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ABSTRACT Deep learning (DL) driven proactive resource allocation (RA) is a promising approach for the
efficient management of network resources. However, DL models typically have a limitation that they do not
capture the uncertainty due to the arrival of new unseen samples with a distribution different than the data
distribution available at DL model-training time, leading to wrong resource usage predictions. To address
this, we propose a confidence aware DL solution for the robust and reliable predictions of wireless channel
utilization (CU) in shared spectrum bands. We utilize an encoder-decoder based Bayesian DL model to
generate prediction intervals which capture the uncertainties in wireless CU. We use the CU predictions
to design a novel metric score which in turn is utilized to make an adaptive RA algorithm. We show that
a DL model capturing uncertainty in CU can achieve higher data rates for a wireless network. Both DL
driven predictions and RA models are tested using synthetic data as well as real CU data collected in the
University of Oulu. Using analytical and simulations results, we also study the stability of the proposed
RA algorithm and show that it converges to a Nash equilibrium (NE). Our results reveal that the proposed
algorithm converges to an NE under 2N iterations where N is the number of network access points.

INDEX TERMS 6G, Bayesian neural networks, channel utilization, distribution change detection, dynamic
wireless networks, game theory, predictive uncertainty, proactive resource allocation, shared spectrum bands.

I. INTRODUCTION
A. BACKGROUND AND MOTIVATION
For the sixth-generation (6G) of wireless networks, the
prediction of their resource utilization variations using
sophisticated deep learning (DL)-driven techniques can
enable the network to proactively schedule resources for
those services/network elements which have higher resource
demands [1]–[3]. This approach is opposed to the reactive
resource allocation approaches mainly adopted by existing
networks which allocate resources based on current resource
requirements. A proactive resource allocation solution which
optimizes the resources beforehand is able to cater to the
demands better and effectively avoid congestion of resources.

Efficient and robust management of network resources is a
critical aspect for the success of the next generation of wire-
less networks [4]. Judicious resource allocation policies in
wireless communication networks can guarantee the required
quality of service (QoS), and can also maximize a wireless
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operator’s revenue through optimal and efficient operation
of its network [5]. Recently, cloud management of wireless
networks in both licensed and unlicensed/shared spectrum
bands have attracted the attention of both the industry and
the research community. This interest is due to the cloud’s
ability to optimize and manage resources of an entire network
with enhanced computation and analytics capabilities [6], [7].
To make the most out of a cloud managed network, tracking
the right metrics using descriptive analytics and combining
them with DL models for realistic predictions are significant
for their efficient design. For example, the works in [8]–[10]
used DL based predictions for network resource allocation.

Most of the existing studies using DL methods for proac-
tive resource allocation in wireless networks such as [8],
[9] have implicitly assumed that training and target datasets
have the same distribution. Hence, they produce erroneous
resource usage predictions when the target datasets have
different distribution than the training dataset. This can lead
to unreliable predictions as the changes in users’ resource
utilization in a network over time give rise to uncertainty
in the DL models. Wireless datasets can be dynamic which
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FIGURE 1. Collected CU data showing distribution change during the weekend.

means distribution of these datasets can change from time
to time. In the context of DL, the uncertainty arising due to
the change in the data distribution from training to testing is
called model misspecification [11].

To provide an example of model misspecification in wire-
less networks, in Fig. 1(a) and 1(b), we illustrate wireless
channel utilization (CU)1 collected by us over an unlicensed
shared channel in the University of Oulu. The details of the
data collection process is given in section III-A. CU is given
as a percentage value between 0% and 100% and it represents
the amount of wireless channel usage by various users and
access points (Aps) within the measuring time interval t .
Fig. 1(a) shows the collected CU data values in percentage for
nine days. It can be seen from the figure that there is a daily
pattern for weekdays (Feb. 11-15) and weekends (Feb. 10-11
and Feb. 16-17). Fig. 1(b) which presents the CU data for the
next nine days shows that while there is still a daily pattern
for weekdays, however, the weekend pattern does not hold
due to high CU on Sunday, Feb. 24. A DL model may not be
able to predict this kind of behavior as it might not have seen
this behavior before in the training data. Other uncertainties
associated with DL models are model uncertainty [11] which
arises due to missing training data covering certain areas of
the input domain and inherent noise [11] which arises due to
uncertainty in the data generation function. Capturing these
kinds of uncertainties associated with DL models are crucial
for the correct operation of proactive resource allocation
systems which rely on them.

Handling uncertainties using deep neural networks (DNNs)
are problematic due to their inherent design. DNNs have a
tendency to overfitting which can unfavorably impact their
generalization capabilities. Moreover, they are overconfident

1The CU data used in this work is pre-COVID period as due to COVID
situation either the university has been closed or still both remote education
and remote work are continued by many people leading to unusually low CU
levels.

about their predictions even for out-of-training distribution
data [12]. Therefore, it is difficult to employDNNs in estimat-
ing uncertainties. Bayesian Neural Networks (BNNs) on the
other hand produce predictions by the aggregation of predic-
tions from a large set of independent and average-performing
predictors [12]. This can allow BNNs to make predictions
better than DNNs and also enable them to estimate uncer-
tainties in a meaningful way. This has motivated us to use a
DL model based on BNN in our design.

B. MAIN CONTRIBUTIONS
In this paper, we first focus on the design of a DL model
that can perform robust and reliable predictions of wireless
CU for proactive resource allocation in unlicensed shared
spectrum bands. Our DL model also incorporates uncertainty
estimation of CU predictions that is utilized for real-time
change detection in CU data distribution. Our DL model
is based on encoder-decoder framework of [11] which uses
BNN to handle uncertainty in models. We use Algorithm
1 of [11] as an application in improving the predictions in
wireless network resource utilization. We also use it to design
a more efficient resource allocation algorithm which is not
only proactive, but also reactive to the generated alarms via
Algorithm 1 for resource utilization.

The main contributions of this paper can be summarized
as:

1) The proposed DL model addresses the problem of
model uncertainty and model misspecification. The
DL model uncertainty which arises due to insuf-
ficient training samples is reduced by collecting a
large number of real CU samples using our FPGA
based radio frequency (RF) data processing module
(see [13] for details of its implementation). Moreover,
the DL model misspecification is quantified by using
an encoder-decoder model on real wireless CU data.
Rather than making only the point predictions, the
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DL model also estimates the degree of uncertainty in
predicted wireless CU values via the use of prediction
intervals (Pis). A PI is a type of confidence interval used
with predictions; it is a range of values that predicts the
value of a new observation, based on an existing model.

