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ABSTRACT The growing ubiquity of drones has raised concerns over the ability of traditional air-space
monitoring technologies to accurately characterise such vehicles. Here, we present a CNN using a decision
tree and ensemble structure to fully characterise drones in flight. Our system determines the drone type,
orientation (in terms of pitch, roll, and yaw), and performs segmentation to classify different body parts
(engines, body, and camera). We also provide a computer model for the rapid generation of large quantities
of accurately labelled photo-realistic training data and demonstrate that this data is of sufficient fidelity to
allow the system to accurately characterise real drones in flight. Our network will provide a valuable tool
in the image processing chain where it may build upon existing drone detection technologies to provide
complete drone characterisation over wide areas.

INDEX TERMS Convolutional neural network, drones, orientation detection, pose, segmentation.

I. INTRODUCTION
The proliferation of semi-autonomous aerial vehicles,
i.e. drones, into the consumer and industrial spaces, combined
with the growing number of drone related incidents (infrac-
tions into commercial airspace, [1], [2] or the use of drones by
militant groups, [3], [4]) has raised concerns over the ability
of existing aerial detection systems to accurately characterise
such vehicles [5]–[7]. Specifically, many existing air-space
monitoring technologies are optimized to detect the presence
of a vehicle, identify its type, and, track its position over
time but they lack the resolution to determine target specific
features. This, in conjunction with drones ability to decouple
their motion in space from their assigned task e.g. simultane-
ously translate and rotate to keep a subject in frame whilst
filming, means that presence, type and position are often
insufficient to accurately identify the intent of a vehicle.

To accurately assess the intent of a drone it is necessary to
fully characterize its ‘pose’ i.e., not only identify its type but
also segment it into functional components and identify the
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orientation of these components in 3D space. Fig. 1 concep-
tually illustrates this process showing a DJI Mavic 2 drone
segmented into colour-coded components and placed within
a 3D Gimbal corresponding to its orientation.

To address the problem of drone characterization a wide
variety of machine learning assisted drone detection systems
have been developed. For example, radio based methods,
which eavesdrop on the communications between drones
and pilots and apply the statistical analyses of control
signals [8]–[11], Convolutional Neural Networks (CNNs)
analysing the spectragram [12]–[15], K-Nearest Neighbours
(KNNs) [16] clustering of signals, cyclostationary fea-
ture extractors [17], decision trees [18] and random forest
techniques [19], bit-analysis [20], and, residual [21], recur-
rent [22] and hierarchical networks [23]. Additionally, acous-
tic based methods analysing the noise of a drones motors and
propellers have also been developed using Mel Frequency
Cepstral Coefficients (MFCC) [24]–[29] or by converting
the signal to a spectragram [27], [30], [31]. Once obtained,
the MFCC or spectragram feature set can be used to train
Long-Short Term Memory (LSTM) models [24], or Con-
volution type models such as CNNs [31]–[36], Recurrent
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FIGURE 1. A conceptual representation of drone pose. A drone (here
represented by a DJI Mavic 2) is identified and divided into its
components, for instance, body (blue), engines (red), and, camera
(green). Further, the orientation of the drone in 3D space as represented
by the roll (magenta), pitch (orange) and yaw (cyan) gimbals is identified.

Neural Networks (RNNs) [32]–[34] which incorporate tem-
poral dependence and Convolutional-RNNs (CRNNs) [33],
[34]. The feature set can also be used to train vector typemod-
els including, Support Vector Machines (SVMs) [27], [28],
[30], [35], Gaussian Mixture Models [32] and KNNs [37]
or, retrain existing models such as random forests [38],
ResNet [25] and LeNet [39].

Despite the relative efficacy of acoustic and radio
based systems the introduction of quiet micro-drones and
fully autonomous drones (which do not require radio
commands) has rendered them progressively less ver-
satile and has necessitated the development of radar
and optical based sensor systems. Radar in particular
has seen extensive development including pulsed systems
[40]–[42], Doppler systems [43]–[47], and Frequency Mod-
ulated Continuous Wave (FMCW) systems [48]–[50] all at
multiple wavelengths [51]–[60]. The reader is directed to
Refs [61]–[64] for a comprehensive review. Whilst radar
based systems are able to monitor a large area and are robust
to atmospheric conditions, their reliance on micro-Doppler
information for drone type identification and poor transverse
resolution has prevented their application to problems beyond
target detection and tracking. Hence, in parallel to radar
systems, machine learning assisted optical drone detection
systems have been developed. Such systems have been exten-
sively used to identify the presence of drones in an image
and construct bounding boxes at ranges comparable to that
of radar systems [65], [66].

