; Release
15 Description; Summary of Rel-15 Work Items, document TR21.915,
Version 0.5.0, Release 15, 3GPP, 2020.

A. Katsifodimos and M. Fragkoulis, “Operational stream processing:
Towards scalable and consistent event-driven applications,” in Proc. 22nd
Int. Conf. Extending Database Technol. (EDBT), 2019, pp. 682—685.

E. Zeydan, O. Dedeoglu, and Y. Turk, “Experimental evaluations of
TDD-based massive MIMO deployment for mobile network operators,”
IEEE Access, vol. 8, pp. 33202-33214, 2020.

Y. Turk, E. Zeydan, and C. A. Akbulut, “Experimental performance
evaluations of CoMP and CA in centralized radio access networks,”
Telecommun. Syst., vol. 72, no. 1, pp. 115-130, Sep. 2019.

Y. Turk, E. Zeydan, and C. A. Akbulut, “On performance analy-
sis of single frequency network with C-RAN,” IEEE Access, vol. 7,
pp. 1502-1519, 2019.

A.S.Tan and E. Zeydan, *“Performance maximization of network assisted
mobile data offloading with opportunistic device-to-device communica-
tions,” Comput. Netw., vol. 141, pp. 31-43, Aug. 2018.

O. Narmanlioglu and E. Zeydan, “New era in shared cellular networks:
Moving into open and virtualized platform,” Int. J. Netw. Manage.,
vol. 27, no. 6, p. e1986, Nov. 2017.

O. Narmanlioglu and E. Zeydan, “Software-defined networking based
network virtualization for mobile operators,” Comput. Electr. Eng.,
vol. 57, pp. 134-146, Jan. 2017.

E. Zeydan, E. Bastug, M. Bennis, M. A. Kader, I. A. Karatepe,
A. S. Er, and M. Debbah, “Big data caching for networking: Moving
from cloud to edge,” IEEE Commun. Mag., vol. 54, no. 9, pp. 36-42,
Sep. 2016.

Y. Turk and E. Zeydan, “Satellite backhauling for next generation cellular
networks: Challenges and opportunities,” IEEE Commun. Mag., vol. 57,
no. 12, pp. 52-57, Dec. 2019.

E. Zeydan and Y. Turk, “On the impact of satellite communications over
mobile networks: An experimental analysis,” IEEE Trans. Veh. Technol.,
vol. 68, no. 11, pp. 11146-11157, Nov. 2019.

E. Zeydan and Y. Turk, “‘Recent advances in intent-based networking: A
survey,” in Proc. IEEE 91st Veh. Technol. Conf. (VTC-Spring), May 2020,
pp. 1-5.

B. Alturki, S. Reiff-Marganiec, and C. Perera, “A hybrid approach for
data analytics for Internet of Things,” in Proc. 7th Int. Conf. Internet
Things, Oct. 2017, p. 8.

H. Zou, Y. Yu, W. Tang, and H.-W.-M. Chen, “FlexAnalytics: A flexible
data analytics framework for big data applications with I/O performance
improvement,” Big Data Res., vol. 1, pp. 4-13, Aug. 2014.

L. I. B. Lopez, J. M. Vidal, and L. J. G. Villalba, ““Orchestration of use-
case driven analytics in 5G scenarios,” J. Ambient Intell. Hum. Comput.,
vol. 9, no. 4, pp. 1097-1117, Aug. 2018.

B. McMabhan, E. Moore, D. Ramage, S. Hampson, and B. A.Y. Arcas,
“Communication-efficient learning of deep networks from decen-
tralized data,” in Proc. 20th Int. Conf. Artif. Intell. Statist., 2017,
pp. 1273-1282.

A. Balaji, F. Corradi, A. Das, S. Pande, S. Schaafsma, and F. Catthoor,
“Power-accuracy trade-offs for heartbeat classification on neural net-
works hardware,” J. Low Power Electron., vol. 14, no. 4, pp. 508-519,
2018.

D. Preuveneers, 1. Tsingenopoulos, and W. Joosen, ‘“‘Resource usage and
performance trade-offs for machine learning models in smart environ-
ments,” Sensors, vol. 20, no. 4, p. 1176, Feb. 2020.

R. Shwartz-Ziv and A. Armon, “Tabular data: Deep learning is not all
you need,” 2021, arXiv:2106.03253.

1. D. Addo, S. I. Ahamed, and W. C. Chu, “A reference architecture for
high-availability automatic failover between PaaS cloud providers,” in
Proc. Int. Conf. Trustworthy Syst. Appl., Jun. 2014, pp. 14-21.

F. Kalyoncu, E. Zeydan, A. Yildirim, and I. O. Yigit, “An experimental
study of factor analysis over cellular network data,” in Proc. IEEE 87th
Veh. Technol. Conf. (VIC Spring), Jun. 2018, pp. 1-5.

D. Naboulsi, M. Fiore, S. Ribot, and R. Stanica, “‘Large-scale mobile
traffic analysis: A survey,” IEEE Commun. Surveys Tuts., vol. 18, no. 1,
pp. 124-161, 1st Quart. 2015.

M. Aledhari, R. Razzak, R. M. Parizi, and F. Saeed, “‘Federated learning:
A survey on enabling technologies, protocols, and applications,” IEEE
Access, vol. 8, pp. 140699-140725, 2020.

S. Sun, Z. Cao, H. Zhu, and J. Zhao, ““A survey of optimization methods
from a machine learning perspective,” IEEE Trans. Cybern., vol. 50,
no. 8, pp. 3668-3681, Aug. 2019.