2) We present a methodology for characterizing and
measuring the robustness of the proposed prediction
method and show that our DLmodel outperforms other
models in terms of robustness. We also evaluate the
prediction performance of the developed model using
real CU data in terms of mean average percentage
error (MAPE) and compare its performance with a
baseline method (I), a long short termmemory (LSTM)
model, and a gated recurrent unit (GRU) model.

3) We utilize the DL prediction values for a given time
period to design novel resource metric scores which in
turn are used to find an automated, stable and efficient
channel allocation solution for multiple wireless APs.
In particular, the uncertainty estimate from the predic-
tion model is used by the channel allocation algorithm
to adapt the allocation decisions when the real observed
CU values fall outside of the defined PI. Our results
show that taking into account the uncertainty estimate
from the prediction model can improve the channel
allocation performance as compared to when no uncer-
tainty estimate is utilized.

4) We evaluate the performance of the proposed algorithm
in terms of average sum metric and average sum rate
which reflect the effectiveness of all the APs for a
given channel allocation. To evaluate the stability of the
proposed algorithm under various scenarios, alongwith
simulations, we also focus on analytical game theo-
retic concept of stability called Nash Equilibrium (NE).
An (pure) NE represents an individually agreeable,
or stable, allocation for scenarios where no wireless
AP has an incentive to unilaterally deviate from the
proposed resource allocation solution. We also show
that the proposed algorithm requires no more than 2N
resource allocation steps to stabilize, where N is the
number of APs.

Rest of the paper is organized as follows. The next section
presents related work including the application of DL in wire-
less networks. In Section III, we present the system model.
In Section IV, we present the theoretical basis and the imple-
mentation details of the proposed DL model including the
prediction performance results. Section V presents the novel
metric scores and the proposed channel allocation algorithm.
In Section VI, we evaluate the proposed algorithm under
several different scenarios and discuss the simulation results.
Section VII concludes the paper and also provides the future
research directions.

II. RELATED WORK
DL is a subset of recent machine learning methods which is
based on artificial neural networks (NNs). These NNs learn

FIGURE 2. Proposed proactive resource allocation driven network
architecture.

from historic data which construct input-output mappings
for the impending problem [14]. Recently, use of DL driven
techniques to efficiently address key problems in wireless
networks have generated interest in the research community.
For example, the work in [10] has focused on DL based
multicast traffic demand predictions to perform resource allo-
cation for broadband networks. DL is used in [8] to predict
average rates of non-realtime service users to assign radio
resources in advance in a mobile network. In [15], a DNN
has been used by the authors for subchannel and power allo-
cation in non orthogonal multiple access (NOMA) networks.
The authors in [16] have used a DNN for subcarrier assign-
ment for users in an orthogonal frequency division multiple
access (OFDMA) system. The work in [17] proposes a feed
forward NN based resource and power allocation scheme for
4G LTE heterogeneous networks. The work in [18] proposes
a DNN to learn optimal policy for predictive resource alloca-
tion with interference coordination for cellular networks. The
authors in [19] present a DL based method to solve the prob-
lem of sub-band and power allocation in a multi-cell network.
All of the preceding works are based on the assumption of
similar distribution for the training and target datasets which
is not always true in reality [20]. Therefore, those works
can exhibit suboptimal performance when deployed in a real
wireless environment [21].

Transfer learning (TL) is a concept in ML which can be
used to make more effective predictors in a domain with
limited training data availability by training themodel before-
hand in a domain where it is readily available [22]. TL can
be used to address the problem of data distribution change
over time. Nevertheless, TL has been typically performed
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FIGURE 3. Feature extension using sliding window approach.

FIGURE 4. A window of fixed size is moved across time axis to generate
xt and yt vectors.

offline which has limited its usage in online and real-time
applications [23]. It is important to note that unlike our work,
most of the DL based wireless resource allocation solutions
in the literature leverage only synthetic datasets rather than
using both synthetic and real world wireless network dataset.
Furthermore, most of the works use single point predictions
on the time series of considered key data metric without
capturing any uncertainty in the predictions. The work in [24]
presents a theoretical framework based on Bayesian inference
for determining model uncertainty in NNs using dropout. The
work in [11] further explores other kinds of uncertainties
associated with NNs and proposes a framework to capture
them systematically. Capturing uncertainties via the use of
a PI is better in the sense that it gives extra freedom to
determine up to which level the predictions from the model
can be trusted. Besides, our work shows that uncertainty
aware predictions can be used to improve a wireless resource
allocation algorithm as the uncertainty estimate from the
predictionmodel can be used by the algorithm to deploy alerts
for possible reallocation of channel resources when resource
utilization at an AP exhibits unusual behavior.

Recently, cloud managed networks have established them-
selves as efficient players in the operation andmanagement of
medium to large-scale deployment of wireless networks [25],
[26]. A cloud managed network can collect descriptive ana-

lytics to track the right metrics and use DL on metrics data to
make predictions that can be used to improve resource allo-
cation in such networks. Our proposed DL driven resource
allocation algorithm for cloud managed enterprise networks
in unlicensed shared spectrum bands, such as a network
deployed in a university campus, a large office building, or an
airport etc. The proposed algorithm not only performs proac-
tive resource allocation for multiple APs based on predictions
from the developed BNN, but also keep tracks of uncertainty
due to model misspecification in real-time. The uncertainty
estimate from the prediction model is used to improve the
performance of the resource allocation algorithm. To the best
of our knowledge, this is the first time uncertainty aware pre-
dictions have been applied in a wireless resource allocation
scenario.

III. SYSTEM MODEL
We consider a set of n APs denoted by N = {1, 2, · · · ,N }
and a set of M unlicensed channels denoted by M =

{1, 2, · · · ,M}. TheM channels are utilized by the APs of the
enterprise wireless local area network (WLAN). Each AP in
the network is denoted by αi which represents the ith AP. The
ne’work’s resource allocation ismanaged by a cloudmanaged
resource controller. The basic system model illustrating a
wireless network with predictions/resource allocation mod-
ules is presented in Fig. 2.

Enterprise WLANs often exhibit patterns over certain time
periods, such as over a length of a day, a week, etc. in terms
of CU. However, although the CU often has recurring pat-
terns, they can be affected by uncertain events, such as
abrupt increase in channel usage by wireless users within a
short period of time. Our goal is to use a confidence aware
deep (CAD) predictions technique that can not only predict
wireless CU values but can also reliably estimate uncertainty
in predicted values. The uncertainty estimates allow us to
quantify how much to trust the predictions produced by the
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TABLE 1. List of some of the important symbols used in the paper.