The most common approach to optical drone detection is
to train existing CNN based networks such as You Only Look
Once (YOLO) [67], [68] and ResNet [69], [70] on colour
camera images. These networks include coupling to pan-tilt
and zoom camera mounts to track moving objects [71], using
multi-camera systems to increase the field of view [72], [73],

utilising the high speed nature of YOLO to identify drones at
video frame rates [74], comparing the performance of YOLO
v2 and YOLO v3 on drones at short range against static back-
grounds [75], examining the effect of incorrect images labels
on YOLO [76] and, modified YOLO implementations [77].

More complex optical CNN architectures have also been
developed where features in the image (such as moving
objects) are enhanced before being sent to a second network
for identification. These multi-stage networks have proven
to generally be more effective at discriminating drones from
drone-like objects in images such as birds [78]–[81]. Such
networks have been developed using background subtraction
with image stabilization [82] and CNNs [83], [84], subtract-
ing successive frames and clustering using an SVM [85],
HAAR filters [86] for edge and feature detection, fore-
ground background separation [87], ResNet for feature
extraction and SVMs for classification [88], Kalman fil-
ters and ResNet [89], Faster-RCNN and ResNet [90], and,
using trajectory mapping to suppress erroneous YOLO iden-
tifications [91]. Additionally, several other networks have
been used for drone identification. These include iden-
tifying regions of interest in an image [92] using His-
togram of Gradient (HOG) descriptors with thresholding or
Fourier descriptors [93], simultaneous image upsampling and
downsampling [94], Inception Net v3 [95], generic Fourier
descriptors [96], [97], Faster-RCNN [98], and, TIB-Net with
CenterNet, lightweight networks optimised for speed of
processing [99], [100].

Finally, a number of more niche applications have also
been investigated such as, controlling the flight of a drone
based on external camera observations [101] and, using cam-
eras mounted on multiple drones to track and even intercept
hostile drones [102]–[105]. For a review of the different
machine learning implementations listed above the reader is
directed to Refs [106]–[108]. Despite the numerous optical
systems developed to date characterisation of drones beyond
presence, location and type remains rare with demonstrations
limited to determining if a drone is carrying a payload [109]
or the identification of key points on a single drone at short
range [110].

A promising avenue for the more complete characteriza-
tion of drones is given by sensor fusion in which multiple
sensors are combined. For example, using a large field-of-
view low resolution sensor to direct a small field-of-view high
resolution sensor with such systems seeing improvements in
performance of up to 15% [72], [111], [112]. In the case
of optical drone detection systems one such example is the
development of depth sensing time-of-flight systems such as
LIDARS. LIDARS active illumination allows them to operate
when no passive light source is available (such as at night),
detect targets which themselves emit no thermal radiation,
and, operate to a limited degree through obscurance. Scan-
ning LIDARS have been shown to be effective at drone
detection at ranges up to 2 km when coupled with a Variable
Radially Bounded Nearest Neighbour (V-RBNN) network to
analyse the point cloud [113], [114]. Further, flash LIDAR
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systems such as those employing Single Photon Avalanche
Detector (SPAD) array cameras allow for the simultaneous
capture of a ‘traditional’ high transverse resolution intensity
image as well as a lower transverse resolution depth image
(where ‘depth’ refers to the distance between the camera and
the object for each pixel). Such systems have been shown
to be effective at identifying the pose of objects at short
range [115], [116] but have yet to be applied to the problem
of drone characterization.