34495

IEEE Access

E. Zeydan, J. Mangues-Bafalluy: Recent Advances in Data Engineering for Networking

[214]

[215]

[216]

[217]

[218]

[219]

[220]

[221]

222

[223]

[224

[225]

[226]

[227]

[228]

34496

M. A.-U.-D. Khan, M. F. Uddin, and N. Gupta, “Seven V’s of big data
understanding big data to extract value,” in Proc. Zone Conf. Amer. Soc.
Eng. Educ., Apr. 2014, pp. 1-5.

D. Gannon, R. Barga, and N. Sundaresan, ‘“‘Cloud-native applications,”
IEEE Cloud Comput., vol. 4, no. 5, pp. 16-21, Sep. 2017.

Apache Flink. (2020). Flink-TensorFlow: A Library for Machine Intel-
ligence in Apache Flink, Using the TensorFlow Library and Asso-
ciated Models. Accessed: Mar. 2022. [Online]. Available: https:/
github.com/FlinkML/flink-tensorflow

J. Warren and N. Marz, Data: Principles and Best Practices of Scalable
Real-Time Data Systems. Shelter Island, NY, USA: Manning, 2015.

Y. Tiirk and E. Zeydan, “On performance analysis of multioperator RAN
sharing for mobile network operators,” TURKISH J. Electr. Eng. Comput.
Sci., vol. 29, no. 2, pp. 816-830, Mar. 2021.

L. Giupponi and F. Wilhelmi, “Blockchain-enabled network sharing for
O-RAN in 5G and beyond,” 2021, arXiv:2107.02005.

D. Aneato, “Strategies to implement big data analytics in telecommu-
nications organizations,” Ph.D. dissertation, College Manage. Technol.,
‘Walden Univ., Minneapolis, MN, USA, 2020.

A. L'Heureux, K. Grolinger, H. F. Elyamany, and M. A. M. Capretz,
“Machine learning with big data: Challenges and approaches,” IEEE
Access, vol. 5, pp. 77767797, 2017.

Defence Science and Technology Laboratory (DSTL). (2020). Machine
Learning With Limited Data—Future of Al for Defence Project Auton-
omy Programme. Accessed: Mar. 2022. [Online]. Available: https:/
bit.ly/3gSmguR

J. E. Van Engelen and H. H. Hoos, “A survey on semi-supervised learn-
ing,” Mach. Learn., vol. 109, no. 2, pp. 373—440, 2020.

B. Settles, “Active learning literature survey,” Dept. Comput. Sci., Univ.
Wisconsin-Madison, Madison, WI, USA, Tech. Rep. #1648, 2009.

M. Chen, K. Zhu, and B. Chen, “Root cause analysis for self-organizing
cellular network: An active learning approach,” Mobile Netw. Appl.,
vol. 25, no. 6, pp. 25062516, Dec. 2020.

M. Chen, K. Zhu, R. Wang, and D. Niyato, “Active learning-based fault
diagnosis in self-organizing cellular networks,” IEEE Commun. Lett.,
vol. 24, no. 8, pp. 1734-1737, Aug. 2020.

M. Chen, Z. Yang, W. Saad, C. Yin, H. V. Poor, and S. Cui, ““A joint learn-
ing and communications framework for federated learning over wireless
networks,” IEEE Trans. Wireless Commun., vol. 20, no. 1, pp. 269-283,
Jan. 2021.

P. Brous, M. Janssen, and P. Herder, “Next generation data infrastruc-
tures: Towards an extendable model of the asset management data infras-
tructure as complex adaptive system,” Complexity, vol. 2019, Jan. 2019,
Art. no. 5415828.

ENGIN ZEYDAN (Senior Member, IEEE)
received the B.Sc. and M.Sc. degrees from
the Department of Electrical and Electronics
Engineering, Middle East Technical University,
Ankara, Turkey, in 2004 and 2006, respectively,
and the Ph.D. degree from the Department of Elec-
trical and Computer Engineering, Stevens Institute
of Technology, Hoboken, NJ, USA, in February
2011. From 2011 to 2016, he has worked as a
Research and Development Engineer at Avea,
a mobile operator in Turkey. From 2016 to 2018, he was with Turk
Telekom Labs working as a Senior Research and Development Engineer.
From 2015 to 2018, he was also a part-time Instructor at the Electrical and
Electronics Engineering Department, Ozyegin University. He is currently
working as a Senior Researcher with the Communication Networks Division,
Centre Tecnologic de Telecomunicacions de Catalunya (CTTC). His research
interests include telecommunications and data engineering for networking.
He received the Best Paper Award from the Network of Future Conference,
in 2017.

JOSEP MANGUES-BAFALLUY received the
bachelor’s and Ph.D. degrees in telecommunica-
tions engineering from UPC, in 1996 and 2003,
respectively. He was a Researcher and an Assis-
tant Professor with UPC. He is currently a Senior
Researcher and the Head of the Communication
Networks Division, Centre Tecnologic Telecomu-
nicacions Catalunya (CTTC), Barcelona. He has
participated in various roles (including leadership)
in several public funded and industrial research
projects, such as SGPPP 5Growth, 5G-Transformer, or Spanish 5SG-REFINE.
His research interests include NFV applied to mobile networks and
autonomous network management. He was the Vice Chair of the IEEE
WCNC, Barcelona, in 2018.

VOLUME 10, 2022