DL model. Our goal is also to present an application of the
CAD predictions to a proactive channel allocation algorithm.

A. REAL ENTERPRISE WLAN DATA
In our work, along with synthetic data we also use real
wireless CU data. To consider a real enterprise WLAN,
we collected CU data over a period of 5 weeks in the busiest
parts of the University of Oulu. CU is an important wireless
physical layer resource utilization metric to get information
about the health of an enterprise WLAN [6], [27]. We mea-
sured the CU using hardware-accelerated spectrum analytics
device implemented by us on a X’linx’s Zynq-7000 system
on chip (SoC) devices [13]. Each implemented device outputs
every 20 seconds a measured CU value for that time duration.
Hence, our datasets are CU time series.

B. PREDICTIONS/RESOURCE CONTROLLER
The cloud managed resource controller system shown in
Fig. 2 collects the time series CU data from the CU analytics
devices periodically, every 20 seconds. The CAD predictions
model generates future CU predictions and their uncertainty
estimates, for a specific time interval, and delivers them to
the channel allocation module called ProReact. The module
utilizes predictions and their uncertainty estimates to not only
perform proactive allocations for multiple APs periodically,
but also to adjust allocations to any significant changes in
wireless CU instantly.

IV. ENCODER DECODER BASED DEEP LEARNING MODEL
We use an encoder-decoder based recurrent BNN to build
the DL model as it is a type of NN well-suited to predict
not only time series values, but also uncertainty estimates
with the prediction values. The encoder-decoder network
processes a time series step-by-step, maintaining an internal
state summarizing the information it has seen so far. Over a
period of time, it tries to learn what to keep and how much to
keep from the past, and how much information to keep from
the present state, which makes it so powerful as compared to
the other NNs.

A. MODEL INPUT
Consider a univariate CU time series s={s[0], s[1], s[2], · · · ,
s[T − 1]}. To formulate the prediction problem as a super-

vised machine learning problem, we adopt a sliding window
approach. A regressor vector xt is composed by sliding a fixed
window of size nH across the time series which generates
sequences of time lagged data as shown in Fig. 3 and 4. The
generated sequence is given as input to a predictor f θ which is
parameterized on θ which aims to forecast the next nF values
of the time series.

The regressor vector at discrete time t is defined as xt =[
s[t − nH + 1], · · · , s[t]

]
∈ RnH . The predictor f θ needs

to infer the next nF samples represented by the vector yt =[
s[t + 1], · · · , s[t + nF ]

]
∈ RnF . Similarly, we can denote

the inference from the predictor as ŷt = f θ (xt) ∈ RnF .’
Let’s assume the exact function which maps input vector xt
to the output vector yt is f̄ , then, ∀t, yt = f̄ (xt). Then, when
training the model, the learning algorithm would adapt the
parameter θ to approximate f θ to f̄ as far as possible based
on some performance metric. By using mean average error
(MAE) as the performance metric in training the DL model,
the MAE loss function for the learning problem is given by

J (θ ) =
1
|X|

∑
xt∈X
|f̄ (xt)− f θ (xt)|, (1)

where X denotes the set of regressor vectors. Supervised
learning always solves an optimization problem to find the
optimal function which minimizes the loss function given
by (1). Let the optimal function be f θ̂ , then using (1), the
optimization problem for the training can be formulated as

f θ̂ = argmin
θ

J (θ ). (2)

B. MODEL UNCERTAINTY AND INHERENT NOISE
Let f θ̂ be the trained DL model with θ̂ representing the fitted
weights. For a new sample point x∗, the prediction from the
model is given by y∗ = f θ̂ (x∗). By computing the standard
error σ of the predictions, the uncertainties associated with
the model can be captured. Then, the resulting PI can be con-
structed as [y∗ − zα/2σ, y∗ + zα/2σ ] where zα/2 corresponds
to the upper α/2 quantile of the standard normal distribution.

The Bayesian probability theory provides a robust
approach to address and quantify the uncertainties associated
with a DL model. Let X ,Y denote the observations used
to train the model. Using Bayesian probability theory, the
predictive probability density of the model for a new data
point x∗ can be obtained by,

p(y∗|x∗) =
∫
θ

p(y∗|f θ (x∗))× p(θ |X ,Y ) dθ. (3)

Estimating the posterior density p(θ |X ,Y ) is important
in accurately quantifying the prediction uncertainty. Various
inference methods are available to approximate the posterior
density in DL models. Due to its simplicity in implemen-
tation, we use Monte Carlo (MC) dropout to approximate
the model uncertainty. Dropout is the process of randomly
dropping out hidden units in a DL model with certain prob-
ability p. By applying dropout stochastically for K times at
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FIGURE 5. Model in (a) is trained first. After training, the encoder part is plugged to the prediction network to create the final CAD prediction model
as shown in (b).

testing, the uncertainty associated with the predictions can be
quantified as follows.

Var(y∗|x∗) = Var[E(y∗|θ, x∗)]+ E[Var(y∗|θ, x∗)],
= Var

(
f θ (x∗)

)
+ σ 2,

≈
1
K

K∑
k=1

(ŷ∗(k) − ŷ
∗
)2 + σ 2, (4)

where ŷ∗(k) is the model output at the k th stochastic run with

dropout applied and ŷ
∗
denote the mean of K outputs. The

variance in (4) consists of two terms which correspond to
model uncertainty and inherent noise respectively. The inher-
ent noise term, σ 2 can be estimated by an independent vali-
dation set. Let the validation set b’ X ′ = {x ′1, · · · , x

′
V },Y

′
=

{y′1, · · · , y
′
V } and the trained model on the training data be

f θ̂ (.), then σ 2 is estimated by

σ 2
=

1
V

V∑
v=1

(y′v − f
θ̂ (x ′v)

)2
. (5)

C. ENCODER-DECODER FRAMEWORK FOR MODEL
MISSPECIFICATION
We capture the model misspecification by using an
encoder-decoder framework formed using LSTM layers.
When the encoder-decoder framework is trained on the
training data, a latent embedding space is created by the
encoder which extracts different features from the timeseries.
If the test data have patterns different from training data, the
encoder would not be able to correctly map them to the latent
embedding space. Therefore, by pre-training the encoder-
decoder framework, we can quantify the uncertainty due to
model misspecification. Fig. 5(a) shows the encoder-decoder
network used at pre-training phase.