Here, we present a CNNwhich provides the complete char-
acterization of drones. The network takes as input an intensity
image as well as depth data and outputs: the identity of the
drone i.e., the type of drone in the data; the segmentation
of the drone in which each pixel in the intensity image is
classified according to the drone component it represents;
and, the orientation, the angle of the drone about its three
principle axes of rotation, yaw, pitch, and, roll. We examine
the performance of the network in multiple scenarios includ-
ing, different drones, different ranges of motion and different
data inputs. We assume that our system is being used in an
image processing chain where supplementary systems such
as radars would have already distinguished the drone from
drone-like objects (e.g. birds) and would be able to direct a
small field-of-view camera at the drone. We outline a system
for producing large quantities of accurately labelled simu-
lated data on which we train our network. To verify both our
network structure and our simulated training data we demon-
strate the ability of our network to accurately characterize an
image of a real DJI Mavic 2 Zoom drone in flight as captured
by a Quantic 4 × 4 SPAD camera [117]. The SPAD camera
represents a state-of-the-art sensor fusion system combining
a functional transverse resolution of 80 × 240 pixels for
intensity and 20 × 60 pixels for depth. Further, each depth
pixel outputs a depth histogram with 500 picosecond tem-
poral resolution. Finally, the architecture of the chip has the
potential for the alternating acquisition of visible spectrum
intensity images and depth histograms at rates in excess of
1000 frames per second [115].

II. NETWORK ARCHITECTURE
We present a network architecture built on a decision tree
coupled with an ensemble network. The decision tree iden-
tifies the type of drone after which a set of drone-specific
pretrained networks are applied in parallel to perform the
orientation and segmentation operations. Specifically, the
orientation is determined by three identical networks each
trained to identify a single axis (roll, pitch or yaw) while the
segmentation is performed by an additional U-Net [118] type
network. This structure allows multiple drone parameters to
be identified simultaneously through network parrallalization
whilst allowing each network to be optimized on a specific
parameter yielding superior overall performance.

The lack of high quality drone image training datasets
remains an obstacle for machine learning assisted drone
classification. To address this, several publications have
examined data augmentation [119] techniques such as,

FIGURE 2. Examples of the unreal engines ability to produce realistic,
accurately labelled, intensity, depth and segmentation data. a) Intensity
images generated by the unreal engine of a DJI Mavic 2 and (an upside
down) DJI Inspire 2 drone in flight. b) Unreal engine depth images
corresponding to the drones in the top panels. c) Segmentation labels
from the Unreal engine for the drones in the top panels showing the body
(in blue), the engines (in red), and, the cameras (in green).

FIGURE 3. Processed images from unreal engine compared to quantic
4 × 4 SPAD camera images. a) The intensity and depth images produced
by the unreal environment. b) The data used to train the network. The
intensity image is noised with a poisson filter while the depth image is
down-sampled and converted to a histogram of depths (visualised here
as a depth image). c) Images captured by a quantic 4 × 4 SPAD camera of
a real drone in flight. Note that the intensity images have been enhanced
in contrast for better visualization.

super-imposing drone images onto unrelated backgrounds
[120], super-resolution upscaling [121] and, generat-
ing new images from Generational-Adverserial Networks
(GANs) [122]. Here, we leverage the capability of the Unreal
Engine video game development environment to rapidly pro-
duce a large set of photo-realistic, accurately labelled training
data as illustrated by Fig. 2. This approach allows us to
explore the parameter space of drone types, orientation limits
(e.g. the upside down Inspire 2 in Fig. 2), lighting conditions
and image qualities to an extent which would be impractical
experimentally. Further, our model could be readily extended
to include numerous different backgrounds and weather con-
ditions. The Unreal code is publicly available and can be
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found at https://github.com/HWQuantum/DroneSense. Fig. 3
shows examples of the images processed by the network.
The simulated images produced by the Unreal environment
(Fig. 3a)) are processed before being passed to the network.
The simulated intensity image is noised with a Poisson
filter (Fig. 3b)) and resized to 80 × 240 pixels, while the
depth is downsampled and converted to a histogram with a
dimensionality of 20 × 60 × 15. Fig. 3c) shows the images
produced by a Quantic 4 × 4 SPAD array camera of a real
drone in flight which the simulated data is designed to mimic.
We stress that the image sizes used in the simulated data were
selected only to match the physical parameters of the Quantic
4 × 4 SPAD sensor, and the network can be reshaped to
any dataset with both intensity and depth information. The
images generated by the model could easily be adapted to
match those obtained with a different camera. Additionally,
the ability for the SPAD to isolate a volume of space using
time-of-flight gatingmeans that the background of the images
may be neglected.

Fig. 4 shows a summary of the identification, orientation
and segmentaion networks. At the core of these networks is
the Drone Feature Encoder (DFE) which reduces the input
data to a latent feature space. The DFE takes as input both
a histogram of depths (of size rh rows, ch columns, and ph
pages) and an intensity image (of size (ri, ci)). The histogram
is passed twice through two 3D convolutional layers (each
with 32 filters) and axial max-poolings to extract its depth
features and reduce it to a dimensionality of (rh, ch, 1). The
intensity image is passed through two 2D convolution layers
(eachwith 32 filters) and amax-pooling such that it is reduced
to a dimensionality of (rh, ch, 1). The intensity and depth
tensors are then concatenated and passed twice through a
set of two 2D convolutions (each with 32 filters) and max-
poolings ultimately reducing the network inputs to a latent
space of 1 × 3 × 32 filters. The DFE is identical in all the
networks with each network distinguished by how it handles
the data in this latent space.

In the case of the identification network which defines the
decision tree, the latent space is flattened to a 96 element
vector and connected to a dense layer with 64 neurons. These
neurons are in turn connected to the single output node with
a Sigmoid activation. This network is trained using cross-
entropy as a loss function such that it outputs an integer
corresponding to the type of drone in the image. The orien-
tation networks are identical in structure to the identification
network, but the final neuron uses a ReLu activation. ReLu
activation allows the neuron to output a continuous value
corresponding to the angle in a given axis. Further, the ori-
entation networks are trained using the loss function given in
Eqn. 1 which allows them to correctly account for the cyclic
nature of angle prediction and handle the discontinuity in
prediction between 360◦ and 0◦.

Loss = min[abs(l − p), abs(l − p− 360◦)]2, (1)

where l is the label, p is the networks prediction, and, abs
is the absolute value function. The segmentation network

FIGURE 4. A summary of the ensemble network structure, here the
common components of the networks have been drawn together while in
practice each network in the ensemble is distinct. The networks take in a
high transverse resolution intensity image and a low transverse
resolution histogram of depth. Using convolution, pooling, and,
concatenation the inputs are reduced to a dense latent space. The
identification network connects this latent space to a dense layer and
then to a single Sigmoid activated neuron for drone type classification.
By contrast, the three orientation networks use an identical structure but
employ ReLu activation in the final neuron to output a continuous value
corresponding to the angle in a given axis. Segmentation is performed by
up-sampling the latent space to a final convolution with filters
corresponding to the components being identified.

attaches a U-Net to the DFE. This U-Net up-samples the
latent space to a set of segmentation predictions of size
(ri, ci, n) where n corresponds to the number of components
being identified. Each layer of the U-Net mirrors the DFE,
undoing the max-pooling and using skip connections to con-
catenate the tensors. These concatenated tensors are then
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TABLE 1. Summary of network prediction accuracies for both drones in
the full angle and reduced angle regimes.

passed through two 2D convolutions each with 32 filters.
The network was trained using binary cross-entropy with the
ADAM optimizer and a learning rate of 0.001 with no drop
out. The final output is a single convolutional layer with (in
this case) three filters corresponding to the three components
being identified; the body of the drone, the engines of the
drone, and, the camera on the drone.

III. RESULTS
A. RESULTS ON SIMULATED DATA
Two drones were used for testing, a DJI Mavic 2 Zoom and
a DJI Inspire 2. High fidelity models of these drones were
placed in the Unreal environment and a total of 72 000 simu-
lated SPAD images generated. The images feature the drones
at random positions within the field-of-view, at random ori-
entations, and, at random distances from the SPAD camera,
ensuring sufficient variation in the data. From the training
images, 10% were reserved for network testing. We do not
make use of any image augmentation, although this could
be used to increase the total number of training images.
The networks were trained until the loss converged and the
networks with the best performance on the testing data saved.
These models were then validated on a separately generated
set of 3600 unseen validation images. This ensured no chance
of the network overfitting to the validation data. A summary

of the results for the identification, segmentation and ori-
entation networks is presented in Table 1. The final trained
parameters of the model are specific to the images that we
use for training, and these images are closelymatched to those
generated by the Quantic 4× 4 sensor. Images collected with
a different sensor could be used with this model, however, the
optimal performance will always be achieved if the model is
retrained with the appropriate images.