The uncertainty in variance calculation is assimilated by
connecting the encoder with a prediction network and treating
the resulting network as a single network which we call as
inference network. Let f (.) be the encoder model and g(.) be

the prediction network, then the resulting inference network
h(.) can be written as the composite model h(.) = g

(
f (.)

)
.

Fig. 5(b) shows the inference network created in this way. Let
the input sequence vector to the model be x = (x1, · · · , xnH ),
then the encoder forms the vector e = f (x) in the latent
embedding space and the prediction network g generates the
final output taking the vector e as the input to the network.
In each forward pass, MC dropout is applied stochastically to
all layers both in the encoder and the prediction network for
K times. Applying dropout randomly in the encoder captures
the uncertainty due to model misspecification. The dropout
applied in the LSTM layer in the encoder is for both the input
and the recurrent states.

D. MODEL IMPLEMENTATION FOR REAL CU DATASET
The encoder-decoder network is formed for the real CU data
using two LSTM layers which consists of 32 LSTM cells in
the first layer (which gives a dimension of 32 for the latent
embedding space) and 10 LSTMcells in the second layer with
tanh activation in all layers. The prediction network consists
of three fully connected layers with 32, 16 and 10 hidden units
with tanh activation in each layer respectively. The number of
layers, LSTM cells and hidden units are selected heuristically
to obtain the best prediction performance. We use a sliding
window as shown in Fig. 3 to generate xt and yt vectors and
use them to train the network. The steps involved in the model
implementation are presented in Algorithm 1.

The training of the network takes place in two phases.
In the first (pre-training) phase, the encoder-decoder network
is fitted to the training data. Let the input sequence vector
of the univariate time series at time t be xt =

[
s[t −

nH + 1], · · · , s[t]
]
, the encoder takes xt and maps that to a

low dimensional vector et in the embedding space. Decoder
then learns to recreate the output sequence vector yt =[
s[t + 1], · · · , s[t + nF ]

]
from et. This way, the encoder

learns to extract relevant features present in the input time
series. In the second phase, we use the encoder to encode
the input vector xt to et and we train the prediction network
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FIGURE 6. Prediction values and 95% PIs for single and multiple time-point predictions using the proposed CAD predictions model.

to predict yt using et as the input. Once the training of the
prediction network is finished, we cascade the encoder with
the prediction network and form the inference network as
shown in Fig. 5(b). Note that for the same inputs, the outputs
from the encoder-decoder network and the inference network
would be different as shown in Fig. 5. We use MC dropout
as discussed in section IV-B to quantify the uncertainty and
generate the PIs. Selection of values for K and p is heuristic.
K should be selected in such a way that it generates a smooth
PI. Nevertheless, having a very large value for K greatly
increases computational time. In our case, we used K =
100. For p, 0 < p ≤ 0.5 is held. The value of p can be
selected heuristically by calculating the resulting empirical
coverage. In statistics, empirical coverage of predictions is
defined as the proportion of the samples of interest which
would be contained in the PI. p is selected such that the correct
empirical coverage is obtained.

We set the sliding window size to cover 7 days of CU data
and use subsampling on the data with a factor of 32. Themod-
els are trained to predict a time horizon of 1.5 hour. We train
all the models using RMSprop optimizer with MAE selected
as the loss function. All the models are implemented using
TensorFlow 2.0.0machine learning platform with Python 3.7
environment.

E. PREDICTION MODEL RESULTS
In this section, we use real CU data to evaluate the per-
formance of the CAD model with respect to prediction and
uncertainty. Prediction performance is evaluated by compar-
ing the results with several other prediction models.

1) UNCERTAINTY ESTIMATION
We measure the performance of the model in estimating the
uncertainty in the predictions by calculating the empirical
coverage. We use the MC dropout probability, p and cal-
culate the resulting empirical coverage of the calculated PI.
For p = 0.5, the resulted empirical coverage for different

TABLE 2. Empirical coverage for the proposed model.

standard score values is given in Table 2. Standard score is
the number of standard deviations a sample value is above or
below the mean value. For a sample value x, it is calculated as
(x−µ)/σ whereµ is themean and σ is the standard deviation.
In the table, we can see that the empirical coverage values
calculated for PIs from our proposed model are very closer to
the expected PIs. Next, we define single and multiple time-
point predictions.
Definition 1: Prediction made by a predictive model for a

specific time point in the future is defined as a single time-
point prediction.
Definition 2: Predictions made by a predictive model for

multiple time points in the future are defined asmultiple time-
point predictions.

Fig. 6(a) and Fig. 6(b) show the real CU values, predicted
CU values and calculated PIs using MC dropouts for the
single time-point predictions (the point at 1.5 hour in the
future) and multiple time-point predictions for the test data
set. In single time-point predictions, the CAD model makes
predictions every sample period where as in multiple time-
point predictions, the CAD model makes predictions every
1.5 hours. In Fig. 6(b), we can see that in multiple time-point
predictions, prediction values can fluctuate compared to sin-
gle time-point predictions. In Fig. 6(b), it is apparent that the
PI widens when going from the closest to the furthest point in
amultiple time-point prediction.Moreover, we can observe in
the figures that most of the time, the actual value falls inside
the 95% PI calculated by our model. Also, in Fig. 6(a), we can
see that our proposed model gives a broad PI at the peaks
of the CU time series. It makes sense because at peaks, the
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Algorithm 1 CAD Prediction Model Implementation
1: Input: CU time series denoted by s

// Prepare the dataset
2: s′ ← Filter(s) // Moving average filtering of CU time series
3: x, y← Databatch(s′) // Data batching with decimation
4: x̃, ỹ, x ′, y′, x∗, y∗ ← Partition(x, y) // (x̃, ỹ) = train split, (x ′, y′)

= validation split, (x∗, y∗) = test split

// Generate Encoder-Decoder network and train
5: Encoder(·)← LSTM (·) // LSTM layer with tanh activation

Decoder(·)← LSTM (·)
AutoEncoder(·)← Decoder(Encoder(·))

6: Train(AutoEncoder, x̃, ỹ) // RMSprop optimizer

// Generate prediction network and train
7: PredictionNetwork(·) ← Dense(·) // Dense layer with tanh

activation
8: ẽ← Encoder(x̃)
9: Train(PredictionNetwork, ẽ, ỹ) // RMSprop optimizer

// Generate Inference network
10: InferenceNetwork(·)← PredictionNetwork(Encoder(·))