To ensure non-negative angular values in all drone orienta-
tions a coordinate systemwas established inwhich level flight
facing away from the camera corresponded to, yaw = 180◦,
roll = 180◦ and pitch = 90◦. Within this coordinate system
two angular regimes were examined, the ‘full angle’ regime
and the ‘reduced angle’ regime. In the full angle regime
the drone models had the following range of motion: yaw
∈ [0◦, 360◦]; roll ∈ [0◦, 360◦]; and, pitch ∈ [0◦, 180◦]
(with pitch limited to [0◦, 180◦] to negate gimbal-lock). In the
reduced angle regime the models were constrained to within
the manufacturer’s limits specifically: yaw ∈ [0◦, 360◦]; roll
∈ [140◦, 220◦]; and, pitch ∈ [140◦, 220◦]. By examining
these regimes we evaluate the network’s ability to charac-
terise drones flying in both conventional flight modes and
more exotic flight modes (such as upside down).

Fig. 5 displays the predictions of the orientation networks
for the full angle and reduced angle regimes. The theta coordi-
nate represents the angle and the radial coordinate represents
the error with−180◦ error at the center and+180◦ error at the
circumference. The solid red ring indicates the ground truth.
Network under and over predictions fall inside of and outside
of the red ring respectively. Predictions made by the network
trained on the full range of angles are shown as blue triangles.
Predictions made by the network trained on the reduced range
of angles (indicated by the shaded region) are shown as green
dots.

By examining the radial distribution of the predictions, the
accuracy of the networks in each axis and in each regime
can be compared and the following observations made. First,
the accuracy of the networks is contingent upon the number
of images-per-angle the network is given to train on. In the
full angle regime where the pitch is restricted to half the
range of the roll and yaw the network accuracy improves
significantly since for the same number of total training
images the number of examples-per-degree is doubled to
∼400. This is also why in the reduced angle regime where
the roll is restricted its accuracy matches that of the pitch,
while the yaw does not, even when the same total number of
training images is used. Second, the accuracy of the networks
is coupled i.e., for a reduced range of motion in one axis the
accuracy of the remaining axes will increase.While this effect
is less pronounced than that of examples-per-degree it can be
observed in Table. 1 where a 4◦ increase in yaw accuracy is
observed for both drones in the reduced angle regime. This
despite the range of motion in that axis remaining constant.
The improvement can be attributed to the reduced variance
(roll and pitch range) in the images which the yaw network
must learn. Third, the accuracy of the networks is somewhat
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FIGURE 5. The results of the orientation prediction networks for the two
drones in the full angle and reduced angle regimes. The theta coordinate
represents the angle with the solid red ring indicating the ground truth.
The radial coordinate represents the error (up to a maximum of ±180◦)
with network under and over predictions falling inside of and outside of
the red ring respectively. Predictions made by the network trained on the
full range of angles are shown as blue triangles. Predictions made by the
network trained on the reduced range of angles (indicated by the shaded
region) are shown as green dots.

contingent on the symmetry of the drone. Specifically, the
Mavic 2 is nearly perfectly symmetric about its roll axis,
consequently the accuracy of the Mavic 2 roll network in the
full angle regime is the worst. This is because there are the
fewest features to unambiguously identify the roll at angles
outside of a 90◦ to 270◦ range.
Examining the Intersection over Union (IoU) scores in

Fig. 6 it is apparent that the networks can effectively segment
both drones into their components regardless of their orien-
tation. The score relating to the ‘body’ label is the highest
in all cases indicating that the network is most accurate at
predicting this component. This is likely because it is the
most prevalent in terms of pixels in the image. Additionally,
the fact that the rows and columns of the IoU scores do not
sum to 100 indicates a conservative predictor. This means the
network leaves some pixels (particularly around the perimeter

FIGURE 6. Qualitative and quantitative analyses of the segmentation
networks. The quantitative analyses uses the IoU percentage for the two
drones in the full angle and reduced angle regimes. The number in,
as well as the size of each coloured region corresponds to the nearest
integer IoU percentage. Note that the sizes of the regions have been
scaled logarithmically for clearer representation.

of the drone) unclassified, reducing the total accuracy but also
minimising misclassification.