// Calculate σ12

11: ŷ′ ← InferenceNetwork(x′)
12: σ1

2
=

1
|y′|

∑
v∈|y′|

(
ŷv
′
− y′v

)2
// Generate dropout network with dropout probability, p

13: MCDropoutNetwork ← Dropout(InferenceNetwork, p)

// Calculate σ22 using MC dropout
14: ŷ∗ = InitializeToEmptyArray()
15: for k = 1 to K do
16: ŷ← MCDropoutNetwork(x∗)
17: ŷ∗ ← [ŷ∗, ŷ]
18: end for
19: σ 22 =

1
K
∑K

k=1
(
ŷ∗k − ŷ

∗)2 where ŷ∗ = Mean(ŷ∗)

20: σ =
√
σ 21 + σ

2
2

// Calculate prediction and PIs
21: ŷ← InferenceNetwork(x∗)
22: ŷpi_lb = ŷ− zα/2σ // lower boundary
23: ŷpi_ub = ŷ+ zα/2σ // upper boundary

24: Output: ŷ, ŷpi_lb, ŷpi_ub

prediction uncertainty is high which can be explained by the
phenomena ofmodel uncertainty andmodelmisspecification.

2) PREDICTION PERFORMANCE OF THE PROPOSED MODEL
To evaluate the prediction performance, we compare the
results to three different models; i) a dInaive predictor: the
forecasts for a given day are equal to the values of a full day
before, e.g. predictions for Tuesday, Feb. 19 are equal to the
values of time series on Monday, Feb. 18, ii) a vanilla LSTM
model which uses 32 LSTM units in the first layer preceded
by fully connected dense layers with 32, 16 and 10 units,
and iii) a GRU model which has the same structure as the
vanilla LSTM model. Fig. 7 shows the training losses of the

FIGURE 7. Training losses of the different models.

TABLE 3. MAPE of different models using multiple time-point predictions
for original test data and test data included with unseen samples.

LSTMmodel, GRUmodel and the proposed model. From the
figure, we can identify that the proposed model converges
faster with lesser number of epochs than other two models
and the training loss is lower than the GRUmodel and almost
similar to the LSTM model after the lapse of 180 epochs.

To compare the prediction accuracy of the models, we use
the measure called MAPE which is given by

MAPE =
100%
N

N∑
i=1

∣∣∣yi − ŷi
yi

∣∣∣, (6)

where yi is the actual value and ŷi is the predicted value. Each
model makes multiple time-point predictions with a forecast
horizon of 1.5 hours and MAPE score for the predictions are
calculated using (6), where forecast horizon is defined as,
Definition 3: Future period of time for which forecasts are

generated is defined as forecast horizon.
To quantify the model robustness, we propose a metric

called robustnessmeasure. Robustnessmeasure quantifies the
model performance in proportion to its performance under
a disturbance, such as presence of unseen new samples in
test data. Let us denote a DL model by D, model input by
X , observed values by Y and the model output by Ŷ . The
output of the model and observed values under a disturbance
δ is denoted by Ŷδ and Yδ , respectively. Then, the robustness
measure R is defined by R(D|X ,Y , δ) = ρ(Ŷ ,Y )

ρ(Ŷδ,Yδ)
where

ρ can be a performance measure such as MAPE. A model
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FIGURE 8. (a) shows the original test data. (b) shows the test data
included with new unseen samples.

havingR close to 1 is more robust as it performs better even
under disturbances.

To compare the model performance, we use test data as
shown in Fig. 8(a) and new test data which includes new
unseen samples with a different distribution than the data
distribution available at DL model training time as shown
in Fig. 8(b). The duration of the introduced new test data
is around two hours. According to Table 3, it is seen that
the MAPE of the proposed model for original test data is
comparable to LSTM and GRU models. For new test data
with unseen samples, we can see that the proposed model
outperforms other models in terms of MAPE. Furthermore,
we see that the performance degradation of the proposed
model in the presence of unseen samples is the lowest which
results in the best robustness measure across all the tested
models. This concludes that the proposed model has the most
stable and robust predictive performance compared to other
benchmark models.

Fig. 9(a), 9(b), 9(c) and 9(d) show how eachmodel behaves
in the presence of new unseen samples which represent
change in CU distribution. Although the proposed DL model
showed improvement in terms of MAPE, it is clear from the
figures that no model can correctly predict the future in the
presence of test data which represent the change in distribu-
tion. It makes sense due to the fact that new test samples were
not present in the training data. This shows that a change in
data distribution significantly affects the performance of DL
models.

Further, it can be observed in Fig. 9(d) that the observed
values lie outside the PI generated by our proposed model.
This helps us to identify the change in the new test data as
a change in the CU distribution. In the next section, we use
this feature to trigger alarms for the improvement in channel
reallocation in a real enterprise WLAN.

V. APPLICATION OF CAD PREDICTIONS TO WIRELESS
RESOURCE ALLOCATION
In this section, we present an application of the developed
CAD predictions model in frequency channel resource allo-
cation for a cloud managed WLAN operating in an unli-

FIGURE 9. (a), (b), (c) and (d) show the predictions from each model in
the presence of new unseen test data.

censed spectrum. The proposed resource allocation frame-
work jointly addresses twoQoS criteria: 1) channel quality by
taking into account signal-to-interference-noise ratio (SINR);
and 2) the amount of airtime required by anAP for a variety of
wireless applications by taking into account its CU demand.
Based on the individual and group preferences, we design
two metric scores that take into account the CU predictions
from the CAD model. The metric scores are utilized to per-
form channel allocation decision in the proposed algorithm
called ProReact. The steps involved in the algorithm are pre-
sented in Algorithm 2. Themain concept behind the proactive
channel allocation of the proposed algorithm can be summa-
rized as follows: The cloud controller periodically collects the
CU data from the APs in each channel k . The CAD predic-
tions model calculates CU PI upper bounds denoted by ŷkpi_ub
for the next allocation period. The controller then utilizes a
metric score which takes into account the maximum of the
obtained ŷkpi_ub and the data transfer rates at APs denoted by
Rki to generate a new proactive channel plan S for the next
allocation period and delivers the updated configuration to
the APs. This proactive channel allocation process is denoted
by line numbers 4-6 in Algorithm 2.

In wireless networks, CU may exhibit different behavior
than usual due to the dynamicity in the usage demand of
the users connected to the AP. Due to this reason, a proac-
tive channel assignment algorithm based only on predicted
CU values (we use the maximum of ŷkpi_ub, see line 4-5 of
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Algorithm 2 ProReactChannel Allocation Based on Individ-
ual and Marginal Metric Scores Based Decisions

1: Input: p (Dropout probability) , xtk (CU time series regressor
vector for channel k), Ak (Total CU demand of APs in channel
k), Âki (CU demand of αi in channel k), Rki (rate of αi in channel
I ) ∀i ∈ N , ∀k ∈M
// Initial channel allocation based on current CU demands

2: S := AllocateChannels(Ak , Âki ,R
k
i )

// CAD predictions based channel allocation
3: for each Allocation Period do

// Obtain the PI upper bound using MC dropouts
4: ŷkpi_ub ← Dropout(InferenceNetwork(xtk ), p)
5: Ăk = max(ŷkpi_ub);

// Proactive channel allocation based on the maximum of
// predicted CU PI upper bound

6: S := AllocateChannels(Ăk , Âki ,R
k
i )

7: while True do
// Monitor for any alerts

8: if Ak > Ăk then
// Reactive channel allocation based on real-time CU

9: S := AllocateChannels(Ak , Âki ,R
k
i )

10: else
11: Go To line 3 at the end of current allocation period
12: end if
13: end while
14: end for

15: function AllocateChannels(Ak , Âki ,R
k
i )

16: AP_list ← Random AP order
17: for each AP, i ∈ AP_list do
18: for each channel, k ∈M do
19: Calculate Aki , See (8)

// Compute metric score
20: if INDIVIDUAL_METRIC_SCORE then

21: I ki =
Aki
Âki
× Rki , See (7)

22: else
23: 1MSki = MS k̃i −MS

k
i , See (9)

24: end if
25: end for
26: Perform best response update
27: Update channel plan S
28: end for
29: return S
30: end function

Algorithm 2) may not be sufficient to ensure a good real-
world performance. To overcome this limitation, our pro-
posed algorithm incorporates the maximum of PI estimate
denoted by Ăk to raise an alert for possible channel real-
location in real-time. In each allocation period, the cloud
controller observes whether the real-time CU denoted by Ak

in a channel exceeds Ăk . If the real-time CU is outside Ăk , the
cloud controller allocates channels reactively by generating a
new channel plan S using the real-time CU and delivering
the updated configuration to the APs. This reactive channel
allocation process is denoted by the line numbers 8 and 9 in
Algorithm 2.

Basically, there are two major advantages in utilizing the
PIs provided by BNN in channel allocation; PIs allow the
channel allocation algorithm, 1) to take into account various
kinds of uncertainties associated with the predictions when
performing channel allocation and, 2) to adapt its channel
allocation decisions to anomalous CU levels.

A. PROPOSED METRIC SCORES
We present the following individual metric which is utilized
by the cloud controller to evaluate the effectiveness of an AP
when allocated to a channel k . The individual metric score
is meaningful from the perspective of the cloud performing
channel selections in a wireless system as it captures useful-
ness in terms of CU and rate an AP gets from the allocated
channel action. Higher values of the metric imply that the AP
will have a better wireless experience. The presented metric
I ki estimates the effectiveness of αi on a channel k as

I ki =
Aki
Âki
×
[
Bi log(1+ SINRi)

]
, (7)

where Bi and SINRi denote the bandwidth and the SINR of αi
on channel k respectively, Âki denotes the CU demand of αi
on channel k (which is generated by the applications running
on the devices connected to αi), and Aki is the CU obtained by
αi allocated to channel k . Aki can be calculated as [28],

Aki =

Â
k
i , if

∑
j∈Ck Â

k
j ≤ A

k

min
{
Âki ,

1
|Ck |

}
, otherwise

(8)

where Ak is the total obtainable CU on channel k and Ck
represents the set of APs which are present in channel k .
Aki can be explained as follows. When the sum of total CU
demands of APs in a channel k is less than or equal to the total
available CU, then the obtained CU of αi is equal to its CU
demand. However, in a channel, when the total CU demand
of APs exceeds Ak , then αi can still expect to get its fair share
of the CU which is at most 1/|Ck |.

The individual metric score I has two important properties:
i) If an AP experiences high interference on channel k , then
its rate will decrease and hence the score I will decrease; ii) I
can only increase in terms of obtained CU as long as it is less
than the CU demand. When the CU demand is satisfied, then
I cannot further increase in terms of obtained CU.
Let the current channel of αi be k and any other channel

which is available for the cloud controller to select for αi be
k̃ , then the individual metric scores of αi on each channel can
be given as I ki and I k̃i respectively.

The second metric score we consider is called the marginal
metric score which is denoted by MSki . The marginal metric
score has an important property that it takes into account
the sum of individual metric scores of all APs present in
the channel. The marginal metric score of αi with respect to
channel k is defined as the difference between the sum of the
individual metric scores of APs with αi present in the channel
and without αi in the channel. The marginal metric score of
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αi can be given as

MSki =
∑
j∈Ck∪i

I kj −
∑
j∈Ck

I kj . (9)

B. ALLOCATION DECISION RULES AND BEST RESPONSE
Before presenting the allocation decision rules, we first
present some definition related to the concept of best
response (BR) updates.
Definition 4: Let us consider an allocation update which

involves cloud controller changing the channel of αi, whi’e
all other APs’ allocations are kept unchanged. Then we say
that an allocation for αi is a better response update when
its metric score is strictly increased due to the change, i.e.,
I k̃i > I ki or MS

k̃
i > MSki . Moreover, an allocation update is a

BR update if it improves ’he αi’s metric score to the maximum
possible value among all better responses for αi.
We consider and compare two different decision rules for

the cloud controller to perform BR updates in the proposed
algorithm 2: 1) Individual metric score based decision rule;
and 2) Marginal metric score based decision rule.

1) INDIVIDUAL METRIC SCORE BASED DECISION
The BR update using this decision rule is calculated bas’d
only on an AP’s own metric score. Under this decision rule,
the BR update for αi, BRi can be given as

BRi =
{
k̃ ∈M\k | I k̃i − I

k
i > 0 and

I k̃i = max{I li − I
k
i ; ∀l ∈M\k}

}
. (10)

2) MARGINAL METRIC SCORE BASED DECISION
Under this decision rule, a BR update is performed by taking
into account not only the individual metric score of αi, but
also the metric scores of all other APs which are affected by
the BR update. Under this decision rule, the BR update for αi
can be given as

BRi =
{
k̃ ∈M\k | 1MS k̃i > 0 and

1MS k̃i = max{MS li −MS
k
i ; ∀l ∈M\k}

}
. (11)

Based onwhich type of decision rule is utilized in the cloud
controller, the channel allocation plan is updated by perform-
ing the BR updates by the cloud controller. In section VI,
we will evaluate the performance of the proposed algorithm
through simulations.