B. REDUCED INPUT RESULTS
To further examine the functioning of the networks an abla-
tion study was conducted. Specifically, the effect of removing
one input channel, either the histograms or the intensity was
quantified. Given that all networks share the DFE it was
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FIGURE 7. The results of the orientation prediction networks for the
Mavic 2 drone in the full angle regime when trained using only an
intensity or depth input. The theta coordinate represents the angle with
the solid red ring indicating the ground truth. The radial coordinate
represents the error (up to a maximum of ±180◦). Network under and
over predictions fall inside of and outside of the red ring respectively.
Predictions made by the networks trained on both inputs are shown as
blue triangles. Predictions made by the networks trained on only intensity
or depth data are shown as orange stars and yellow squares respectively.

determined to be sufficient to retrain only the orientation net-
work for theMavic 2 in the full angle regime since changes in
performance in this network would be indicative of changes
in all networks. Table 2 presents a summary of the findings
with the network predictions visualized in Fig. 7. Table 2
and Fig. 7 indicate that the orientation of a drone can be more
accurately determined from a depth input than an intensity
input although the relative improvement is small. It should
be noted however, that the images on which the network
was trained do not contain a background. In real world cases
where drones could be optically camouflaged the ability for
depth sensing devices to isolate volumes of space ahead of
background objects using time-of-flight gating may signifi-
cantly enhance their robustness in orientation detection.

Additionally, given that the segmentation network can only
reliably produce images up to the size of its largest input

TABLE 2. Summary of the Mavic 2’s orientation network accuracy when
trained using only an intensity input or a depth input in the full angle
regime.

FIGURE 8. Summary of the Mavic 2’s orientation and segmentation
network accuracy when trained using inputs at one half and one quarter
resolution. The colour panels provide a qualitative illustration of network
performance while the numbers report the accuracy and standard
deviation as well as the change in those quantities with respect to the full
resolution results in Table 1. Generally, as input resolution is reduced
network performance worsens particularly in respect to the segmentation
of small components on the drone, such as the engines.

(due to its U-Net structure) there is a benefit to providing
the network with a high transverse resolution image. This
benefit is illustrated in Fig. 8. Fig. 8 shows the degradation in
accuracy of the yaw orientation and segmentation networks
when trained on inputs at one-half and one-quarter of the
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FIGURE 9. The predictions of the network trained on simulated data
when applied to Quantic 4 × 4 data of a real drone in flight. The network
correctly predicted the drone type and identified the roll, pitch and yaw
with an average accuracy of 95%. The segmentation panels show the
networks component prediction overlayed onto the intensity image (with
the contrast enhanced intensity image shown alongside for reference).
The network accurately segmented the drone into the body and engine
components whilst not erroneously identifying a camera.

original resolution, as may be the case for a drone which
is further away (or smaller) or a lower resolution sensor.
As the resolution decreases both the accuracy and the pre-
cision (as shown by the increase in standard deviation) of
the network decreases. This effect is particularly apparent
in the segmentation of small features such as the engines
and camera where low resolution images fail to retain the
component-specific features on which the network relies for
identification. Fig. 8 further illustrates the benefit of sensor
fusion approaches which combine depth information with
high transverse resolution images.

C. RESULTS ON REAL DATA
To demonstrate the real world applicability of our system,
we applied the reduced angle network (trained only on simu-
lated data) to an image of a real DJI Mavic 2 Zoom drone
captured in flight using a Quantic 4 × 4 SPAD camera.
Fig. 9 summarizes the predictions made by the networks
and highlights their ability to fully characterise drones in
real world conditions. The network correctly identified the
drone type and suffered only a small loss in accuracy when
performing the segmentation and orientation operations. This
reduction in accuracy can be attributed to the reduction in
quality between the simulated data and the input data from
the Quantic 4 × 4 (as seen in Fig. 3 c))

IV. CONCLUSION
We present a CNN using a decision tree and ensemble struc-
ture to fully characterise i.e., determine the type, orientation
and segmentation of drones in flight with accuracies in excess
of 90%.We provide a system for the rapid generation of large
quantities of accurately labelled photo-realistic training data

and demonstrate that this data is of sufficient fidelity to allow
the system to accurately characterise real drones in flight.
Our network provides a valuable tool in the image processing
chain and can be used in combination with existing drone
detection technologies to provide complete drone characteri-
sation over wide areas. Finally, our approach may be readily
extended to multiple 3D imaging and sensor fusion systems
enabling pose detection for a wide range of vehicles.
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