C. CONVERGENCE ANALYSIS
In this section, we analyze the convergence of the proposed
cloud-based channel allocation algorithm when using the
marginal metric score based decision rule. A network of
wireless APs can be seen at each time instant as an undirected
graph in which the nodes represent wireless APs, and there is
an edge between two nodes if the nodes are within the trans-
mission range of each other. The resulting connectivity graph
G is undirected because interference and airtime competition

among two APs in an unlicensed channel in general form
bidirectional link. We focus on a game theoretic concept of
convergence called NE. The use of NE concept is suitable
as it ensures that no AP has an incentive to unilaterally
deviate from the given allocation. We next present some
theorems and definitions related to game theory to support
our claims.
Definition 5: A pure strategy NE is an action profile of

players in a game in w’ich each player’s action is a BR to
the rest of t’e other players’ actions. A formal definition of NE
outcome corresponding to channel allocation can be given as
follows: A channel allocation profile a = (a1, a2, · · · , aN )
of an N AP cloud allocated solution is a NE if for each αi,
we have

MSi(ai, a−i) ≥ MSi(ái, a−i); ∀ái ∈ AI , ∀i ∈ N . (12)

That is, the allocated channel ai of each αi is a BR to the
allocations ai of all other APs.
Theorem 5.1: When the BR updates for the APs are per-

formed by the cloud, then, the channel allocation under the
decision rule based on marginal metric score is an exact
potential game. Strictly speaking, the channel allocation
algorithm based on marginal metric score results in an NE
channel allocation profile.

Proof: The work in [29] has shown that marginal con-
tribution metric results in an exact potential game with the
potential functionW which holds the following mathematical
relationship.

MS(ái, a−i)−MS(ai, a−i)

= W (ái, ai)−W (ai, a−i);

∀ai, ái ∈ Ai and ∀a−i ∈ A−i. (13)

Moreover, there is finite best-response improvement prop-
erty associated with every potential game which means if the
cloud continues to perform the BR updates for the APs, then
it would ultimately lead the system to a’pure NE. Each AP’s
improvement in a step is finite and such a sequence of steps
by APs ends in an NE.

For the proposed channel allocation algorithm, its potential
functionW is given as

W =
∑
j∈N

Ij. (14)

Using the BR updates, when the cloud selects a new chan-
nel k̃ for αi currently in channel k , then the change in the
potential function for this update only happens due to the
allocation change in k and k̃ . Therefore, the difference in
potential function when the cloud selects a new channel k̃ can
be given as

W k̃
i −W

k
i =

∑
j∈C k̃∪i

I k̃j +
∑
j∈Ck

I kj −
[ ∑
j∈Ck∪i

I kj +
∑
j∈C k̃

I k̃j
]
,

=

[ ∑
j∈C k̃∪i

I k̃j −
∑
j∈C k̃

I k̃j
]
−

[ ∑
j∈Ck∪i

I kj −
∑
j∈Ck

I kj
]
,
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= −MS k̃i −MS
k
i ,

H⇒ exact potential game. (15)

Hence, (15) shows that the allocation decisions based on
the marginal metric score leads to an exact potential game.
Moreover, based on finite BR improvement property for
every potential game shown in [30], we can conclude that
the cloud-based channel allocation algorithm using marginal
metric score guarantees convergence to an NE.

�
Note that it is not the NN which is enabling the con-

vergence, but the output of the NN given to the carefully
designed resource allocation algorithmwhich is leading to the
convergence. Not any NN based resource allocation solution
will converge. We need to come up with a carefully designed
metric score and a resource allocation algorithm with care-
fully designed decision steps. The proposed resource alloca-
tion algorithm utilizes the potential function property (refer to
Theorem 5.1) and the best response dynamics (refer to (11))
to ensure that it will converge. An NN which can only give
predictions cannot be used directly in the proposed method.

VI. PERFORMANCE ANALYSIS OF CAD PREDICTION
BASED WIRELESS RESOURCE ALLOCATION ALGORITHM
For the simulations, we consider N APs to be allocated in
M channels. We evaluate the performance of the proposed
cloud-based channel allocation algorithm in terms of average
sum metric and average sum rate of the APs. We simulate
the proposed algorithm under two scenarios, with low CU
demands and high CU demands in the network, where low
CU demands take the values Âki ∈ (0, 0.6] and high CU
demands take the values Âki ∈ (0, 0.7], respectively. Our
results focus on showing convergence of the proposedmethod
using individual and marginal metric scores given by (7)
and (9) utilizing different initial channel allocation routines.
We also show that the proposed channel allocation algorithm
which optimizes the average summetrics of the APs will also
leads to the optimized average sum rates of the APs.

To assess the effectiveness of the proposed method in
different scenarios relative to the optimal solution, we com-
pare the convergence of the proposed method with optimal
average sum metric obtained via the best NE. Note that it is
shown in [30] that convergence to the best NE of a marginal
contribution based solution leads to the optimal solution.

We also show the performance gain of the proposed CAD
predictions based channel allocation method by using test
data with different CU distribution in a WLAN.

A. CONVERGENCE RESULTS
We evaluate the performance of the proposed method under
four scenarios; 1) initzero individual: where initially no AP
is allocated to a channel and channel allocation is based on
individual metric score; 2) initzero marginal: where initially
noAP is allocated to a channel and channel allocation is based
on marginal metric score; 3) initrandom individual: where
initially APs are allocated to channels randomly with uniform

distribution and channel allocation is based on individual
metric score and 4) initrandom marginal: where initially APs
are allocated to channels randomly with uniform distribution
and channel allocation is based on marginal metric score.

Fig. 10(a)-(d) show the average sum metrics and average
sum rates of the APs under the aforementioned scenarios.
It can be seen from Fig. 10(a)-(d) that the better response
updates lead to increases in both the average sum metric
and the average sum rate as a function of steps until the
equilibrium.

For both the low demand and the high demand cases shown
in Fig. 10(a)-(d), we can see that the marginal metric score
based method always converges closer to the optimal solution
than the individual metric score based method. This can
be explained as follows. In individual metric score based
method, although anAP selects a channel which gives a better
metric score for itself than the current channel, it might affect
the performance of other APs in the selected channel which
results in a lower sum metric whereas in marginal metric
score based method, an AP only selects a channel if that
results in a higher sum metric for all the APs in the selected
channel. Accordingly, the channel allocation method based
on the marginal metric score always outperforms the channel
allocation method based on the individual metric score.

It can be seen from the Fig. 10 that irrespective of initial
channel allocation method, the algorithm almost converges
to the same solution for both metric scores. Increasing the
number of APs and the number of channels result in increased
average sum metrics and average sum rates in the system.

In Fig. 10, we can see that the average sum metric and
the average sum rate plots have the same shape. This implies
that optimizing the average sum metrics results in optimized
average sum rates in APs.

Finally, from the results, we can conclude that the marginal
metric score based method has the best overall performance.

B. COMPLEXITY ANALYSIS
The complexity of the proposed Algorithm 2 in terms of
single channel allocation step is withinO(NM ). Additionally,
from Fig. 10, we can identify that the number of channel
allocation steps taken by the algorithm to converge is less
than 2N for all the considered scenarios. Therefore, the total
complexity of the channel allocation algorithm is within
O(N 2M ).

C. THE PRICE OF STABILITY AND PRICE OF ANARCHY
As there can be more than one NE leading to convergence
in the channel allocation solution, we need to evaluate the
efficiency of the obtained NEs. There are two measures in
game theory which correspond to the best and the worst
achieved NE. The best and the worst NE are evaluated by
the price of anarchy (POA) and the price of stability (POS),
respectively. The POA and POS can be given as

POS =
value of best NE

value of optimal solution
,
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FIGURE 10. (a)-(d) show average sum metrics and average sum rates of APs under different scenarios respectively.

TABLE 4. POA and POS results for various scenarios. ind and marg
denote individual and marginal metric scores respectively.

POA =
value of worst NE

value of optimal solution
.

For the proposed channel allocation game, we have the
following observation.
Observation 1: The proposed cloud-based channel allo-

cation always achieves POS= 1 when using marginal metric
score. This is in accordance to the result shown in [30] that
convergence to the best NE of a marginal contribution based
solution leads to the optimal solution.

As POA compares the worst NE to the optimal solution,
it effectively evaluates the largest performance gap which is
incurred by the channel allocation solution. This means that
POA can be considered as a lower bound for the convergence
performance of the channel allocation solution. Always the
channel allocation solution would converge to an NE equal
to or better than the NE corresponding to POA.

Table 4 lists the obtained POA and POS results for the
various scenarios when utilizing marginal and individual
metric scores for the BR updates. To calculate the results,
we use simulations running over several MC runs and in each
MC run, we repeat the channel allocation process for several
steps. We calculate the results when N = 8, M = 4 and
N = 16, M = 8 with APs experiencing low and high CU
demands. In Table 4, we can see that in all the cases, the POA

is greater than 0.85. This conveys the fact that even when the
channel allocation converges to the worst NE, the degradation
in performance (i.e. performance gap) compared to the global
optimal solution is less than 15%. The other observation in
Table 4 is that the POA when using marginal metric score
is greater than the individual metric score. In Table 4, it can
be seen that the calculated POS for individual metric score
is very close to 1 which means that the best NE payoff
when using individual metric score is close to the optimal
solution. From the results in Table 4, we can conclude that
utilizing the marginal metric score for BR updates gives the
best performance in the channel allocation method.

D. PERFORMANCE EVALUATION USING CU DATA WITH
NEW PATTERNS
We also evaluate the performance of the proposed CAD pre-
dictions based ProReact channel allocation method through
simulations using real CU time series data. We consider a
WLAN which consists of 8 APs and 3 unlicensed channels
(e.g. N = 8, M = 3). To show the impact of CAD
predictions on the resource allocation method, the real CU
data set also contains a different CU pattern to the regular
CU. The different CU pattern is used to model a change of
CU distribution in the APs and its impact on the channel
allocation. We test the algorithm by changing the duration
of the different CU pattern under two cases (as shown in
table 5). We use marginal metric score based channel allo-
cation method as it gives the best performance which we
established in section VI-A and VI-C. We evaluate the per-
formance of different CU pattern driven channel allocation
feature of the proposed Algorithm 2 by comparing it relative
to channel allocation where this reallocation feature is not
utilized (i.e. steps 7 to 11 in Algorithm 2 are ignored).

Table 5 shows the gain in the average sum metric obtained
for our CAD predictions based channel allocation relative to
the algorithm with no reaction to the different CU patterns.
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TABLE 5. Percentage gain in average sum metric when utilizing the
proposed algorithm.

In Table 5, it can be seen that the proposed CAD predictions
based channel allocation method which takes into account
different CU patterns achieves significant performance gains
over the algorithm which does not take into account different
CU patterns for reallocation. The gain in the average sum
metric can be explained as follows. When a certain AP in
a channel has high CU demand which cannot be satisfied
in that channel, it results in a reduced metric score of itself
and other APs in the same channel. The proposed CAD
predictions based channel allocation algorithm detects this
behavior and moves the affected AP to a channel which can
better satisfy its CU demand by performing channel reallo-
cation. This improves its own metric score and the metric
scores of other APs in the previous channel which helps to
increase the overall sum metric. It is also worth noting that
our algorithm either performs equally well or it improves the
performance of a WLAN over channel allocation which does
not take into account different CU patterns. Hence, there is no
penalty in performance in existing systems by incorporating
the proposed algorithm.

VII. CONCLUSION
In this paper, we have presented an uncertainty-aware DL
model for robust prediction of wireless CU and real-time
change detection in CU distribution. To account for the uncer-
tainty in the DL model, we have used an encoder-decoder
framework based DL model using BNNs. Our results have
shown that the prediction performance of the proposed model
is as good as other models. However, in addition to predic-
tions, an additional feature of our proposedmodel is that it can
consistently quantify the uncertainty in predictions using PIs.
By using computed PIs, we have shown that we can perform
change detection in CU distribution accurately. We have also
developed a channel allocation algorithm for WLAN called
ProReact which utilizes the predictions from the DL model
to compute a novel metric score which is used to find efficient
channel allocation plan for the APs in the network. Moreover,
the proposed algorithm also utilizes the change detection in
CU feature of the proposed DL model to perform channel
reallocation when the CU distribution changes. Our results
have shown that our channel allocation algorithm achieves
fast convergence leading to high sum rates in the network.

One possible extension of our work we envisioned for is
to address the problem of coexistence of the licensed assisted
access of future wireless mobile networks and WiFi with the
application of the proposed CAD predictions based channel
allocation algorithm.
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